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Abstract 

European productivity has experienced a marked deceleration since the 1970s, with 
the productivity gap between the Euro area and the United States widening 
significantly since 1995, a trend further intensified by the COVID-19 pandemic. This 
slowdown is particularly concerning given the backdrop of rapid technological 
change, global warming, and population aging. This paper provides a long-run 
perspective on these issues, placing the current situation in the context of historical 
experiences faced by European countries. We first examine the factors that have 
influenced productivity fluctuations, with a focus on the post-World War II economic 
boom and subsequent periods of stagnation. We then consider the structural and 
conjunctural reasons behind the slowdown since 1995. Finally, looking ahead, we 
evaluate the potential of Artificial Intelligence and climate-related innovations to 
rejuvenate productivity. 

1 Introduction 

In 1995, one hour of work in the euro area countries generated an average of 47.1 
dollars of GDP2, closely matching the US level of labour productivity of 46.6 dollars. 
By 2019, the productivity gap between the two regions had widened to 18% in favor 
of the US, a divergence that further expanded beyond 20% in 2023. This growing 
disparity has sparked extensive discussion among scholars (Lopez-Garcia and 
Sförzi, 2021), market specialists (Strauss, 2024) and policymakers (Schnabel, 2024, 
Li and Noureldin, 2024). The debate occurs within a paradoxical context where, 
despite concerns over a general slowdown in productivity growth across developed 
countries since the 1970s, the emergence of new organization of work post-Covid-
19, along with rapid advancements in artificial intelligence, promise significant 
productivity gains. 

Productivity is the key driver of per capita output dynamics over the long term, 
significantly influencing living standards, welfare, and the ability to reduce average 
working hours without compromising consumption. Labour productivity, typically 
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measured as the ratio of value added per unit of labour input (Y/H), represents the 
quotient of average income (Y/P) divided by working time (H/P). Since 1890 in the 
euro area, Y/H has increased by a factor of 18.8, Y/P by 10.1, and H/P has 
decreased by 1.8 (Bergeaud et al., 2016). This implies that through collective 
efficiency improvements in producing more qualitative goods and services, work 
hours have halved while aggregate production has increased tenfold. Remarkably, 
this progress occurred within a relatively short timeframe, primarily over three 
decades (1950-1980) in the euro area, where labour productivity quadrupled. During 
this period, living standards also rose, with consumption per capita tripling in real 
terms (Barro and Ursua, 2008), and Europeans enjoyed more leisure time, with an 
annual reduction of 400 hours per workers (Bergeaud et al., 2016)3. However, since 
the mid-1970s, productivity, and consequently GDP per capita, has steadily 
decelerated, averaging growth rates of 2.1% in the 1980s, 1.6% in the 1990s, 0.8% 
in the 2000s, and 0.7% in the 2010s. This observation has led to concerns among 
scholars regarding the potential for secular stagnation (Gordon, 2012, 2017)—a 
prolonged period of low growth hindered by significant obstacles, including the 
disappointing and diminishing returns of digital technologies. Given the historical link 
between labour productivity and living standards, this extended slowdown raises 
significant concerns for economic policy and societal well-being. 

To understand this dynamic, this article analyses the evolution of productivity growth 
in the euro area by examining its long-term trends (the past), the current factors 
contributing to its slowdown and divergence from the US, and the impacts of recent 
crises such as pandemics, energy, and environmental challenges (the present). 
Additionally, it discusses the potential future impacts of Artificial Intelligence (AI) and 
climate change on productivity growth (the future). We argue that, despite Europe's 
clear potential due to its market size, quality universities, and leadership in deploying 
green innovation and regulation to tackle climate change, the issues that plagued 
Europe after the 1970s—namely its inadequate innovation policy—continue to hinder 
its ability to derive productivity gains from global technological revolutions. The 
recent development of AI, largely driven by US and Chinese actors, threatens to 
repeat this pattern, potentially relegating Europe to a second mover in this new 
technological revolution unless it can adapt its innovation policy. 

A useful decomposition will drive our analysis. Many macroeconomic models 
assume the existence of an aggregate production function4 that links output (GDP) to 
factor inputs (labour and capital) 𝑌𝑌 = 𝐴𝐴𝐴𝐴(𝐾𝐾, 𝐿𝐿) where 𝐴𝐴 is a factor neutral multiplier 
that captures the efficiency of the production defined as an increase in real GDP 
when input factor remains similar and is often named Total Factor Productivity or 
TFP. Under some regularity assumptions on the production function 𝐴𝐴, one can then 
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decompose labour productivity into the product of TFP and the volume of physical 
capital per unit of labour. With this definition, TFP measures the effect of 
technological progress on GDP as process efficiency improves (for example, a 
chemist discovers a new formula that allows to create a drug with half the quantity of 
solvent). But TFP will also capture changes in the composition of the labour force, 
the average level of human capital and the allocation of economic resource across 
economic agents, among other things. It thus remains essentially a residual factor, 
as defined by Solow (1956) and is by far the factor that explains most of the 
difference in GDP per capita across countries and half of the growth rate of GDP 
over the 20th century (Bergeaud et al., 2017). Examining long-run structural changes 
in growth, therefore, necessitates a study of TFP dynamics and a natural factor 
behind the current slowdown would be a deficiency in innovation, or more precisely, 
to a shortfall in innovations that have the potential to significantly enhance production 
efficiency. 

A rich body of literature has explored why firms appear hesitant to invest in 
productivity-enhancing technologies, despite historically high expenditures on 
Research and Development (R&D), scientific publications, and patenting activities, 
which indicate that overall innovation did not decline. We consider the misallocation 
of production resources, particularly R&D resources, within the euro area as one 
potential explanation. This hypothesis suggests that significant growth and welfare 
improvements could be realized through well-crafted industrial and innovation 
policies that redirect resources towards firms capable of adopting and developing 
radical new technologies. We argue that European innovation from 1995 to 2019 
faced similar challenges as it did since 1950, including fragmented domestic R&D 
policies and a lack of integration between university-driven scientific discoveries and 
the private sector. This has resulted in a technological focus on “mid-technologies" 
(Fuest et al., 2024) such as transport manufacturing, energy, and appliances, 
dominated by the same firms for the past three decades. With the advent of a new 
industrial revolution centred around artificial intelligence and the spillovers from 
green innovations, European countries have a unique opportunity to reshape their 
institutional landscape and benefit from important potential productivity gains. 

The remainder of the article examines various questions surrounding the dynamics 
of productivity in the euro area. The first part considers the long-term drivers of 
productivity in European countries by analysing a variety of data spanning the 20th 
century. We begin with a simple accounting exercise to explore the role of 
demographic, technological, and institutional factors in explaining the dynamics of 
GDP and the differences between Europe and the U.S. We then discuss the factors 
that contributed to the exceptional period following WWII, which ended with the oil 
crisis in the mid-1970s, and document Europe's missed opportunities during the ICT 
revolution. In the second part, we discuss the underlying reasons behind the 
widening productivity gap between European and U.S. economies since 1995, and 
particularly since 2020, by decomposing the recent slowdown in European 
productivity. We distinguish between factors that are conjunctural and likely short-
term, and more structural issues related to innovation policies. Finally, the last part 
discusses the possibility that European economies are facing a secular stagnation, 
where the current low GDP growth might become the new norm. We also consider 



the potential of two important factors—the rapid development of AI and the general 
effort toward mitigating climate change and fostering an energy transition—in 
boosting productivity. 

2 Historical Drivers of European Productivity 

2.1 Long term growth 

A well-documented fact about the US GDP per capita growth over the past 150 
years is its remarkable consistency, maintaining a near constant growth rate of 2% 
per year. This regularity was influential in inspiring theory of growth (Jones, 2002) 
while at the same time, a focus on specific subperiods reveal the succession of 
waves of growth resulting from the diffusion of General Purpose Technologies (GPT) 
such as railways or electricity, which have inspired Schumpeterian growth theory 
(Aghion et al., 2014). Is a similar pattern observable for European countries and the 
euro area as a whole? Data from Maddison (2006) allows to look at this directly. 
Chart 1, plots the two series in constant 2015 dollars since 1890. We can clearly see 
that the US growth figures are indeed closely approximated by a trend line with a 
slope of 2.13%, with the US economy oscillating around this trend. However, this 
pattern does not hold as clearly for the (reconstituted) euro area, which would be 
represented by a trend line with a 2.06% slope, but with a lower goodness of fit. 
Unlike the US, the growth rate of European countries shows a distinct upward trend 
after World War II, which is followed and preceded by periods of more moderate 
growth. 

Chart 1 
GDP per capita in the Euro area against the US since 1890 

(constant US dollars of 2015) 

 

Sources: Long Term Productivity Project (Bergeaud et al., 2016, updated from here). 
Notes: GDP per capita has been calculated yearly in national currency and then converted into constant 2015 USD using constant ppp 
conversion rates. The euro area has been reconstituted by backdating national accounting data with data from Germany, France, Italy, 
Spain, Netherlands, Belgium, Ireland, Austria, Portugal, Finland and Greece. Trend lines respectively have an R2 of 0.981 for the US 
and 0.960 for the euro area. 
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To better understand these differential dynamics and the underlying factors over 
such a long period, it is necessary to collect reliable data that would allow to offer an 
anatomy of growth in many countries (Madsen, 2010) and to assess the respective 
role of productivity, demographics, working time and accumulation of capital. 

2.1.1 Growth accounting 

Following the seminal work of Angus Maddison, many economic historians have 
provided estimations of GDP but also production factors (labour and capital) for 
specific European countries dating back to at least 1890 (e.g. Prados de la 
Escosura, 2007 for Spain, Baffigi, 2011 for Italy or Smits et al., 2000 for the 
Netherlands) which allows for a more meticulous analysis of the long-run 
development of GDP per capita and its main drivers. These datasets, harmonized by 
Bergeaud et al. (2016) and updated within the LongTermProductivity project, enable 
in particular a yearly estimation of TFP, measured as a Solow residual (Solow, 
1956): 

𝑌𝑌𝑖𝑖,𝑡𝑡 = 𝑇𝑇𝐴𝐴𝑃𝑃𝑖𝑖,𝑡𝑡  𝐾𝐾𝑖𝑖,𝑡𝑡𝛼𝛼 𝐿𝐿𝑖𝑖,𝑡𝑡1−𝛼𝛼 

With K the stock of physical capital, L the total number of hours worked and Y the 
GDP. Both Y and K are given in constant 2015 dollars and we assume a constant 
elasticity 𝛼𝛼 across time and country. This is of course a very strong assumption, but 
it allows to only focus on the relative developments of K, L and Y to explain changes 
in TFP. This formulation is also useful to analyse the main drivers of GDP, indeed 
(dropping subscripts): 

𝑌𝑌 = 𝑃𝑃 × 𝑇𝑇𝐴𝐴𝑃𝑃 × �
𝐾𝐾
𝐿𝐿
�
𝛼𝛼

×
𝑁𝑁
𝑃𝑃

× 𝐻𝐻 (1) 

Where H is the average working time per workers, N the total number of workers in 
headcount, 𝑃𝑃 is population. This decomposition can be interpreted as a breakdown 
between a purely demographic factor (𝑃𝑃), an efficiency factor (labour productivity 
equal to 𝑇𝑇𝐴𝐴𝑃𝑃 × �𝐾𝐾

𝐿𝐿
�
𝛼𝛼
, ie the product of TFP and capital deepening), a factor 

influenced by both age structure and labour market institutions (equal to 𝑁𝑁
𝑃𝑃

× 𝐻𝐻, the 

product of average working time and employment rate). Log differentiating equation 
(1) allows to look directly as the different contribution of each factor in explaining the 
average change in GDP. The results are presented in Chart 2a for the whole 1890-
2022 period and in Table 1 for chosen subperiods. In the euro area, labour 
productivity grew on average by 2.2% per year and the contribution of population 
(0.5%) is equal to the negative contribution of the reduction in working time (-0.5%) 
while employment rate has no trend (but this is heterogeneous across European 
countries). Among these 2.2%, 0.7% comes from the capital deepening, i.e., the fact 
that the stock of capital grew faster than labour, and 1.5% comes from an 
improvement in production efficiency (or TFP). In the US, the main difference comes 
from the population and labour input. First population increased much faster than in 
Europe, in particular due to immigration waves and higher fertility rates than Europe. 
Second, the ratio of employment over population increased by 0.2% per year and 



average working time per workers declined less than in Europe. On the contrary, 
labour productivity has the same average growth rate in both regions, although the 
dynamics is very different across subperiods as we analyse below. 

It is therefore apparent that aside from population factors, the average contributions 
of each element to GDP growth are notably similar across regions. However, a 
distinct exception is observed in the euro area's labour input utilization, which has a 
lesser impact on GDP growth compared to the US. This discrepancy is evidenced by 
a more significant negative contribution from working time reductions and a subdued 
positive impact from employment rates. To fully capture the variances between the 
two regions, Chart 2b delineates the relative differences in each factor between the 
euro area and the US, where, barring minor covariance terms, the aggregate of each 
component should align with the relative difference in GDP per capita. These 
illustrations clearly highlight TFP as the principal driver behind the long-term 
dynamics of GDP per capita. Moreover, it is evident that both labour-to-population 
ratios and average working hours were historically higher in the euro area compared 
to the US until the 1980s, after which they began to decrease relatively, contributing 
to the widening GDP gap between the two regions. These disparities reflect the 
European inclination towards allocating a substantial portion of productivity gains to 
reducing working hours, achieved through both diminished hours per worker and 
lower retirement ages. The literature offers various explanations for this choice, 
ranging from higher taxation and stricter labour regulations (e.g., Prescott, 2004) to 
cultural preferences for leisure in Europe (Blanchard, 2002). Nevertheless, post-
2010, the employment-to-population ratios in Europe converged with those in the 
US, leaving working time as the sole differentiator5. 
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Chart 2 
Growth accounting 

a) Decomposition of GDP growth rate. Average 1890-2022 
(in %) 

 

b) Decomposition of the relative gap between the euro area and the US’s GDP per capita 
(in %) 

 

Sources: Long Term Productivity Project (Bergeaud et al., 2016, updated from here). 
Notes: Chart 2a decomposes the growth rate of GDP into 5 factors following equation (1). Yearly growth rate averaged over the period 
1890-2022. Chart 2b shows the relative gap between the euro area (reconstituted, see Chart 1) and the US’s GDP per capita 
decomposed into 4 factors. The sum of bars for a given year is equal to the relative gap in GDP per capita. A negative bar means that 
the US has a large factor than the euro area. 
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Table 1 
Growth rate of GDP and subcomponent by subperiods in the USA and euro area 

Average growth rate per subperiods 
(in %, yearly average) 

USA 1890-1913 1913-1950 1950-1975 1975-1995 1995-2005 2005-2022 Total 

GDP 3.6 3.2 3.5 3.0 3.1 1.6 3.2 

TFP 1.0 2.5 1.7 1.0 1.7 0.6 1.6 

Capital 
deepening 

0.5 0.5 0.6 0.2 0.5 0.4 0.5 

Population 1.8 1.2 1.4 1.0 1.0 0.7 1.3 

Employment rate 0.4 0.0 0.1 0.7 0.2 -0.1 0.2 

Hours worked 
per worker 

-0.1 -1.0 -0.3 0.1 -0.3 0.0 -0.4 

Euro area 1890-1913 1913-1950 1950-1975 1975-1995 1995-2005 2005-2022 Total 

GDP 2.1 0.8 4.9 2.3 1.9 1.0 2.2 

TFP 1.2 0.9 3.5 1.5 0.8 0.4 1.5 

Capital 
deepening 

0.5 0.3 1.5 0.9 0.4 0.3 0.7 

Population 0.8 0.4 0.7 0.3 0.3 0.3 0.5 

Employment rate -0.1 -0.2 -0.2 0.2 0.7 0.4 0.0 

Hours worked 
per worker 

-0.2 -0.6 -0.7 -0.6 -0.3 -0.3 -0.5 

Sources: Long Term Productivity Project (Bergeaud et al., 2016, updated from here). 
Notes: Yearly growth rates in % averaged over chosen subperiods. 

2.1.2 Productivity waves and industrial revolutions 

In addition to being the main component behind the long-run dynamics of GDP per 
capita, TFP is also an important driver of the differences between the euro area and 
the US. 

The evolution of TFP is presented in Chart A2 in the Appendix for a recomposed 
euro area since 1890 and its breakdown by country in terms of levels. These graphs 
reveal distinct economic regimes. From 1890 to WWI, Europe experienced a growth 
rate of TFP of approximately 1% per year and was at a level similar to that of the US, 
which already defined the technological frontier along with the UK (see Bergeaud et 
al., 2023). This trend persisted until 1939, except during the war period and the 
Great Depression. Notably, during the interwar years, Europe experienced a relative 
decline compared to the US, which underwent its first productivity wave (Gordon, 
1999). The period following WWII is marked by exceptional productivity gains, 
averaging about 4% per year between 1950 and 1974, and a catch-up to the US 
level from a significantly lower starting point. After a productivity decline in 1974, the 
euro area reached its peak relative to the US in 1990, before experiencing a relative 
decline (see Chart 3a). 
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Chart 3 
Total Factor Productivity in the Euro area against the US since 1890 

a) Ratio of TFP: Euro area against the US 
(ratio) 

 

b) Waves of TFP 
(%) 

 

Sources: Long Term Productivity Project (Bergeaud et al., 2016, updated from here). 
Notes: Chart 3a reports the ratio of the Euro area over the US TFP. Chart 3b reports the filtered growth rate of TFP in both regions. 
This growth trend has been obtained through an HP filter with a coefficient of 1000. 

To better understand the long-term shifts in growth trends, Chart 3b illustrates the 
filtered growth rates of the euro area and the US since the late 19th century. This 
representation highlights the productivity waves that drive long-term growth, 
reflecting various industrial revolutions (Ferguson and Wascher, 2004). Notably, the 
“big wave of productivity” (Gordon, 1999) is evident in the US from the 1930s to the 
1950s, marking the diffusion of key innovations from the second industrial revolution. 
This period marked a transition to mass production, propelled by innovations in 
assembly line methods and the creation of novel manufacturing techniques (Landes, 
2003). The technological breakthroughs initiated in the US post-1870s likely had a 
profound impact on enhancing productivity and transforming the economic 
landscape. While the First Industrial Revolution unfolded in Great Britain, the sequel 
unfolded in the United States, spurred in part by the more effective utilization of 
natural resources, including the employment of machinery for resource extraction. 
This period saw significant advancements, including widespread electrification, 
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which notably reduced the costs of lighting and heating (Nordhaus, 1996), the 
introduction of electric motors offering decentralized and safer power sources, 
enhancements in combustion engines speeding up transportation, and 
breakthroughs in petrochemistry leading to significant pharmaceutical developments. 
The spread of these technologies was further enabled by the accessibility of 
affordable and efficient energy sources, particularly oil, whose consumption per 
capita rose from approximately 4.7 barrels annually per inhabitant in 1920 to 15.7 in 
1950 (Shurr et al., 1960). These advancements not only propelled industrial and 
economic expansion but also revolutionized organizational and managerial practices, 
financial markets (Ferguson and Wascher, 2004), transportation, and prompted a 
shift from agricultural to service-oriented sectors, elevating levels of human capital 
crucial for transitioning from stagnation to growth (Galor, 2005; Squicciarini and 
Voigtländer, 2015) and the adoption of technologies. 

In Europe, a comparable wave of productivity can be seen but did not start before 
the end of WW2. Indeed, a very large part of TFP gains has been made between 
1950 and 1974 a period where Europe was clearly lagging behind the US and 
benefited from a powerful catching-up effect. This led most European countries to 
approach the TFP level of the US by the mid-1970s and some even briefly overtook 
the US (Italy, Netherlands, see Charts A2). The mechanism behind this exceptional 
growth, discussed more comprehensively in Section 2.2, bears similarity to the 
experience of the US two decades earlier. Additionally, the adoption of institutions 
that foster risk-taking and investment in R&D played a significant role. 

Chart 3b also reveals a less pronounced wave in the US during the 1990s, 
corresponding with the third industrial revolution and the rise of Information and 
Communication Technologies (ICT). This period, extending from 1990 to the mid-
2000s, saw a notable increase in productivity that has been directly linked to the 
integration and widespread adoption of computers and the internet in business 
processes and consumer behavior. The automation of manual tasks, enhanced data 
processing capabilities, and improved communication networks significantly 
contributed to efficiency gains across various sectors (Jorgenson, 2001; Fernald, 
2015). However, despite the profound societal and production transformations 
brought about by these technologies, their impact on productivity has been 
considered underwhelming, especially when compared to the big wave of the second 
industrial revolution. In Europe, the effect was even more muted, with TFP showing 
no significant wave of increase, a phenomenon extensively analysed in the literature 
pointing towards European firms' lower investment in ICT (see van Ark et al., 2008 
and Section 2.3). 

2.2 What made this possible? 

Current discussions predominantly focus on the recent slowdown in GDP and 
productivity growth. However, a broader historical perspective reveals that the 20th 
century was a period of exceptional growth, during which European countries 
increased their output per capita tenfold while simultaneously halving the average 
working time. Prior to addressing the long-term feasibility of such dynamics, one 



question is what made this exceptional number possible, especially during the 3 
decades 1950-1980, which followed a period particularly damaging for continental 
European productivities imputable to the Great Depression and WW2. In 1950, 
Europe had retrieved its GDP per capita and TFP levels of 1938 but massive war 
destruction (estimated at 1.5% of total capital stock of the region every year from 
1939 to 1945, see Bergeaud et al., 2016) necessitated extensive reconstruction 
across Europe and substantial investments were needed to rebuild infrastructure, 
industries, and cities. This reconstruction effort, fuelled by domestic and international 
resources (notably the Marshall Plan), provided a significant stimulus to economic 
activity. The rebuilding process not only replaced lost capital but often did so with 
more modern facilities and equipment, thereby enhancing productivity (Eichengreen, 
1993). 

2.2.1 Successful policies 

The reasons behind the long-lasting effect of this post WW2 rebound can be 
explained by a confluence of factors that boil down to two categories: new 
institutions and adoption and diffusion of existing technologies, in particular in the 
manufacturing sector (Van Ark et al, 2008). 

Regarding institutions, European countries followed the overarching strategy of 
keeping wage demands reasonable to allow for the reinvestment of profits and 
favour investment (Eichengreen, 2007). This led to an increase in the stock of capital 
that was faster than that of labour which boosted labour productivity and per capita 
income. In terms of product markets, the establishment of institutions such as the 
European Coal and Steel Community (ECSC) and the European Economic 
Community (EEC) facilitated economic integration, reducing barriers to trade, and 
increasing economic interdependence among European nations. Finally, most 
European countries relied on their relatively educated population and the higher 
education institutions inherited from the 19th century to train engineers and scientists 
forming the “upper-tail knowledge” necessary to facilitate the adoption of 
technologies, but at the same time, also had room for improvement given that the 
average European only had educational attainment at 70% of the average American. 
Improved secondary education attainment (for example France raised minimum 
school leaving age to 16 in 1959) and the replacement of older less educated 
generations with younger more educated one would rapidly increase the average 
level of human capital. 

Second, European countries benefitted from a catch-up dynamic essentially through 
the adoption of technologies that were already well diffused in the US and developed 
during the 1930s and accelerated during WW2. With increasing absorptive 
capacities resulting from higher human capital, European firms could benefit from 
improved process efficiencies by using more technology advanced machineries or 
inputs. The extent of this domination of US technologies in Europe can be observed 
using patent data. Bergeaud and Verluise (2024) indeed provides a new dataset that 
retrieve information from French, British and German patents since the 19th century, 
along with the name, nature, and location of the assignee. From this dataset, we can 



see that patents filed in France and Germany shows that US assignees represented 
a raising share from below 10% to 25% (see Chart 4a) in the immediate aftermath of 
WW2. This increase is mostly driven by some very large firms such as IBM or 
General Electric or Dupont de Nemours. Chart 4b reports the share of patents from 
the top 10 assignees from the US as a share of total patents in Germany and in 
France. 

The main reason a US firm would file a patent application in a European country is 
because they expect to commercialize some products in the country and this 
increasing share of patents from superstar US firms is illustrative of the prominent 
role played by these actors in the European economic landscape of the 1950s. This 
was not without generating worry from the observed technological gaps between 
European firms and their US competitor in some sectors. For example, Servan-
Schreiber (1967) wrote: “The third largest industrial power in the world, after the 
United States and the U.S.S.R., could well be in fifteen years, not Europe but 
American industry in Europe.” Nevertheless, it is well documented that with 
international patent application and foreign direct investment in general flow ideas 
and knowledge (Eaton and Kortum, 1999; Aghion et al., 2023a) providing that 
domestic firms have the right innovation capabilities. This is what European 
countries industrial policy tried to achieve during the 1950s and 1960s (Owen, 2012). 
The approach was however different between France or the Netherlands as well as 
the United Kingdom who attempted to create national champions by encouraging 
mergers and partnerships very much supervised by the state, and Germany who 
relied on its pre-WW2 comparative advantage, namely in chemistry and 
pharmaceutical industry, a strong connexion between science and industry, namely 
through the Max Planck Society and the Fraunhofer Society, and by establishing 
competition and openness to international trade (Herrigel, 1997). These policies 
were to some extent successful as some European firms managed to file a large 
number of patents in the US by the end of the 1960s, even if this is essentially true 
for Germany (Bergeaud et al, 2023). 



Chart 4 
Patenting from US assignees in France and Germany 

a) Share of foreign assignees in the French and German patent offices 
(share) 

 

b) Share of the top 10 foreign assignees in the French and German patent offices 
(%) 

 

Sources: PatentCity (Bergeaud and Verluise, 2024). 
Notes: Chart 4a reports the share of patents with at least one assignee located in the US in the French and the German patent offices 
based on the publication year. Chart 4b reports the share of patents filed in the French and German patent offices over total patents 
where the assignee is one of the 10 US firms with the highest number of patents in these patent offices and is based in the US. Post 
1978 includes patents from the European Patent Offices (EPO) when the designated state is either France or Germany. ISEC stands 
for International Standard Electric Corporation and RCA for Radio Corporation of America. 

2.2.2 But not enough to maintain long-run growth 

The rapid catch-up of most European countries halted in 1975 regarding GDP per 
capita and about 10 years later regarding TFP. But more importantly, the 
development of innovative capabilities and the adoption of more adequate economic 
institutions did not allow European countries to generate growth led by the 
development of frontier technologies, in particular in ICT, and most European 
countries slowed down with respect to the US from the mid-1980. 



To explain this second phase of slowing TFP gains, two observations can be made. 
First, although some European champions managed to compete with their US 
counterparts as measured by the number of patents filed in the USPTO, aggregate 
R&D effort was much lower than what the US did in terms of R&D which reach 3% of 
GDP by 1960, essentially driven by federal expenditures, namely the department of 
defence and the NASA (Dyèvre, 2024) in the context of the Cold War and the race 
against USSR. As explained by Owen (2012), the American dominance in the 
computer and electronic industries can be traced back to the substantial demand 
created by military and space programs in the early post-war era and this created 
important spillovers to the private sectors (Kantor and Whalley, 2023; Gross and 
Sampat, 2023). The size of the US market was also larger than in Europe which 
provided American manufacturers with benefits not accessible to European 
companies. Finally, financial institutions and competition policy ensured that in 
parallel to the extreme domination of IBM, smaller companies could emerge and 
develop specialized minicomputers and processors including Helwett-Packard or 
Intel (Bresnahan and Malerba, 1997). By contrast European firms failed to favour the 
entry of new players and relied on partnership between states to push large projects 
which were negatively impacted by the strong competition of US firms (and later 
Japanese firms) and relied on the ability of governments to better identify the 
direction of technology than entrepreneurs. This first observation explains why 
generally Europe did not in fact turned its economy and institutions into a framework 
that would allow them to generate growth from frontier technologies, and in particular 
in ICT, the main driver of TFP growth after the 1980s. 

A second observation concerns the important yet often overlooked role of oil as a 
cost-effective and efficient resource in the manufacturing industry. After WW2, oil 
became prominent in Europe and emerged as the favoured energy source across 
industrial manufacturing, transportation and electricity generation due to its superior 
energy density, versatility, price stability and ease of transport and use. This was 
made possible thanks to significant technological advancements in oil exploration, 
drilling and offshoring, which facilitated access to reserves that were previously 
considered unreachable. Furthermore, the strategic control exerted by Western 
powers and a coalition of major oil companies over the principal oil-producing 
regions ensured price stability. This consortium wielded significant influence over the 
Middle Eastern oil producers, securing a steady and affordable oil supply to meet the 
burgeoning industrial demands of the West (Smil, 2010; Yergin, 2011). As a result, 
the correlation between GDP and oil consumption is particularly strong during the 
period 1950-1974 in most countries, as reported in Chart 5. Jorgenson (1984) notes 
that the utilization of fluid energy types, like petroleum and natural gas, has enabled 
significant changes in production processes and geographical distribution within 
sectors like industry, agriculture, and transportation which has contributed to the 
expansion of national output and productivity. After this period, oil and GDP started 
to decouple brutally in Europe (see Chart 5a) following the first oil crisis and the 
correlation was never positive again as oil consumption per capita started to 
decrease in line with the shrinking share of the manufacturing sector, the 
implementation of policies aiming at improving energy efficiency of the production 
and transportation and to the diversification of energy sources to gas, nuclear and 
later renewable energies. These correlations are of course not proof of a causal 



relationship between oil consumption and growth even though a statistical analysis 
of the coevolution of oil price and GDP in the US suggests that some recessions are 
associated with major oil price increases (Hamilton, 1983; Barsky and Kilian, 2002). 
In addition, the high dependency of western economies to oil and the fear that supply 
may be disrupted was a subject of concern in Europe and in the US regarding the 
sustainability of GDP and productivity trends during the 1970s (IEA, 1982). The post 
1973 era, and in particular the aftermath of the second oil shock of 1979 dramatically 
increased the relative cost of energy to other inputs such as labour (Schur, 1982) 
which slowed down the growth rate of capital deepening and therefore of labour 
productivity (see Table 1), particularly in Europe, whose domestic production was 
more limited than that of the US. In addition, this could negatively impact TFP 
through two mechanisms: firstly, by reallocating production from high-energy-
intensive sectors, which are potentially more productive, to less energy-intensive 
sectors; secondly, by decelerating the development of labour-intensive, productivity-
enhancing, and energy-intensive technologies as innovation resources are partially 
redirected towards the exploration of energy-saving technologies and alternative 
energy sources6, including a resurgence in coal use (see Figure A3b in Appendix). 

Chart 5 
Oil consumption and GDP in the euro area and in the US 

(log of oil consumption in y-axis and log of GDP in x-axis) 

 

Sources: Bergeaud and Lepetit (2020). 
Notes: Oil consumption is measured in quad Btu and is taken in log (y-axis). GDP is taken in log and measured in US dollars of 2015. 
Chart 5a considers the Euro area as the aggregate of 7 countries: Germany, France, Italy, Spain, Netherlands, Portugal and Finland, 
Chart 5b considers the US. 

2.3 The missed ICT revolution 

The divergence in TFP between Europe and the US started during the 1990s as 
productivity growth continues to slow down in most European countries while the US 

 
6  Figure A3a in the Appendix reports federal expenditures from the department of energy which 

experienced a clear increase during the 1970s. 



experienced a productivity revival. Given the extensive literature in the US linking 
this increasing TFP to the ICT revolution, the absence of a similar wave in Europe 
would suggest that the adoption and diffusion of these technologies was insufficient. 

To test our hypothesis, we employ sectoral data from EU-KLEMS (Bontadini et al., 
2023), which compiles sector-level input and output information. This dataset 
enables the estimation of labour productivity and capital stock across various 
countries, including specific assessments of the physical capital stock in many 
assets such as ICT. As an initial simple exercise, we consider data from eight 
Eurozone countries and for the United States, spanning from 1995 to 2019. We 
categorize the 32 sectors into two groups based on their ICT intensity in 1995, 
determined by whether their capital stock in IT, software, and communication 
equipment as a share of their total capital stock exceeded the median proportion. 

We then aggregate the yearly level of labour productivity for each group, separately 
for the US and for the euro area, constructed by aggregating the eight countries. 
Results are presented in Chart 6 and show that the ICT intensive sector in the US 
experienced a much higher increase in labour productivity than in Europe, whereas 
the difference between the two regions are more modest in other sectors. To explore 
these findings further, we then exploit the panel dimension of the data and estimate 
the following model: 

log�𝑙𝑙𝑝𝑝𝑖𝑖,𝑐𝑐,𝑡𝑡� =  𝛼𝛼𝑖𝑖,𝑐𝑐 + 𝛾𝛾𝑋𝑋𝑖𝑖,𝑐𝑐,𝑡𝑡−1 + 𝜙𝜙𝑐𝑐,𝑡𝑡 + 𝜓𝜓𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡 (2) 

Where 𝑖𝑖 denotes one of the 32 industries, 𝑐𝑐 one of the 21 countries for which we 
have enough data and 𝑡𝑡 indices the year from 1995 to 2019. The dependent 
variable, 𝑙𝑙𝑝𝑝, is the level of value added in volume divided by total working time, taken 
in log and the main regressor 𝑋𝑋 is the ratio of IT capital over total capital stock in 
volume7. 𝛼𝛼𝑖𝑖,𝑐𝑐, 𝜙𝜙𝑐𝑐,𝑡𝑡 and 𝜓𝜓𝑖𝑖,𝑡𝑡 are fixed effects. The coefficient of interest is 𝛾𝛾 which 
captures the effect of an increase in the share of IT capital on labour productivity. 
Results are presented in Table 2. We start by excluding 𝜙𝜙𝑐𝑐,𝑡𝑡 and 𝜓𝜓𝑖𝑖,𝑡𝑡 and simply use 
a year fixed effect (column 1), we then add 𝜙𝜙𝑐𝑐,𝑡𝑡 (column 2) and finally estimate the 
fully saturated model with 𝜓𝜓𝑖𝑖,𝑡𝑡 (column 3). These three models are estimated using 
the OLS and standard errors are clustered by sector. The marginal effect of 𝑋𝑋 is 
always positive and significant, suggesting that increasing IT intensity is followed by 
a sizable change in labour productivity. However, despite the large set of fixed 
effects which neutralize any omitted factor that would be country or sector specific, 
and even if we use a lagged regressor, these models may suffer from endogeneity 
given the many potential unobserved factors that could impact both labour 
productivity development and IT intensity. We consider an instrumental variable (IV) 
approach where the endogenous variable 𝑋𝑋 will be instrumented by 𝑍𝑍 an estimate of 
the declining price of IT technologies from improvements made in the US. Formally, 
𝑍𝑍 is the product of three terms. First a time specific factor 𝑍𝑍𝑡𝑡 that is equal to the 
production price of the computer production sector in the US, divided by the price of 

 
7  We restrict to IT because of better data coverage and exclude communication equipment and hardware 

but results are qualitatively similar with these two additional components. 



value added. Second a sector specific factor 𝑍𝑍𝑖𝑖 that is equal to the sector specific 
intensity in ICT in the US in 1995, as measured previously. Third a country specific 
factor 𝑍𝑍𝑐𝑐 which is equal to the share of patents filed at the European Patent Office 
(EPO) before 1995, that cite a US patent in technology H (a broad technological 
class that includes most innovation in the field of electronics). Our instrument 𝑍𝑍 can 
therefore be seen as being equal to the relative price of IT production in the US 
weighted by a measure of the exposure of the sector to IT and of the country to the 
US technologies. Results are presented in column 4 of Table 2. The magnitude of 
the coefficient suggests that increasing IT intensity by 0.01 corresponds to a 6% 
increase in labour productivity compared to the sector and country average. 

Chart 6 
ICT and growth 

(labour productivity (index, 1995 = 100) 

 

Sources: Author calculations based on EU-KLEMS. 
Notes: Labour productivity is measured for above median ICT sectors and below median ICT sectors, respectively in the US and in the 
euro area, which is approximated by aggregating over 8 countries: Germany, France, Italy, Spain, Netherlands, Portugal, Belgium and 
Austria. ICT sectors are defined based on the capital in volume in IT, Software and Computer equipment divided by total capital in 
volume. Aggregate labour productivity is obtained by taking the weighted average across sectors, using nominal value-added weights. 

These findings indicate a causal relationship between IT investment and labour 
productivity improvements, revealing that Euro area countries were less efficient 
than the US in both adopting IT technologies massively and in leveraging them to 
achieve labour productivity gains. This discrepancy partially explains the observed 
productivity differences between the two regions since 1995. Gordon and Sayed 
(2020) corroborate this finding, estimating that variances in ICT investment could 
account for approximately 20% of the productivity growth rate gap between the US 
and Europe during the period 1995-2005. Similarly, Cette et al. (2022) report 
analogous outcomes utilizing a macroeconomic growth accounting approach, along 
with new data on investments in hardware, software, and robots. They find that while 
European firms indeed invested in these technologies, the impact on productivity 
was more subdued compared to that in the US over the period 1995-2019. Schivardi 
& Schmitz (2020) explore this issue in the context of Southern European countries, 
linking it to managerial efficiency (see also Bloom et al., 2012). They highlight how IT 
has augmented the significance of management practices and that, particularly in 
Southern Europe, management tends to be relatively inefficient (Bloom and Van 



Reenen, 2007). Additional factors commonly cited for Europe's slow uptake of IT and 
ICT include the quality of digital infrastructure, such as broadband internet, 
particularly during the late 1990s and early 2000s (OECD, 2019), and the relatively 
high proportion of small firms in Europe compared to the US (Schnabel, 2024), which 
limits the scalability benefits of IT. 

Table 2 
The effect of IT intensity on labour productivity 

Regression results 

Dependent variable: 
log of labour 
productivity 

(1) (2) (3) (4) 

OLS OLS OLS IV 

IT capital stock over 
total capital stock 2.774 1.690 1.658 6.608 

 (0.959) (0.777) (0.549) (3.136) 

Observations 12,948 12,948 12,948 12,380 

Fixed effects 

Sector - country Yes Yes Yes Yes 

Year Yes No No No 

Sector-year No Yes Yes Yes 

Country-year No No Yes Yes 

Sources: EU-KLEMS. 32 industries, 21 countries. 
Notes: Regression results are based on estimating equation (2) using OLS for columns 1 to 3 and IV estimation for column 4. 
Observations consist of annual country-sector pairs from 1995 to 2019. Column 1 includes only sector-country fixed effects, column 2 
adds sector-year fixed effects and columns 3 adds country-year fixed effects. Column 4 uses an instrument described in Section 2.3 
and otherwise replicates the model of column 3. The associated Kleibergen-Paap F statistic is 25.6. Standard errors are clustered by 
sector. 

The comparison of recent growth dynamics in European countries with those before 
1974 underscores both current and future productivity challenges. A pivotal phase, 
often traced back to the mid-2000s, marks the conclusion of the ICT productivity 
wave and the onset of a declining productivity trend in the US and several European 
countries (Fernald, 2015; Bergeaud et al., 2016). This period was characterized by 
subdued productivity growth, subsequently leading to stagnant GDP per capita 
growth. The limited dynamism in TFP starkly contrasts with the widespread 
perception of innovation, reviving debates around the secular stagnation hypothesis 
(Gordon, 2012)—a prolonged phase of low growth hampered by significant 
challenges, including the diminishing returns on digital technologies. In subsequent 
sections, we will explore the contemporaneous period and examine potential 
explanations for the post-pandemic slowdown, before discussing the future of 
productivity and the secular stagnation hypothesis in particular. 

3 Current productivity development in the euro area 

This section examines productivity dynamics since 1995, a period marked by the 
widening gap between the US and the euro area, as outlined in the preceding 
chapter. Chart 7a shows the two dynamics using quarterly data in constant US 
dollars. Initially, in 1995, labour productivity levels were nearly identical in both 
regions, evolving to a point where, by 2005, the euro area's productivity stood at 



85% of the US level. Paradoxically, the Great Financial Crisis saw an increase in US 
labour productivity, a mechanical effect attributed to firms disproportionately laying 
off low-skilled workers. This led to a quick shift in relative productivity to 80%, a 
disparity that was maintained up to the onset of the Covid-19 pandemic, after which 
the productivity trends continued to diverge further. While this divergence is 
exacerbated by the dramatic productivity performance of the US, a particularly 
concerning observation is the negative trend in labour productivity in the Euro area 
since the pandemic, which, when compared to the pre-pandemic trend, shows a 
2.9% decrease in the level of output per hour worked in Q4 2023 (see Chart 7b). 

We first discuss potential explanations for the slowdown and consider the role of the 
pandemics and energy crisis in explaining the recent dynamics. We then discuss 
more structural factors explaining why productivity in the Euro area may be sluggish 
for a prolonged period without a change in innovation and industrial policies. 

Chart 7 
Labour Productivity in euro area 

a) Labour productivity in constant dollars 
(dollars of 2015 per hour) 

 

b) Deviation of labour productivity from pre-pandemic trend in the Euro area 
(%) 

 

Sources: Bureau of Economic Analysis and Eurostat Quarterly National Accounts. 
Notes: Chart 7a reports the quarterly value of GDP divided by total hours worked in the economy converted in constant US dollars of 
2015 per hours. Chart 7b reports the difference between the logarithm of labour productivity in the euro area with its pre-pandemic 
trend, calculated between 2011q1 and 2019q4. 



3.1 Anatomy of the recent slowdown 

3.1.1 Sectoral decomposition 

The relative decline in labour productivity in the euro area can be decomposed into 
the contribution of 11 different sectors and each individual country. As a first 
exercise, we report in Table 3 the difference between the level of sectoral value 
added per hours worked in the last data point we can observe (fourth quarter of 
2023)8 compared to the sectoral pre-pandemic trend. Figures A4 in the Appendix 
report the corresponding time series. There are notable differences across sectors: 
“utilities and energy” was hit particularly strongly, but represents a small share of the 
total economy, it is followed by construction and manufacturing and retail. 

Table 3 
Labour productivity in the euro area by sector 

Regression results 

 

Relative decline in 
2023Q4 relative to pre-

pandemic trend 

Pre-pandemic trend 
(average growth rate per 

quarter) 
Share of sector in total 
value added 2010-2019 

ISIC 4 sector 

Agriculture (A) -5.3% 0.8% 1.7% 

Arts, entertainment and recreation 
(R-U) -0.2% 0.0% 3.5% 

Construction (F) -13.0% -0.2% 5.0% 

Finance & Insurance (K) +2.9% 0.4% 5.1% 

Information & Communication (J) -2.4% 0.9% 4.6% 

Manufacturing (C) -4.6% 0.7% 16.8% 

Professional services (M-N) +1.0% -0.3% 11.2% 

Public administration (O-Q) +0.1% 0.1% 19% 

Real Estate Activities (L) -2.4% -0.1% 11.3% 

Retail (G-I) -3.6% 0.4% 18.8% 

Utilities, Mining and Energy (B and E) -24.8% 0.5% 3.2% 

Sources: Eurostat Quarterly National Accounts 
Notes: Pre-pandemic trend is calculated by fitting a linear trend on the logarithm of labour productivity between 2010q4 and 2019q4 
using the OLS. Public Administration corresponds to sector “Public administration, defence, education, human health and social work 
activities“ (ISIC 4 O to Q). “Arts, entertainment and recreation“ corresponds to sector “Arts, entertainment and recreation; other service 
activities; activities of household and extra-territorial organizations and bodies” (ISIC 4 R to U). “Professional services” to 
“Professional, scientific and technical activities; administrative and support service activities” (ISIC 4 M and N). “Retail” corresponds to 
“Wholesale and retail trade, transport, accommodation and food service activities” (ISIC 4 G to I). 

On the other hand, certain sectors, notably finance and services, have exhibited 
productivity levels surpassing their pre-pandemic trends. Another useful 
decomposition of aggregate labour productivity involves distinguishing between an 
average effect and a reallocation effect (also known as a shift-share decomposition). 
The former quantifies changes in the unweighted average level of labour 
productivity, while the latter assesses the potential gains from the reallocation of 
market shares: if more productive sectors expand more rapidly than less productive 

 
8  The official publication of quarterly data for 2023q4 was early April 2024. It is important to note that at 

the time of the study, the numbers were still flagged as “provisional”. 



ones, the overall impact on productivity is positive, even if average productivity 
remains static. Historically, since 1995, the contribution from the reallocation 
component across these 11 sectors has been considerably lower than that from 
within-sector effects. Nevertheless, considering the severity of the 2020 shock, there 
might have been significant reallocation across sectors. This hypothesis can be 
formally evaluated using the Olley and Pakes decomposition, as detailed in Melitz 
and Polanec (2015).9 

𝑦𝑦𝑡𝑡 = �𝑦𝑦𝑖𝑖,𝑡𝑡𝑠𝑠𝑖𝑖,𝑡𝑡

𝑁𝑁

𝑖𝑖=1

= 𝑦𝑦𝑡𝑡� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝑦𝑦𝑖𝑖,𝑡𝑡, 𝑠𝑠𝑖𝑖,𝑡𝑡� (3) 

Were 𝑦𝑦𝑖𝑖,𝑡𝑡 is the logarithm of the labour productivity of country i in quarter t and 𝑠𝑠𝑖𝑖,𝑡𝑡 is 
the market share measures in terms of value added10. We calculate these quantities 
for the euro area and analyse their growth rates, comparing their levels with the 
trend from 2010 to 2019. The results, presented in Figure A5 in the Appendix, 
indicate a positive contribution from the relocation component and a negative 
contribution from the average change in labour productivity. Notably, the relocation 
shock intensified during the pandemic as more productive sectors, particularly 
finance and ICT, expanded relative to others that stagnated. This observation aligns 
with findings reported in the United States (Barrero et al., 2021a). However, this 
trend did not reverse post-2021; the reallocation component continued to exceed its 
pre-pandemic trend, while average sectoral productivity declined. 

3.1.2 By country 

Not all euro area countries followed a negative productivity trend and an exploration 
country by country shows that France stands out as being particularly negatively 
impacted by the pandemics as shown in Chart 8. In this graph, we can see that the 
level of labour productivity in France is still 8% below its pre-pandemic trend and 
about 4% below its 2019 level. Among the other large countries, Germany, Italy and 
Spain are between 1 and 2% below their pre-pandemic trend while Netherlands is 
0.5% above. The impressive decline of France’s productivity compared to other 
countries has been partly linked to labour market programmes aiming at reducing 
unemployment through subsidized contracts and structural reforms that increased 
the participation rate of less productive workers (about 3% according to Devulder et 
al., 2024). 

 
9  The use of aggregate data does not allow to compute a dynamics Olley and Pakes decomposition as in 

Melitz and Polanec (2015) without information on entry and exist which are therefore integrated in both 
the covariance and average terms. 

10  Using alternative weights: hours or nominal value added does not change the result. 



Chart 8 
Labour Productivity in 5 euro area countries 

(index 2015=100) / (%) 

 

Sources: Eurostat Quarterly National Accounts 
Notes: Chart 8a reports the quarterly value of GDP divided by total hours worked in the economy standardized by its value in 2015. 
Chart 8b does the same as Chart 7b but for the 5 largest euro area countries separately. 

Beyond the specific case of France, a decline of labour productivity means that total 
labour supply increased faster than output. This can be a consequence of a decline 
in unemployment, such as the one observed in the euro area since the mid-2010s if 
the average productivity of unemployed workers is lower than the average 
productivity of active workers. This is however a temporary negative impact as these 
workers will gain in efficiency as they gain more experience and training. 

3.1.3 Short-term explanations 

A recent article by Lesterquy et al. (2024) investigates productivity loss within the 
French manufacturing sector by surveying managers from a representative sample 
of 2,000 firms. The manufacturing sector, constituting approximately 17% of the total 
economy's value added, is not only more productive than the service sector but also 
offers higher wages. It is intricately linked to international trade and heavily 
dependent on natural resources. The primary causes of productivity loss in 2023, as 



identified in the study, relate to negative shocks following the lockdown—specifically, 
disruptions in Global Value Chains (GVC). Additionally, the report highlights the 
impact of rising energy prices. These factors similarly affect production; both compel 
workers and managers to expend more time and resources to identify new suppliers 
and adapt their processes to higher input prices. However, high adjustment costs 
often preclude effective adaptation to such fluctuations. In extreme cases, the 
escalating energy costs, coupled with a shortage of inputs and prevailing uncertainty, 
can lead to temporary plant shutdowns, severely hampering production. 

These negative impacts on production would only affect aggregate labour 
productivity if the reaction of working time to these shocks was less pronounced than 
that of value added. To directly assess this, we utilize quarterly data from the 
Eurostat short-term indicators on production and employment for the manufacturing 
sectors. Although these indicators are less precise than national accounts data, they 
enable near real-time measurement of production and labour developments in 
narrowly defined sectors. We measure exposure to international trade by calculating 
the share of imports of intermediate inputs and capital goods sourced from the 
BRIICS countries (Brazil, Russia, India, Indonesia, China, and South Africa) relative 
to the total imports of these goods by firms in a given sector and country, based on 
2019 data. We then estimate the following model: 

log�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑐𝑐,𝑡𝑡� =  𝛼𝛼𝑖𝑖,𝑐𝑐 + 𝛾𝛾𝑋𝑋𝑖𝑖,𝑐𝑐 × 𝑇𝑇𝑡𝑡 + 𝜙𝜙𝑐𝑐,𝑡𝑡 + 𝜓𝜓𝑖𝑖,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡 (4) 

Where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑐𝑐,𝑡𝑡 measures production of sector i in country c during quarter t, 𝑋𝑋𝑖𝑖,𝑐𝑐 is 
the share of import from BRIICS defined in 2019 for a given pair of sector and 
country and 𝑇𝑇𝑡𝑡 is a dummy variable equal to 1 after 2020q1. 𝛾𝛾 therefore measures 
the marginal impact of X on the dynamics of production after the pandemics. The 
inclusion of sector-time and country-time fixed effects implies that 𝛾𝛾 will compare 
different countries within the same sector over time, controlling for both global 
sectoral trends and country-specific economic conditions. There are 18 countries 
and 27 manufacturing sectors and we exclude the year 2020 from the estimation. 
Results are presented in Table 3. Column 1 directly estimates equation (4), column 2 
replaces the measure of production by a measure of total working time and column 3 
by a measure of employment (headcount). Results are presented in Table 4: Column 
1 directly estimates equation (4), Column 2 substitutes production measures with 
total working time, and Column 3 uses employment headcount. The consistently 
negative and significant coefficient indicates that connections to large exporting 
countries outside Europe before the pandemic are associated with greater 
reductions in activity post-2020. The coefficients suggest that a 1 percentage point 
increase in imports share decreases production by approximately 1.4%, hours 
worked by 1%, and employment by 0.8%. This impact is more pronounced on 
production, consequently affecting labour productivity.11 Notably, the effect is 
stronger on the intensive margin of labour, consistent with adjustments in average 

 
11  Lalinsky et al. (2024) analyse the impact of COVID-19 on productivity and highlight the doubly negative 

effect of GVC disruptions. These disruptions not only disorganize production but also disproportionately 
impact larger firms engaged in international trade, which are typically more productive. 



working time discussed in the following section. Columns 4 to 6 do the same but only 
consider exposure to Russian exports, the qualitatively similar results suggest that 
long disruption of value chains have a negative impact on productivity but also that 
the measured effect could be driven by energy products. Chart A6 in the Appendix 
shows that indeed, sectors that are above the median in terms of their typical 
consumption of energy products have experienced a decline of their production while 
other sectors did not. 

Table 4 
Exposition to international trade, production, and labour input 

Regression results 

 

(1) 

Production 

(2) 

Hours Worked 

(3) 

Employment 

(4) 

Production 

(5) 

Hours Worked 

(6) 

Employment 

𝜸𝜸 -1.406 -0.968 -0.817 -1.129 -0.804 -0.731 

 (0.499) (0.446) (0.313) (0.508) (0.490) (0.306) 

Number of 
observations 36,749 34,579 35,588 36,749 34,579 35,588 

Adjusted R2 0.816 0.790 0.771 0.816 0.790 0.771 

Sources: Eurostat short-term indicator in the manufacturing sector and OECD STAN Bilateral Trade Database by Industry and End-
use category database. 
Notes: OLS estimation of equation (4) for different dependent variable: production, hours worked and employment. The coefficient 𝜸𝜸 
measures the marginal effect of a one unit change in the share of import from BRIICS countries (Brazil, Russia, India, Indonesia, 
China and South-Africa) in 2019 in columns 1, 2 and 3 and only from Russia in columns 4, 5 and 6 after 2020 compared to before 
2020. The unit of observation is a pair of sector-country and is measures at a quarterly frequency. There are 18 countries and 27 
manufacturing subsectors. Each column includes a set of country-sector, country-year and sector-year fixed effects. Standard errors 
are clustered at the sector level. 

Why would employment react less than output to negative shocks? Labour markets 
in the euro area have demonstrated an impressive resilience after the pandemics 
and the following crisis. Unemployment continued to decline and reached a 
historically low point in many countries while at the same time the number of 
vacancies continued to increase leading to an unprecedented market tightness. This 
sustained tightness has prompted firms to engage in labour hoarding, retaining 
employees to avoid the high costs and risks associated with cyclically adjusting their 
workforces—costs that are exacerbated by stringent European labour regulations 
compared to those in the US and by the historically high hiring difficulties reported by 
firms (Bergeaud et al, 2022a). Firms are therefore more reluctant to let go their 
workers, in particular the most skilled workers. A new indicator calculated by 
Eurostat (Gayer et al., 2024) shows that in Germany and France, 15% of firms are 
hoarding labour, 5 percentage point higher than before the pandemics. 

These channels are likely to impact productivity only in the short to medium term. As 
energy prices decrease and firms identify new suppliers to restore their value chains, 
production is expected to increase faster than employment, leading to a rise in 
labour productivity. However, other factors may exert more permanent effects. 

3.1.4 Structural factors on the labour input 

The study conducted by Lesterquy et al. (2024) also highlights several structural 
factors contributing to the decline in productivity in France (and likely to be relevant 



for the euro area as a whole), including difficulties in hiring and retaining skilled 
workers, absenteeism, and a general lack of workforce engagement. The issue of 
skill mismatch was recognized before the pandemic and is commonly underlined as 
an important factor behind the low investment in ICT by European firms (OECD, 
2019). According to Eurostat, in 2022 over 60% of European companies attempting 
to hire ICT specialists reported significant challenges in filling these positions, either 
due to a scarcity of applications or because the offered salaries did not meet 
applicants' expectations. This situation reflects a mismatch between the supply and 
demand of specific skills, exacerbated during periods of rapid technological 
advancement. Despite improvements in educational levels and increased worker 
training, the swift pace of technological change diminishes demand for certain skills, 
compelling workers to accept less productive roles that are resistant to automation or 
to engage in the gig economy (Goldin et al., 2024). 

The second issue of diminished workforce engagement is more challenging to test 
quantitatively. Arce et al. (2023) document a reduction in average working hours per 
worker, as evident in Chart 9. This trend is compounded by increased sick leave, 
which remains above pre-pandemic levels in many countries, and a shift towards 
part-time employment, both of which contribute to reduced actual working hours.12 
However, it is unclear whether these changes result from a shift in worker 
preferences during the pandemic, as suggested by the rise in resignations since 
2021,13 and are part of long-term trends where average hours worked have been 
declining in Europe since the 1990s (in contrast to the US), or directly result from the 
ongoing crisis. This could include COVID-19 waves or firms adjusting labour inputs 
in response to economic uncertainty. Although Arce et al. (2023) challenge the 
hypothesis of changed worker preferences by pointing out that a significant 
proportion of workers would prefer more working hours, it is also possible that the 
observed workplace fissurization—characterized by decreased promotion prospects 
and increased workplace loneliness as noted by LeMoigne (2020)—and declining job 
satisfaction are exacerbated by global shocks like COVID-19 and associated 
lockdowns. 

 
12  These sick leaves, as well as number of days off, should in theory be included in measured working 

time but are not always straightforward to quantity. Similarly, if workers decide to use as many days off 
as they can (for example by using compensatory time off or banked hours) this may lead to an 
overestimation of working time by national statistics and ultimately to an underestimate labour 
productivity. 

13  For example, in France, the number of resignations is historically high with almost 500,000 resignations 
of workers with permanent contracts in 2023 according to the ministry of labour (DARES). 



Chart 9 
Average working time in the euro area 

(hours per worker and quarter) 

 

Sources: OECD Quarterly National Accounts 
Notes: Average hours per worker and year is calculated over all employees. The horizontal line represents the average value between 
2011q1 and 2019q4. 

The disappointing effect of teleworking? 

The onset of the pandemic and the ensuing shift toward remote work have spurred 
discussions on potential economic gains from new work arrangements, as noted by 
Barrero et al. (2023) and Criscuolo et al. (2023). Several mechanisms suggest that 
teleworking could enhance productivity: 1) extended work hours due to reduced 
commuting time (Barrero et al., 2020), 2) decreased real estate costs per worker 
(Bergeaud and Ray, 2020), 3) upgrades in IT and communication equipment 
alongside modernized management practices, 4) a shift of labour and capital 
towards larger, more productive firms that implement teleworking (Barrero et al., 
2021a; Bergeaud et al., 2023), and 5) increased individual efficiency from home-
based work (Bloom et al., 2015). Despite these factors, teleworking has not 
significantly boosted labour productivity in Eurozone countries enough to offset the 
negative impacts arising from other factors. 

The impact of the first point about longer work hours due to reduced commuting 
times is ambiguous. Commuting time in Europe averages about 50 minutes, similar 
to the US's 54 minutes, but is typically shorter in large cities where teleworkable 
occupations are concentrated. Nevertheless, it is unclear if the time saved from 
commuting in Europe will necessarily be used to extend work hours as has been 
observed in the US. The second point highlights potential cost savings from reduced 
real estate expenses, as real estate costs are significant and rising for firms, 
especially in large cities (Bergeaud and Ray, 2020). Bergeaud et al. (2023) found 
that in 2019, firms in France that adopted teleworking used on average 3 square 
meters less per employee, equating to about 1500 euros saved per employee 
annually in cities like Paris. However, these cost savings may have been mitigated 
by the ongoing housing and energy crises. The third point has not materialized as 
expected, as the proportion of investments in ICT equipment to total gross fixed 
capital formation in Europe did not increase significantly after 2020. The fourth point 



involves the reallocation of labour and capital towards more productive teleworking 
firms. Barrero et al. (2021b) report that a notable share of workers would consider 
changing employers if not permitted to telework, which could exacerbate hiring 
challenges for non-teleworking firms and diminish their market share. To illustrate 
this reallocation effect, we use the 'teleworkability' index developed by Dingel and 
Neiman (2020) for the US and adapte it to the Euro area. We then use the monthly 
production index in the manufacturing sector and split the sectors into 5 groups of 
equal size based onthe extent of teleworkability, which is itself based on the 
workforce composition. Chart 10 illustrates that sectors in the top 20% for 
teleworkability were more resilient during the 2020 recession and exhibited greater 
dynamism post-2021, even though this trend was already present before the 
pandemic. It is important to note that the Dingel and Neiman (2020) index measures 
the potential for teleworking, which may differ from the actual intensity of teleworking, 
hence a reallocation toward these sectors could exacerbate this positive impact. 

Lastly, regarding the fifth point on individual productivity, improvements may not 
have been as substantial as anticipated due to suboptimal management practices. 
While workers report increased focus when working from home (Criscuolo et al., 
2023), they also express concerns over the frequency and length of online meetings 
and a lack of interaction (Barrero et al., 2024), which may hinder idea generation and 
contribute to workplace loneliness. 

Chart 10 
Production and teleworking 

(index (2015 = 100)) 

 

Sources: Eurostat short-term indicator. 
Notes: Each of the 157 manufacturing sectors for which we can measure production in the short term indicators is assigned an index 
of teleworkiability based on Dingel and Neiman (2020) and a crosswalk between European NACE sector codes and the ISCO 
classification. We then construct 5 groups of equal size based on this value and calculate the average (unweighted) index of 
production which is equal to 100 in 2015. We then report this average production every month from 2012q1 to 2023q4. 

Perhaps more importantly, teleworking is not as widespread in Europe as it is in the 
US or the UK, with the actual number of days worked from home being lower than 
what employees desire (Aksoy et al., 2022). Should employers and employees reach 
a new equilibrium that embraces more frequent work from home, along with 
adaptations in management practices, materials, and office spaces, it could activate 
these productivity channels in the future, potentially leading to significant gains. 



Zombification due to Covid support policies? 

Another potential explanation for the weak productivity performance in the euro area 
could be the misallocation of production factors resulting from the survival of low-
productivity firms, supported by policies during the pandemic and eased financial 
constraints. In theory, economic downturns cause less productive firms to exit the 
market first. This “cleansing mechanism” reallocates resources to more productive 
firms or new entrants, enhancing aggregate productivity through creative destruction. 
However, the primary goal of pandemic support measures was to reduce failures 
when a significant portion of the economy was forced to halt to mitigate virus 
transmission. These supports were only gradually phased out due to ongoing crises, 
resulting in bankruptcies in the market sector remaining below the pre-pandemic 
trend until the end of 2022 in the euro area, and only rising above trend thereafter. If 
public policies during the pandemic negatively impacted the entry of young, 
potentially innovative firms, this would exacerbate two decades of slowing business 
dynamism (Bundesbank, 2024). 

In a preliminary exploration of this question, Lalinsky et al. (2024) analyse granular 
data across countries and sectors and demonstrate that the distribution of wage 
subsidies, loan guarantees, and tax moratoria in 2020 did not disproportionately 
benefit firms with low productivity prior to the pandemic, aligning with findings by 
Guerrini et al. (2024) in France and Bloom et al. (2022) in the UK. However, their 
research also indicates that higher-productivity firms exited support schemes earlier, 
suggesting that by 2021, support was increasingly allocated to less productive firms. 
Despite this shift, the rate of new firm entries remained consistent with pre-pandemic 
trends in the euro area and the decline in productivity does not seem to be driven by 
a negative reallocation effect. The dynamics of the number of bankruptcies, 
increasing above their trend from the end of 2022 suggests that in any case, the 
economy is correcting for this artificially low number of exits as support gradually 
expire and the long-lasting effect of such dynamics is likely to be low, although the 
progressive availability of firm level data will bring more direct insights. 

Many of these underlying reasons behind the fact that the euro area is diverging 
below its pre-pandemic trends suggest that this divergence may be resorbed in the 
near future. This analysis is supported by recent predictions by the IMF within their 
Spring 2024 World Economic Outlook, which forecasts a return to 1.5% yearly 
growth in GDP for the euro area by 2025. As supply chain disruptions abate and 
energy prices stabilize, alongside diminishing effects from pandemic-related 
supports and decreased unemployment rates, productivity is likely to catch-up with 
its trend. 

3.2 Lack of innovation 

The preceding section discussed the impact of the post-2020 pandemic crisis on 
productivity in the euro area. Given the ongoing transitional period, diagnosing the 
precise impact remains complex without waiting for more disaggregated data to be 
available. However, the growing divergence from the US suggests that the current 



slowdown may be an extension of negative trends existing before 2020, particularly 
pronounced in Europe. Among the components of labour productivity, TFP is most 
likely driving these long-run trends and has notably slowed since the late 1970s in 
the euro area, with a marked decline relative to the US since the 1990s. Fernald et 
al. (2023) support this hypothesis with data suggesting that the observed GDP 
slowdown in many countries may be more attributable to enduring structural trends 
than to the transient effects of the recent pandemic, highlighting the need to identify 
structural causes. 

A sluggish dynamism in TFP is indicative of an innovation deficit and insufficient 
investment in productivity-enhancing technologies. However, this view is challenged 
by the fact that R&D expenditures have not declined and reach around 2.3% of GDP 
in the euro area, and the number of researchers continues to rise steadily (Bloom et 
al., 2020). Additionally, as China increasingly contributes to the production of ideas—
a resource considered “infinitely usable” and which can flow across borders (Jones, 
2023a)—one would expect a boost in worldwide productivity growth. This apparent 
paradox could be explained by a declining productivity of research, where (good) 
ideas are becoming harder and more costly to find, and the ideas that are discovered 
are not easily integrated into productivity-enhancing processes or products, leading 
to high adoption costs. Another explanation could be the inefficient allocation of R&D 
across firms, coupled with excessive market power that diminishes the incentive to 
innovate and suppresses creative destruction. While the former explanation reflects 
deeper structural issues that are common across countries, the latter stems from 
innovation and industrial policies that fail to address the nuances of ICT and digital 
technologies. These technologies rely on intangible assets which generate fewer 
knowledge spillovers and provide leading firms with competitive advantages, 
ultimately stifling growth (Aghion et al., 2023b; De Ridder, 2024). 

In this section, we discuss the state of innovation in Europe, in particular regarding 
new technologies and then discuss how innovation policy could be improved to help 
Europe escape its current relative decline in the innovation race.  

3.2.1 Measuring innovation in Europe 

In 2021, the euro area as a whole spent 2.3% of its GDP on R&D expenditures, this 
amounted to around 265 billion of euros spent both by the public and private sectors. 
Only three countries: Germany, Austria and Belgium, spend more than 3% of their 
GDP, a level that was set as a goal by Europe 2020 strategy objective. This share of 
GDP has been trending upward since 1991 when it was equal to 1.8% of GDP but is 
still below the level of the US or Japan and has been caught up by China in 2019 
(see Chart 11). 



Chart 11 
R&D expenditures in the Euro area, China, Japan and the US 

(% of GDP) 

 

Sources: OECD Science and Technology indicators. 
Notes: R&D includes both private and public R&D expenditures. 

The gap with the US is not the result of a lack of public investment in research, the 
euro area spent 0.8% of its GDP in public R&D in 2021, similar to the US, but to an 
underinvestment by firms. Using data from Eurostat, Fuest et al. (2024) shows that 
the main difference between the two regions is in fact concentrated in sectors that 
are usually referred to as “high tech” such as software, computers and 
biotechnologies, whereas European firms actually invest more in sectors that are 
defined as “middle tech” such as automobile, chemical and transportation. Indeed, in 
2019, slightly more than 50% of business R&D investment by euro area countries14 
firms are allocated in the sector “Manufacture of electronic and optical products, 
electrical equipment, motor vehicle and other transport equipment” against around 
30% in the US and only 9% and 8% were allocated to ICT and pharma against 27% 
and 18% in the US respectively. 

Analysing patent data presents a similar picture. When considering Patent 
Cooperation Treaty (PCT) families15, a measure of patent count which is more 
immune to home bias and are generally regarded as a reliable benchmark for 
comparing different countries, we find that euro area countries were responsible for 
13% of the total number of applications in 2019—with Germany and France 
contributing over 60% of this total—compared to 18% for the US, 16% for Japan, 
and 20% for China. While this share has decreased since the late 1990s in favour of 
China, the reduction has not been dramatic (see Chart 12a). However, when 
restricted to high technologies (ICT, biotechnology and nanotechnology) this share is 

 
14  This only includes Germany, Italy, Spain, Belgium, Austria, Portugal, Finland, Ireland and Greece as 

other countries (especially France and Netherlands) do not report comprehensive R&D business 
expenditures broken down by sectors. However, these numbers are consistent with those of Fuest et 
al. (2024) based on reports from the largest 2500 companies in the world. 

15  A PCT application is part of an international patent system that allows inventors to seek patent 
protection simultaneously in multiple countries through a single application, streamlining the process 
and reducing costs associated with obtaining patents in different jurisdictions. 



much smaller (less than 9%) and has been shrinking since the beginning of the 
2000s (Chart 12b). 

Chart 12 
PCT family applications by region and technology 

(% of total) 

 

Sources: OECD Science and Technology indicators. 
Notes: PCT family are allocated to a country based on the location of the assignee. Only patents assigned to an euro area country, 
Japan, the US and China are included. 

Another way to document this middle tech trap in which European firms seem to be 
stuck can be seen in Table 5. In this table, we partition the total number of patents 
into 122 technologies based on the first 3 digit of the IPC technological classification. 
Each technology is then grouped into 8 different categories. We then count the 
number of PCT patent applications with assignees in the euro area, US, China, 
Japan or any other countries and look at which region is leading based on the 
greatest number of patents in 2019. We can clearly see that taken as a whole, euro 
area firms are filing more patents applications in categories B, D, E and F which 
corresponds to transport, textile, construction and mechanical engineering, whereas 
the US and China dominates in physics which includes most of the ICT and digital 
technologies. 



