Zoekopties
Home Media Explainers Onderzoek & publicaties Statistieken Monetair beleid De euro Betalingsverkeer & markten Werken bij de ECB
Suggesties
Sorteren op
Niet beschikbaar in het Nederlands

Fabio Alberto Comazzi

1 April 2025
WORKING PAPER SERIES - No. 3047
Details
Abstract
Word embeddings are vectors of real numbers associated with words, designed to capture semantic and syntactic similarity between the words in a corpus of text. We estimate the word embeddings of the European Central Bank’s introductory statements at monetary policy press conferences by using a simple natural language processing model (Word2Vec), only based on the information and model parameters available as of each press conference. We show that a measure based on such embeddings contributes to improve core inflation forecasts multiple quarters ahead. Other common textual analysis techniques, such as dictionary-based metrics or sentiment metrics do not obtain the same results. The information contained in the embeddings remains valuable for out-of-sample forecasting even after controlling for the central bank inflation forecasts, which are an important input for the introductory statements.
JEL Code
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation
E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
E58 : Macroeconomics and Monetary Economics→Monetary Policy, Central Banking, and the Supply of Money and Credit→Central Banks and Their Policies

Onze website maakt gebruik van cookies

We gebruiken functionele cookies om voorkeuren van gebruikers op te slaan, analytische cookies om de werking van de website te verbeteren en cookies van derden die zijn ingesteld door in de website geïntegreerde externe diensten. U kunt deze cookies accepteren of weigeren. Voor meer informatie of voor het herzien van uw voorkeuren over cookies en serverlogs die we gebruiken, kunt u hier terecht: