Opções de pesquisa
Página inicial Sala de Imprensa Notas explicativas Estudos e publicações Estatísticas Política monetária O euro Pagamentos e mercados Carreiras
Sugestões
Ordenar por
Não disponível em português

Catherine Doz

11 September 2006
WORKING PAPER SERIES - No. 674
Details
Abstract
This paper considers quasi-maximum likelihood estimations of a dynamic approximate factor model when the panel of time series is large. Maximum likelihood is analyzed under different sources of misspecification: omitted serial correlation of the observations and cross-sectional correlation of the idiosyncratic components. It is shown that the effects of misspecification on the estimation of the common factors is negligible for large sample size (T) and the cross sectional dimension (n). The estimator is feasible when n is large and easily implementable using the Kalman smoother and the EM algorithm as in traditional factor analysis. Simulation results illustrate what are the empirical conditions in which we can expect improvement with respect to simple principle components considered by Bai (2003), Bai and Ng (2002), Forni, Hallin, Lippi, and Reichlin (2000, 2005b), Stock and Watson (2002a,b).
JEL Code
C51 : Mathematical and Quantitative Methods→Econometric Modeling→Model Construction and Estimation
C32 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Time-Series Models, Dynamic Quantile Regressions, Dynamic Treatment Effect Models, Diffusion Processes
C33 : Mathematical and Quantitative Methods→Multiple or Simultaneous Equation Models, Multiple Variables→Panel Data Models, Spatio-temporal Models

O nosso sítio Web utiliza cookies

Utilizamos cookies de funcionalidade para guardar as preferências dos utilizadores, cookies analíticos para melhorar o desempenho do sítio Web e cookies de terceiros, que são estabelecidos por serviços de terceiros integrados no sítio Web. Pode aceitar ou recusar os cookies. Para mais pormenores ou para atualizar as suas preferências em termos de cookies e informação recolhida pelos servidores que utilizamos, recomendamos que: