SØGEMULIGHEDER
Hjem Medier Explainers Forskning & Offentliggørelser Statistik Pengepolitik €uroen Betalinger & Markeder Kariere & Job
Forslag
Sortér efter
Findes ikke på dansk

Douglas Araujo

1 April 2025
WORKING PAPER SERIES - No. 3047
Details
Abstract
Word embeddings are vectors of real numbers associated with words, designed to capture semantic and syntactic similarity between the words in a corpus of text. We estimate the word embeddings of the European Central Bank’s introductory statements at monetary policy press conferences by using a simple natural language processing model (Word2Vec), only based on the information and model parameters available as of each press conference. We show that a measure based on such embeddings contributes to improve core inflation forecasts multiple quarters ahead. Other common textual analysis techniques, such as dictionary-based metrics or sentiment metrics do not obtain the same results. The information contained in the embeddings remains valuable for out-of-sample forecasting even after controlling for the central bank inflation forecasts, which are an important input for the introductory statements.
JEL Code
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation
E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
E58 : Macroeconomics and Monetary Economics→Monetary Policy, Central Banking, and the Supply of Money and Credit→Central Banks and Their Policies

Vi bruger cookies på vores websted

Vi bruger funktionelle cookies til at lagre brugerpræferencer, analysecookies til at forbedre webstedets resultater, tredjepartscookies, der er fastsat af tredjepartstjenester, der er integreret på webstedet. Du kan vælge at acceptere eller afvise dem. For yderligere oplysninger eller for at gennemgå din præference for de cookies og serverlogfiler, vi bruger, opfordrer vi dig til: