
  

Panel 2: Drivers of Equilibrium Interest 
Rates1 

By Stephanie Schmitt-Grohé2 and Martín Uribe3 

1 Introduction 

For the purposes of these remarks, the natural rate of interest, or 𝑟𝑟𝑡𝑡∗ for short, is 
defined as the unobserved permanent component of the real short-term interest rate. 
This definition aligns with the one used, for example, in the seminal work by Laubach 
and Williams (2003). The natural rate of interest is also sometimes defined as the 
real short-term interest rate that would prevail in the absence of nominal rigidities. 
However, this is a different concept and not the one employed here. The latter 
measure is affected by cyclical variations in transitory shocks hitting the economy, 
whereas the time path of the former measure is independent of such transitory 
shocks. 

In general, 𝑟𝑟𝑡𝑡∗ is regarded as independent of monetary policy but at the same time of 
great importance to it. Given a central bank's inflation target, the nominal short-term 
interest rate set by the central bank, say the fed funds rate in the case of the United 
States, absent any cyclical factors, should be set equal to the sum of the natural rate 
and the inflation target. For example, if the inflation target is 2 percent and the 
natural rate is 1 percent then, absent any cyclical factors, the central bank interest 
rate should be set at 3 percent, or in the terminology of the field, the neutral (or 
terminal) rate should be 3 percent. Thus it is not surprising that there exists a large 
body of work that aims to estimate the value of the natural rate of interest. 

2 Empirical Estimates of the Time Path of the Natural Rate 
of Interest, 𝑟𝑟𝑡𝑡∗ 

Much of the empirical literature on 𝑟𝑟𝑡𝑡∗ has focused on estimating its path. See, for 
example, Laubach and Williams (2003, 2016); Del Negro et al. (2017, 2019); Holston 
et al. (2017); Ferreira and Shousha (2021); Cesa-Bianchi et al. (2022); and Hamilton 
et al. (2016). 
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Chart 1 
Time Path of the Natural Rate of Interest (𝑟𝑟𝑡𝑡∗), U.S. annual data 1900-2023 

(percent per year) 

 

Source: Schmitt-Grohé and Uribe (2024), Figure 1.  
Notes: The natural rate, 𝑟𝑟𝑡𝑡∗, is computed by two-sided Kalman smoothing. It is normalized by adding a constant to match the observed 
sample mean of 𝑖𝑖𝑡𝑡 − 𝜋𝜋𝑡𝑡+1 (1.05 percent per year). The solid line is the posterior median of 𝑟𝑟𝑡𝑡∗ and the broken lines indicate the 2.5th 
and 9.75th posterior percentile of 𝑟𝑟𝑡𝑡∗, respectively. 

In Schmitt-Grohé and Uribe (2024), using the semistructural empirical methods 
developed in Uribe (2022), we estimate the natural rate of interest using annual U.S. 
data over the period 1900 to 2023. Chart 1 shows the estimated path of the natural 
rate and the associated 95-percent posterior interval. 

2.1 Natural Rate Supercycles 

Chart 1 shows that the natural rate experiences supercycles. The first supercycle 
started sometime before 1900 and reached a trough around the end of the Great 
Depression in 1933. Then a second supercycle began and reached a peak in the 
early 1980s. Since that peak, the natural rate has been falling more or less 
monotonically at least until the onset of the pandemic in 2020. Since then, 𝑟𝑟𝑡𝑡∗ is 
estimated to be relatively stable. This stability could indicate either a temporary 
pause in the downward part of the ongoing supercycle, or it could indicate a turning 
point so that a new period of rising natural rates is about to begin. 

The chart further shows that the steepest declines in the estimated path of 𝑟𝑟𝑡𝑡∗ 
occurred during the financial crises of 1929 and 2008. We will revisit this observation 
below when discussing potential theoretical explanations for variations in 𝑟𝑟𝑡𝑡∗. 

2.2 Demographics and 𝑟𝑟∗ 

Some have argued that as the population ages, the rate of innovation declines, and 
as a consequence 𝑟𝑟∗ falls. Combining the idea that population aging is a key driver 
of lower natural rates with the empirical regularity that in the United States population 
aging has steadily increased since 1900, we should see that the natural rate has 



  

steadily decreased since 1900. But this prediction is not supported by the data, as 
we have just documented that the natural rate experienced two supercycles over this 
period. In particular, the natural rate was as low in 2023 as it was in the mid-1920s. 

For the purposes of the present remarks, the main takeaway from Chart 1 is that 𝑟𝑟𝑡𝑡∗ 
displays supercycles. We will refer to this empirical property as stylized fact 1. 

Stylized Fact 1: The natural rate of interest, 𝑟𝑟𝑡𝑡∗, displays supercycles. 

3 Empirical Estimates of the Consequences of Natural Rate 
Shocks 

Chart 1 shows the estimated path of the natural rate of interest—a topic on which a 
large literature exists, as mentioned above. Less research exists on the empirical 
question of how movements in the natural rate affect macroeconomic indicators in 
the short and long runs. 

Chart 2 
Impulse Response to a 1% Decline in the Natural Rate of Interest, 𝑟𝑟𝑡𝑡∗ 

(percent, deviation from pre-shock level) 

 

Source: Schmitt-Grohé and Uribe (2024). Figure 3. 
Notes: Solid lines display the posterior mean response to a negative natural rate shock (a decrease in 𝑟𝑟𝑡𝑡∗) that lowers the real interest 
rate by 1 percentage point in the long run. Broken lines are asymmetric 95-percent confidence bands computed using the method of 
Sims and Zha (1999). 

Chart 2, also taken from Schmitt-Grohé and Uribe (2024), addresses this question. It 
displays the posterior mean response to a negative natural rate shock (a fall in 𝑟𝑟𝑡𝑡∗) 
that lowers the real short-term interest rate by 1 percentage point in the long run. 
The chart includes asymmetric 95-percent confidence bands computed using the 
Sims-Zha (1999) method. The estimates indicate that a fall in the natural rate 
decreases the trend level of output. Specifically, a one percentage point decline in 
the natural rate is estimated to lower the trend component of the level of real GDP 
per capita between 3 and 16 percent, with a mean of 9 percent. This result is our 
second stylized fact. 



  

Stylized Fact 2: A decline in the natural rate of interest, 𝑟𝑟𝑡𝑡∗, lowers the trend level of 
real GDP per capita. 

Given our findings, namely, that the natural rate displays supercycles and that a 
negative shock to the natural rate shock shifts the trend growth path of the natural 
logarithm of real output per capita down in a parallel fashion, we next ask what 
theories are consistent with these two stylized facts. 

4 Theory: Drivers of 𝑟𝑟∗ 

The results of the preceding analysis delivered two stylized facts about 𝑟𝑟∗: (i) over 
the past 124 years 𝑟𝑟∗ has displayed supercycles and (ii) a shock that lowers 𝑟𝑟∗ leads 
to a sizeable downward shift in the level of the trend growth path of the natural 
logarithm of real GDP per capita. 

Here we first show that these two stylized facts are difficult to reconcile with the 
predictions of a canonical neoclassical growth model. A key challenge is to explain 
stylized fact 2, namely, that a fall in 𝑟𝑟∗ is associated with a decline in the trend level 
of real per capita output. 

Motivated by the above observation that in the 1900 to 2023 sample, the sharpest 
declines in the estimated path of 𝑟𝑟𝑡𝑡∗ occurred during the financial crises of 1929 and 
2008, we then embed a liquidity friction into the canonical neoclassical growth 
model. The resulting model predicts that along the balanced growth path a decline in 
liquidity drives down both 𝑟𝑟∗ and the level of trend output, which is consistent with 
stylized fact 2. 

4.1 A Neoclassical Growth Model 

Consider the canonical neoclassical growth model with exogenous population growth 
and labor augmenting technological change. Let 𝑁𝑁𝑡𝑡 denote the number of workers 
and assume that 𝑁𝑁𝑡𝑡+1 = (1 + 𝑛𝑛)𝑁𝑁𝑡𝑡, where 𝑛𝑛 denotes the rate of population growth. 
Let 𝐴𝐴𝑡𝑡 denote the level of labor augmenting technology and assume that 𝐴𝐴𝑡𝑡+1 = (1 +
𝑔𝑔)𝐴𝐴_𝑡𝑡, where 𝑔𝑔 denotes the growth rate of labor augmenting technological change. 
Define 𝑟𝑟∗ as the real interest rate along the balanced growth path. As shown in 
Appendix A, along the balanced growth path, 

𝑟𝑟∗ =
(1 + 𝑔𝑔)𝜎𝜎

𝛽𝛽
− 1. (1) 

This means that the only parameters affecting 𝑟𝑟∗ are the growth rate of labor 
augmenting technical change, 𝑔𝑔, the household’s coefficient of relative risk aversion, 
𝜎𝜎 > 0, and the household’s subjective discount factor, 𝛽𝛽 ∈ (0, 1). Importantly, 𝑟𝑟∗ is 
independent of the population growth rate 𝑛𝑛. As such the neoclassical growth model 
cannot be used to argue that a slowdown in population growth is driving the decline 
in 𝑟𝑟∗. 



  

Along the balanced growth path, the natural logarithm of real GDP per capita, 
denoted ln𝑌𝑌𝑡𝑡/𝑁𝑁𝑡𝑡, is given by (see Appendix A for details), 

ln �
𝑌𝑌𝑡𝑡
𝑁𝑁𝑡𝑡
� =

𝛼𝛼
1 − 𝛼𝛼

[ln𝛼𝛼 − ln(𝑟𝑟∗ + 𝛿𝛿)] + ln 𝐴𝐴𝑡𝑡 , (2) 

where (1 − 𝛼𝛼) ∈ (0, 1) denotes the labor share and 𝛿𝛿 denotes the rate of 
depreciation of physical capital. This expression shows that holding constant the rate 
of technological progress, 𝑔𝑔, there is an inverse relationship between 𝑟𝑟∗ and real 
GDP per capita along the balanced growth path. Thus, holding constant 𝑔𝑔, the 
predicted relationship between 𝑟𝑟∗ and the trend level of per capita real GDP is not 
consistent with stylized fact 2. 

What about changes in the rate of technological progress 𝑔𝑔? By (1), the neoclassical 
model predicts that the higher 𝑔𝑔 is, the larger 𝑟𝑟∗ will be. This suggests that in the 
neoclassical growth model 𝑔𝑔 could be an important driver of 𝑟𝑟∗. For example, if one 
were to interpret the recent advances in generative AI as ushering in a period of 
persistently high technological growth, that is, an increase in 𝑔𝑔, then based on this 
observation, one might expect them to be associated with 𝑟𝑟∗ rising. One potential 
objection to this argument is that in the data, the degrees of integration of the growth 
rate of real GDP per capita and the real short-term interest rate are different, while in 
the neoclassical growth model they are assumed to be the same. In the data real 
per-capita output growth is stationary, that is, integrated of order 0, whereas the real 
interest rate is nonstationary, and integrated of order 1. These considerations cast 
doubt on the prediction of the neoclassical growth model that technological change is 
an important driver of 𝑟𝑟∗. 

Overall, the arguments presented suggest that to understand the drives of 𝑟𝑟∗ one 
might have to look beyond the neoclassical growth model. 

4.2 A Neoclassical Growth Model with a Liquidity Friction 

In this section, we introduce a financial or liquidity friction into the neoclassical 
growth model presented above. For simplicity we abstract from population growth 
and technological progress. 

Households are assumed to be subject to a working capital constraint for investment, 
denoted 𝑖𝑖𝑡𝑡. At the beginning of the period, prior to production taking place, 
households make investment decisions that determine next period's capital stock, 
𝑘𝑘𝑡𝑡+1.4 The working capital constraint requires that period-𝑡𝑡 investment must be less 
than or equal to a function of the household's assets at the beginning of period 𝑡𝑡. 
These assets consist of the maturing bonds acquired in the previous period, 𝑏𝑏𝑡𝑡, and 

 
4  Because the model abstracts from population and technology growth, all variables are stationary and 

accordingly we use lower case letters to denote them. 



  

the capital stock, 𝑘𝑘𝑡𝑡. Specifically, assume that the working capital constraint on 
investment takes the form 
𝑖𝑖𝑡𝑡 ≤  𝜌𝜌𝑏𝑏𝑡𝑡

𝛾𝛾𝑘𝑘𝑡𝑡
1−𝛾𝛾 ,                    𝛾𝛾 ∈ [0, 1), 

and 𝜌𝜌 > 0 is a parameter controlling the severity of the constraint. For a sufficiently 
low supply of bonds, 𝑏𝑏, there exists a balanced growth path in which the working 
capital constraint is binding.5 Along that balanced growth path, an exogenous decline 
in the quantity of liquidity, 𝑏𝑏, lowers both the natural rate of interest, 𝑟𝑟∗, and the trend 
level of per capita output, 𝑦𝑦 = 𝑌𝑌/𝑁𝑁, so that the model is consistent with stylized fact 
2. 

The mechanism in the model works as follows. Consider the balanced growth path. 
Both capital, 𝑘𝑘, and liquidity, 𝑏𝑏, relax the investment constraint. Capital is an 
endogenous variable. The steady state value of 𝑘𝑘 is increasing in the amount of 
liquidity 𝑏𝑏, because more 𝑏𝑏 allows for higher steady state investment and hence 
higher steady state 𝑘𝑘. With higher steady state capital, output in the steady state will 
also be higher. This establishes a positive relationship between steady-state liquidity 
𝑏𝑏 and steady-state per capita output 𝑦𝑦. 

The reason why the model also predicts a positive relationship between 𝑟𝑟∗ and 
liquidity in the steady state is that a bond provides two benefits to its holder. One 
benefit is the interest the bond pays, 𝑟𝑟∗. The second benefit the bond has is that it 
relaxes the investment constraint. Thus, when the shadow price of investment falls 
(in the sense that the investment constraint while still binding is less restrictive), the 
second benefit provided by the bond is smaller and thus households require more 
compensation in the form of interest payments (𝑟𝑟∗) to be willing to hold a given 
quantity of bonds. This implies that 𝑟𝑟∗ is increasing in 𝑏𝑏. 

Taken together, we have that, provided the investment constraint is binding, a 
negative shock to liquidity, 𝑏𝑏, lowers the level of per capita output and at the same 
time lowers 𝑟𝑟∗, consistent with stylized fact 2. 

Appendix 

Appendix A: 
A Neoclassical Growth Model 

Appendix A derives equation (1) and (2) of section 4.1 of the main text. 

The production function is assumed to take the form 
𝑌𝑌𝑡𝑡 = 𝐾𝐾𝑡𝑡𝛼𝛼  (𝐴𝐴𝑡𝑡𝑁𝑁𝑡𝑡)1−𝛼𝛼 ,                𝛼𝛼 ∈ (0, 1), 

where 𝑌𝑌𝑡𝑡 denotes output, 𝐾𝐾𝑡𝑡 denotes the capital stock, and α is a parameter. The 
capital stock evolves over time according to 

 
5  For details, see Appendix B. 



  

𝐾𝐾𝑡𝑡+1 = (1 − 𝛿𝛿)𝐾𝐾𝑡𝑡 + 𝐼𝐼𝑡𝑡 , 

where δ denotes the depreciation rate and 𝐼𝐼𝑡𝑡 denotes investment. 

Households have preferences over per capita assumption, 𝐶𝐶𝑡𝑡/𝑁𝑁𝑡𝑡  

�𝛽𝛽𝑡𝑡
∞

𝑡𝑡=0

𝑁𝑁𝑡𝑡𝑈𝑈 �
𝐶𝐶𝑡𝑡
𝑁𝑁𝑡𝑡
�. 

The period felicity function takes the form: 𝑈𝑈(𝑐𝑐) = (𝑐𝑐1−𝜎𝜎 − 1)/(1 − 𝜎𝜎), where 𝜎𝜎 > 0 
denotes the coefficient of relative risk aversion. For simplicity, we assume that each 
worker supplies inelastically 1 unit of labor. Households are assumed to have access 
to a one-period bond, denoted 𝑏𝑏𝑡𝑡, that pays the real interest rate 𝑟𝑟𝑡𝑡 when held from 
period 𝑡𝑡 to period 𝑡𝑡 + 1 and pay lump-sum taxes 𝑇𝑇𝑡𝑡 in period 𝑡𝑡 to the government. 
The sequential budget constraint of the household can then be expressed as 

𝐶𝐶𝑡𝑡 + 𝐾𝐾𝑡𝑡+1 − (1 − 𝛿𝛿)𝐾𝐾𝑡𝑡 +
𝐵𝐵𝑡𝑡

1 + 𝑟𝑟𝑡𝑡
= 𝐾𝐾𝑡𝑡𝛼𝛼  (𝐴𝐴𝑡𝑡𝑁𝑁𝑡𝑡)1−𝛼𝛼 + 𝐵𝐵𝑡𝑡 − 𝑇𝑇𝑡𝑡 . 

Each period 𝑡𝑡, the government issues discount bonds, 𝐵𝐵𝑡𝑡+1/(1 + 𝑟𝑟𝑡𝑡), and collects 
lump-sum taxes 𝑇𝑇𝑡𝑡. Its sequential budget constraint is given by 𝐵𝐵𝑡𝑡+1/(1 + 𝑟𝑟𝑡𝑡) = 𝐵𝐵𝑡𝑡 +
𝑇𝑇𝑡𝑡 for all 𝑡𝑡 ≥ 0, with 𝐵𝐵0 given. 

Without loss of generality assume that bonds are in zero net supply, including in 
period 0, 𝐵𝐵0 = 0. An equilibrium then are sequences for 𝑌𝑌𝑡𝑡,𝐾𝐾𝑡𝑡+1,𝐶𝐶𝑡𝑡 , 𝐼𝐼𝑡𝑡 , and 𝑟𝑟𝑡𝑡 
satisfying 

𝑌𝑌𝑡𝑡 = 𝐾𝐾𝑡𝑡𝛼𝛼  (𝐴𝐴𝑡𝑡𝑁𝑁𝑡𝑡)1−𝛼𝛼 (A1) 

𝐶𝐶𝑡𝑡 + 𝐼𝐼𝑡𝑡 = 𝑌𝑌𝑡𝑡 (A2) 

𝐾𝐾𝑡𝑡+1 = (1 − 𝛿𝛿)𝐾𝐾𝑡𝑡 + 𝐼𝐼𝑡𝑡 (A3) 

�

𝐶𝐶𝑡𝑡+1
𝑁𝑁𝑡𝑡+1
𝐶𝐶𝑡𝑡
𝑁𝑁𝑡𝑡

�

𝜎𝜎

=  𝛽𝛽(1 + 𝑟𝑟𝑡𝑡) (A4) 

�

𝐶𝐶𝑡𝑡+1
𝑁𝑁𝑡𝑡+1
𝐶𝐶𝑡𝑡
𝑁𝑁𝑡𝑡

�

𝜎𝜎

=  𝛽𝛽[𝛼𝛼𝐾𝐾𝑡𝑡+1𝛼𝛼−1(𝐴𝐴𝑡𝑡+1𝑁𝑁𝑡𝑡+1)1−𝛼𝛼 + 1 −  𝛿𝛿 ] (A5) 

given initial 𝐾𝐾−1 and exogenous sequences for 𝑁𝑁𝑡𝑡 and 𝐴𝐴𝑡𝑡. Because there is labor 
augmenting technological progress and population growth some variables are non-
stationary. We perform the following stationarity inducing transformations: 𝑥𝑥𝑡𝑡 =
𝑋𝑋𝑡𝑡/(𝐴𝐴𝑡𝑡𝑁𝑁𝑡𝑡), for 𝑋𝑋 = 𝑌𝑌,𝐾𝐾,𝐶𝐶, and 𝐼𝐼. We can then write the equilibrium conditions as 



  

𝑦𝑦𝑡𝑡 = 𝑘𝑘𝑡𝑡𝛼𝛼 (A6) 

𝑐𝑐𝑡𝑡 + 𝑖𝑖𝑡𝑡 = 𝑦𝑦𝑡𝑡 (A7) 

(1 + 𝑔𝑔)(1 + 𝑛𝑛)𝑘𝑘𝑡𝑡+1 = (1 − 𝛿𝛿)𝑘𝑘𝑡𝑡 + 𝑖𝑖𝑡𝑡 (A8) 

�
(1 + 𝑔𝑔)𝑐𝑐𝑡𝑡+1

𝑐𝑐𝑡𝑡
�
𝜎𝜎

=  𝛽𝛽(1 + 𝑟𝑟𝑡𝑡) (A9) 

1 + 𝑟𝑟𝑡𝑡 =  𝛼𝛼𝑘𝑘𝑡𝑡+1𝛼𝛼−1 + 1 − 𝛿𝛿. (A10) 

Consider next the balanced growth path of this economy. This is of interest because 
𝑟𝑟∗ is defined as the real interest rate along the balanced growth path. A balanced 
growth path is an equilibrium in which all stationary variables are constant over time, 
𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑠𝑠𝑠𝑠, for 𝑥𝑥 = 𝑦𝑦,𝑘𝑘, 𝑐𝑐, 𝑖𝑖, 𝑟𝑟. The equations describing the balanced growth path then 
are 

𝑦𝑦𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠𝛼𝛼  (A11) 

𝑐𝑐𝑠𝑠𝑠𝑠 + 𝑖𝑖𝑠𝑠𝑠𝑠 = 𝑦𝑦𝑠𝑠𝑠𝑠 (A12) 

[(1 + 𝑔𝑔)(1 + 𝑛𝑛) − (1 − 𝛿𝛿)]𝑘𝑘𝑠𝑠𝑠𝑠 = 𝑖𝑖𝑠𝑠𝑠𝑠 (A13) 

(1 + 𝑔𝑔)𝜎𝜎 =  𝛽𝛽(1 + 𝑟𝑟𝑠𝑠𝑠𝑠) (A14) 

1 + 𝑟𝑟𝑠𝑠𝑠𝑠 =  𝛼𝛼𝑘𝑘𝑠𝑠𝑠𝑠𝛼𝛼−1 + 1 − 𝛿𝛿. (A15) 

Because 𝑟𝑟∗ is defined as the real interest rate along the balanced growth path, we 
have 

𝑟𝑟∗ = 𝑟𝑟𝑠𝑠𝑠𝑠. 

Equation (1), then follows immediately from (A14). 

With 𝑟𝑟∗ in hand and knowing in addition 𝛼𝛼 and 𝛿𝛿, equation (A15) gives 𝑘𝑘𝑠𝑠𝑠𝑠 =

� 𝛼𝛼
𝑟𝑟∗+𝛿𝛿

�
1

1−𝛼𝛼. Because 𝛼𝛼 ∈ (0,1), this expression says that a decline in 𝑟𝑟∗ raises the 

value of 𝑘𝑘𝑠𝑠𝑠𝑠. In turn, the value of 𝑦𝑦𝑠𝑠𝑠𝑠, by equation (A11), is equal to 𝑦𝑦𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝑠𝑠𝛼𝛼 =

� 𝛼𝛼
𝑟𝑟∗+𝛿𝛿

�
𝛼𝛼

1−𝛼𝛼, which shows that along the balanced growth path 𝑟𝑟∗ and 𝑦𝑦𝑠𝑠𝑠𝑠 are inversely 

related. Combining the definition 𝑦𝑦𝑡𝑡 ≡ 𝑌𝑌𝑡𝑡/(𝐴𝐴𝑡𝑡𝑁𝑁𝑡𝑡) with the definition of real GDP per 
capita, we have 𝑌𝑌𝑡𝑡/𝑁𝑁𝑡𝑡  = 𝑦𝑦𝑡𝑡𝐴𝐴𝑡𝑡. The natural logarithm of real GDP per capita along the 
balanced growth path can therefore be expressed as ln �𝑌𝑌𝑡𝑡

𝑁𝑁𝑡𝑡
� = ln(𝑦𝑦𝑠𝑠𝑠𝑠) + ln𝐴𝐴𝑡𝑡. Finally, 

replacing 𝑦𝑦𝑠𝑠𝑠𝑠 with the above expression for 𝑦𝑦𝑠𝑠𝑠𝑠, we obtain equation (2). 



  

Appendix B 

The representative household maximizes � 𝛽𝛽𝑡𝑡𝑈𝑈(𝑐𝑐𝑡𝑡)
∞
𝑡𝑡=0  subject to the sequential 

budget constraint 𝑐𝑐𝑡𝑡 + 𝑘𝑘𝑡𝑡+1 − (1 − 𝛿𝛿)𝑘𝑘𝑡𝑡 + 𝑏𝑏𝑡𝑡+1
1+𝑟𝑟𝑡𝑡

= 𝑘𝑘𝑡𝑡𝛼𝛼 + 𝑏𝑏𝑡𝑡 −  𝜏𝜏𝑡𝑡 where 𝜏𝜏𝑡𝑡 denotes lump-

sum taxes paid by the household in period 𝑡𝑡, and the liquidity friction 𝑘𝑘𝑡𝑡 −
(1 − 𝛿𝛿)𝑘𝑘𝑡𝑡 ≤ 𝜅𝜅𝑏𝑏𝑡𝑡

𝛾𝛾𝑘𝑘𝑡𝑡
1−𝛾𝛾, given initial conditions 𝑘𝑘0 and 𝑏𝑏0. The associated first-order 

conditions are 𝑈𝑈′(𝑐𝑐𝑡𝑡) = 𝜆𝜆𝑡𝑡, 
𝜆𝜆𝑡𝑡
1+𝑟𝑟𝑡𝑡

= 𝛽𝛽𝜆𝜆𝑡𝑡+1[1 + 𝜇𝜇𝑡𝑡+1𝜅𝜅𝛾𝛾𝑏𝑏𝑡𝑡+1
𝛾𝛾−1𝑘𝑘𝑡𝑡+1

1−𝛾𝛾], and 𝜆𝜆𝑡𝑡(1 + 𝜇𝜇𝑡𝑡) =

𝛽𝛽𝜆𝜆𝑡𝑡+1{𝛼𝛼𝑘𝑘𝑡𝑡+1𝛼𝛼−1 + 1 − 𝛿𝛿 + 𝜇𝜇𝑡𝑡+1[𝜅𝜅𝑏𝑏𝑡𝑡+1
𝛾𝛾 (1 − 𝛾𝛾)𝑘𝑘𝑡𝑡+1

−𝛾𝛾 + 1 − 𝛿𝛿]}. The government’s budget 
constraint is 𝑏𝑏𝑡𝑡+1

1+𝑟𝑟𝑡𝑡
+ 𝜏𝜏𝑡𝑡 = 𝑏𝑏𝑡𝑡. By market clearing 𝑐𝑐𝑡𝑡 + 𝑘𝑘𝑡𝑡+1 − (1 − 𝛿𝛿)𝑘𝑘𝑡𝑡 = 𝑘𝑘𝑡𝑡𝛼𝛼. An 

equilibrium then are sequences for {𝑐𝑐𝑡𝑡, 𝑘𝑘𝑡𝑡, 𝜆𝜆𝑡𝑡 ,𝜇𝜇𝑡𝑡 , 𝑟𝑟𝑡𝑡} satisfying 

𝑐𝑐𝑡𝑡 + 𝑘𝑘𝑡𝑡+1 − (1 − 𝛿𝛿)𝑘𝑘𝑡𝑡 = 𝑘𝑘𝑡𝑡𝛼𝛼 (B16) 

𝑈𝑈′(𝑐𝑐𝑡𝑡) = 𝜆𝜆𝑡𝑡 (B17) 

𝑘𝑘𝑡𝑡 − (1 − 𝛿𝛿)𝑘𝑘𝑡𝑡 ≤ 𝜅𝜅𝑏𝑏𝑡𝑡
𝛾𝛾𝑘𝑘𝑡𝑡

1−𝛾𝛾;  𝜇𝜇𝑡𝑡 ≥ 0; 𝜇𝜇𝑡𝑡�𝜅𝜅𝑏𝑏𝑡𝑡
𝛾𝛾𝑘𝑘𝑡𝑡

1−𝛾𝛾 − (𝑘𝑘𝑡𝑡+1 − (1 − 𝛿𝛿)𝑘𝑘𝑡𝑡)� = 0 (B18) 

𝜆𝜆𝑡𝑡
1 + 𝑟𝑟𝑡𝑡

= 𝛽𝛽𝜆𝜆𝑡𝑡+1�1 + 𝜇𝜇𝑡𝑡+1𝜅𝜅𝛾𝛾𝑏𝑏𝑡𝑡+1
𝛾𝛾−1𝑘𝑘𝑡𝑡+1

1−𝛾𝛾� (B19) 

𝜆𝜆𝑡𝑡(1 + 𝜇𝜇𝑡𝑡) = 𝛽𝛽𝜆𝜆𝑡𝑡+1{𝛼𝛼𝑘𝑘𝑡𝑡+1𝛼𝛼−1 + 1 − 𝛿𝛿 + 𝜇𝜇𝑡𝑡+1[𝜅𝜅𝑏𝑏𝑡𝑡+1
𝛾𝛾 (1 − 𝛾𝛾)𝑘𝑘𝑡𝑡+1

−𝛾𝛾 + 1 − 𝛿𝛿]} (B20) 

given an exogenous supply of bonds, 𝑏𝑏𝑡𝑡, and the initial capital stock 𝑘𝑘0.  



  

In a steady state by definition 𝑥𝑥𝑡𝑡 = 𝑥𝑥 for all 𝑡𝑡 and for 𝑥𝑥 = 𝑐𝑐,𝑘𝑘, 𝜇𝜇, 𝜆𝜆, 𝑟𝑟, given a constant 
value of bonds, 𝑏𝑏𝑡𝑡 = 𝑏𝑏. Evaluate (B16), (B17), (B18), (B19), and (B20) at the steady 
state. This yields: 

𝑐𝑐 + 𝛿𝛿𝑘𝑘 = 𝑘𝑘𝛼𝛼 (B21) 

𝑈𝑈′(𝑐𝑐) = 𝜆𝜆 (B22) 

𝛿𝛿𝑘𝑘 ≤ 𝜅𝜅𝑏𝑏𝛾𝛾𝑘𝑘1−𝛾𝛾;    𝜇𝜇 ≥ 0;   𝜇𝜇[𝜅𝜅𝑏𝑏𝛾𝛾𝑘𝑘1−𝛾𝛾 − 𝛿𝛿𝑘𝑘] = 0 (B23) 

1
1 + 𝑟𝑟

= 𝛽𝛽[1 + 𝜇𝜇𝜅𝜅𝛾𝛾𝑏𝑏𝛾𝛾−1𝑘𝑘1−𝛾𝛾] (B24) 

1 + 𝜇𝜇 = 𝛽𝛽{𝛼𝛼𝑘𝑘𝛼𝛼−1 + 1 − 𝛿𝛿 + 𝜇𝜇[𝜅𝜅𝑏𝑏𝛾𝛾(1 − 𝛾𝛾)𝑘𝑘−𝛾𝛾 + 1 − 𝛿𝛿]}. (B25) 

Note that given steady-state values for 𝑟𝑟, 𝜇𝜇 and 𝑘𝑘, the steady-state values of 𝑐𝑐 and 𝜆𝜆 
can be read off from equations (B21) and (B22), respectively. Thus, in what follows 
we will limit attention to steady state conditions (B23), (B24), and (B25). Suppose the 
liquidity constraint is not binding, 𝜇𝜇 = 0. Denote the steady-state values associated 
with this case with a 𝑢𝑢 (for unconstrained) superscript. Setting 𝜇𝜇 = 0 in (B24) gives 
1 + 𝑟𝑟𝑢𝑢 = 1/𝛽𝛽. With 𝑟𝑟𝑢𝑢 in hand, we can find 𝑘𝑘𝑢𝑢 as the solution to (B25), 1 + 𝑟𝑟𝑢𝑢 =
𝛼𝛼𝑘𝑘𝑢𝑢𝛼𝛼−1 + 1 − 𝛿𝛿. Evaluating (B23) at these values for 𝑟𝑟𝑢𝑢 and 𝑘𝑘𝑢𝑢, we find that the 
unconstrained steady state only exists for a supply of the bond 𝑏𝑏 in excess of the 

lower bound 𝑏𝑏�, that is, when 𝑏𝑏 ≥ 𝑏𝑏� ≡ �𝛿𝛿
𝜅𝜅
�
1
𝛾𝛾 𝑘𝑘𝑢𝑢. Assume now that 𝑏𝑏 < 𝑏𝑏�. In this case, 

as we have just shown, 𝜇𝜇 = 0 cannot be supported as a steady state. We wish to 
show that a steady state exists in which 𝜇𝜇 > 0. If 𝜇𝜇 > 0, then by (B23), it must be that 

𝑏𝑏
𝑘𝑘

= �
𝛿𝛿
𝜅𝜅
�
1
𝛾𝛾

. (B26) 

Solve (B25) for 𝜇𝜇 and use the above expression to eliminate 𝑏𝑏/𝑘𝑘. This yields 

𝜇𝜇 =
𝛽𝛽(𝛼𝛼𝑘𝑘𝛼𝛼−1 + 1 − 𝛿𝛿) − 1

1 − 𝛽𝛽[(1 − 𝛾𝛾)𝛿𝛿 + (1 − 𝛿𝛿)]. (B27) 

Notice that the denominator of the fraction on the right-hand side of (B27) is positive 
as 𝛾𝛾, 𝛿𝛿 and 𝛽𝛽 are positive and less than one. To find the sign of the numerator, notice 
that at 𝑘𝑘 = 𝑘𝑘𝑢𝑢, the numerator is zero. If 𝑘𝑘 < 𝑘𝑘𝑢𝑢, then the numerator is positive, and 
hence 𝜇𝜇 > 0. But if 𝑘𝑘 > 𝑘𝑘𝑢𝑢, then the numerator is negative and 𝜇𝜇 would be negative. 
Thus, if a steady state exists with 𝜇𝜇 > 0, it must be the case that 𝑘𝑘 < 𝑘𝑘𝑢𝑢. Then by 

(B26) we find that 𝑏𝑏 = �𝛿𝛿
𝜅𝜅
�
1/𝛾𝛾

𝑘𝑘 <  �𝛿𝛿
𝜅𝜅
�
1/𝛾𝛾

𝑘𝑘𝑢𝑢 = 𝑏𝑏�. This means that a steady state with 

𝜇𝜇 > 0 exists provided 𝑏𝑏 < 𝑏𝑏�. Finally, choose 𝑟𝑟 to satisfy (B24). It follows that 𝑟𝑟 < 𝑟𝑟𝑢𝑢. 



  

In summary, when 𝑏𝑏 < 𝑏𝑏�, a steady state exists and has the property that 𝑟𝑟 < 𝑟𝑟𝑢𝑢,𝑘𝑘 <
𝑘𝑘𝑢𝑢,𝜇𝜇 > 0, and 𝑦𝑦 < 𝑦𝑦𝑢𝑢 . 

Next compare the steady states for two values of 𝑏𝑏, denoted 𝑏𝑏′ < 𝑏𝑏� and 𝑏𝑏′′ < 𝑏𝑏′. 
Denote the associated steady state values of output and the interest rate as 𝑦𝑦′ and 𝑟𝑟′ 
and 𝑦𝑦′′ and 𝑟𝑟′′, respectively. Clearly by (B26) 𝑘𝑘′′ < 𝑘𝑘′ < 𝑘𝑘𝑢𝑢 and hence 𝑦𝑦′′ < 𝑦𝑦′ < 𝑦𝑦𝑢𝑢 
and by (B27) 𝜇𝜇′′ > 𝜇𝜇′ > 0, so that from (B24) 𝑟𝑟′′ < 𝑟𝑟′ < 𝑟𝑟𝑢𝑢. This shows that if 𝑏𝑏 falls, 
then so do the steady-state values of output per capita and the real interest rate, 
which is what we had set out to show. 
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