Table 5 
Leading countries by technological classes 

IPC A B C D E F G H 

Name Human 
Necessities 

Performing 
operation and 
transporting 

Chemistry 
& Metallurgy 

Textiles 
& Paper 

Fixed 
Construction 

Mechanical 
Engineering 

Physics 
(includes 
most ICT) 

Electricity 

Euro area 2 13 2 4 4 7 0 0 

US 9 8 6 1 1 2 5 0 

China 2 7 1 1 0 3 6 2 

Japan 1 7 8 2 1 4 2 3 

Other 1 1 3 0 1 1 1 0 

Sources: Google Patents Public Dataset. 
Notes: This table displays the number of IPC (International Patent Classification) 3-digit subgroups where the countries listed are 
leading in terms of the number of PCT (Patent Cooperation Treaty) applications filed. The data is categorized by the broader one-digit 
IPC classes, each representing a different sector of technology. Each cell indicates the count of 3-digit IPC subgroups where the 
corresponding country has filed the most PCT applications relative to other countries, within the specified one-digit IPC class. Data are 
taken in 2019. Location of the patent is based on the location of its assignee. Patents with multiple assignees and multiple 3 digit IPC 
class are allocated using a fractional count. 

Hence the euro area seems to have a double innovation problem: firms do not invest 
enough into R&D compared other countries and innovation investment and effort 
seem to be overly allocated to sectors outside high technology. 

3.2.2 A case study of six disruptive technologies 

We illustrate these issues and the particular characteristics of European innovation 
through six recent disruptive technologies. Utilizing the methodology developed by 
Bergeaud and Verluise (2023), we retrieve patents associated with specifically 
defined technologies by combining machine learning techniques and human 
validation. A significant challenge with patent classifications is their inability to 
precisely reflect the technology concepts commonly used by economists and 
policymakers. Instead, these classifications are functionally oriented, primarily 
serving engineers, R&D personnel, and IP specialists (Griliches, 1998). This new 
approach allows for a more accurate analysis of technologies and allow to look 
precisely at their development, we illustrate this using six examples across various 
economic sectors: additive manufacturing, blockchain, computer vision, genome 
editing, hydrogen storage, and self-driving vehicles. 

We look in details at the contributions made by European countries in pushing the 
frontier of these technologies compared to three other regions: the US, Japan and 
China.16 To measure the respective contribution of each region, we initially count the 
number of utility patents filed by innovators in this region. We restrict to priority 
applications of patent families that are filed through the PCT and count the number 
of patents filed at the US, Europeans, Japanese, and Chinese patent offices in each 
technology. For each technology, we document the proportion of patents published 

 
16  Formally, we compare patents filed at the US Patent Office (USPTO), Japan Patent Office (JPO), 

Chinese Patent Office (SIPO) and in individual European countries patent offices and the European 
Patent Office (EPO). Because of the EPO, we cannot separate euro area countries from other 
European countries such as the UK, Sweden and Switzerland which account for a non-trivial share of 
total patents in these technologies. 



by these four offices in Figure 13 which clearly illustrates how Europe and Japan are 
losing shares to China. More precisely, in computer vision and blockchain, the 
current technological landscape is dominated by the US and China, US firms file 
most of the patents in genome editing and Europe and Japan continue to hold a 
significant number of patents in hydrogen storage and to a lesser extent in additive 
manufacturing and self-driving vehicles.17 Europe does therefore continue to push 
the technological frontier in these technologies that are very novel and related to 
climate change and the future of transportation, but is no almost non-existent in the 
two digital technologies considered and in genome editing. 

 
17  The impressive Chinese performance rightfully cast doubt in the inflation of Chinese patents that have 

been discussed intensively in the literature (Hu and Jefferson, 2009). The restriction to PCT patent 
families should however mitigate this issue by selecting more valuable patents. The results are also 
unchanged when patent count is weighted by a measure of novelty as defined in Kelly et al. (2021). 



Chart 13 
Share of patents in chosen technologies 

(% of total) 

 

Sources: Bergeaud and Verluise (2023) and Google Patent Public Dataset. 
Notes: Share of total patents within a PCT families in six technologies identified following the procedure of Bergeaud and Verluise 
(2023). European patents include patents from every European countries including the UK, Switzerland and Norway as well as the 
European Patent Office (EPO). 

However, an interesting aspect of European countries is highlighted in Table 6, 
which shows the academic papers cited by patents in each of the six technologies as 
relevant prior art. A significant proportion of these papers (about 30% when 



considering the affiliation of the scientist at the time of the publication, but this share 
increases to 40% when we look at the affiliation history) originate from researchers 
based in European universities. This observation supports the notion that while 
Europe is still capable to generate cutting-edge research, European firms lack the 
capabilities to integrate these inputs into their R&D production functions and to 
convert them into marketable innovations. Given that these research findings are 
published and accessible, they are therefore utilized and developed further by firms 
in other countries. 

Table 6 
Origin of ideas of patents in disruptive technologies 

 USA Japan China Europe 

Additive Manufacturing 51.1% 5.7% 2.7% 28% 

Blockchain 53.7% 4.5% 3.9% 22.7% 

Computer Vision 53.5% 5.3% 2.5% 26.5% 

Genome Editing 57.3% 4.8% 1.3% 29.3% 

Hydrogen Storage 34.9% 11.6% 6.3% 29.4% 

Self-Driving Vehicle 49% 6.1% 1.7% 28.2% 

Sources: Scopus and PatCit (Verluise and de Rassenfosse, 2020). 
Notes: Share of non-patent literature citations from patents associated with each of the six technologies in rows to articles published 
by scientists working in institutions located in the USA, in Japan, in China or in Europe. We considered the current affiliation at the time 
of the article publication. 

3.2.3 Misallocation of R&D 

Results from previous parts show that European public support to R&D is not 
unsignificant and that research universities are able to produce relevant knowledge, 
but at the same time Europe failed to produce a technological champion in digital 
technology and ICT more generally. This could be indicative of a misallocation of 
R&D resources. 

In 2023, the top 5 US firms in terms of number of PCT applications were Qualcomm, 
Microsoft, Apple, Google and IBM. In 2000, the top 5 US firms were: Procter and 
Gamble, 3M, General Electric, DuPont and Qualcomm. Doing the same exercise in 
Europe, the top assignees in 2023 are: Bosch, Ericsson, Philips, BASF and Bayer, 
while in 2000 it was Siemens, Bosch, Ericsson, Philips and BASF. There results 
echo those of Fuest et al. (2024) based on the EU industrial R&D investment 
scoreboard that report a lack of renewing of top European R&D spending firms and 
the strong focus on technologies the automotive industry, with leaders that have 
been around for decades. 

Why were these large European innovators not challenged by new innovative 
players in the digital industry or in pharmaceutical sector as we saw in the US? As 
Aghion et al. (2016) demonstrated, firms typically invest in technologies where they 
already lead and do not deviate from this path dependency without public 
intervention or external shocks. In contrast to their European counterparts, U.S. firms 
in sectors such as transportation, appliances, mechanics, and chemistry were the 
main R&D investors in the 1990s and early 2000s but gradually shifted their focus 



towards the ICT sector. Companies like Google and Apple massively invested in 
hardware and software as their core activities, while others, including Starbucks and 
Walmart, invested heavily in digital platforms and data-backed innovations to 
enhance their logistics (see Aghion et al., 2023 for further discussion). This shift was 
supported by rapid TFP gains in the ICT and software producing sectors, amplified 
by the positive externalities from R&D clusters that integrated large firms, startups, 
universities, and capital venturers. These clusters not only promoted 
entrepreneurship (Delgado et al., 2010) but also enabled firms to rapidly develop 
innovative capabilities in emerging technologies that are typically developed in 
universities (Mohnen and Hoareau, 2003; Valero and Van Reenen, 2019). This 
dynamic environment contributed to the rapid evolution and adoption of digital 
technologies in the US, contrasting with the more conservative innovation approach 
observed in Europe. 

Europe also has technological clusters, but less numerous and less intensive in R&D 
that what is observed in the US. For example, the most top NUTS1 region in terms of 
R&D over GDP in Europe is less R&D intensive that the top 6 US states in 2022. 
R&D expenditures are not available for smaller regional entities but using the 
geolocation of PCT families, one can compare European NUTS3 regions and US 
counties. Sorting these areas based on the number of PCT families per capita in 
2022 shows that the top 25 regions include 15 that are in the US, 6 are in Germany 3 
in Switzerland and 1 in the Netherlands. There are also clear differences in terms of 
financing of innovation that is more focused on venture capital rather than debt 
financing in the US compared to Europe, which tend to favour investment into digital 
technologies that relies a lot on intangible investment which are harder to 
collateralize (see Aghion et al., 2018 for a review and Garcia-Macia, 2017 for an 
empirical analysis). 

The role of research universities is also a source of important differences between 
Europe and in the US. Europe also has leading research universities that produce 
breakthrough knowledge, as evidenced in the previous case study in Table 6. 
However, firms are insufficiently connected to these universities and the R&D 
programmes are not designed with the view of improving this connection. For 
example, Bergeaud et al. (2022b) shows that in France, the R&D tax credit, which 
does not target specific sectors and offer each firm up to a certain time a fixed tax 
credit based on its R&D expenditure is overly targeted to firms in the manufacture of 
motor vehicles and air transportation manufacturing. They compare this to a policy 
which subsidies applied research done in universities and found that the spillovers 
such policy generate in fact favoured firms in biotech, experimental development, 
communication equipment and manufacture of electronic component. 

Finally, the role of the financial sector in shaping the allocation of R&D across firms 
is also crucial in explaining the differences between the US and Europe. Banking-
based financial systems, like those predominant in Europe, tend to be more 
conservative and less inclined to invest in disruptive and high-risk innovations, 
particularly for young firms. This investment approach can stifle the growth of high-
tech sectors and contribute to the differential allocation of R&D between the US and 
Europe. It also poses significant challenges regarding the development of green 



technologies, as discussed in Section 4.3. Fragmented capital markets in Europe 
further exacerbate this issue, as the lack of a unified financial market creates barriers 
to efficient capital allocation (ECB, 2020). Unlike the US, where integrated and highly 
liquid capital markets facilitate the reallocation of savings into the funding of 
innovative ventures, European firms often struggle to secure adequate financing for 
R&D activities. Moreover, the underdevelopment of the venture capital industry in 
Europe poses a significant barrier to innovation. Venture capital is crucial for funding 
startups and early-stage companies that drive technological advancements (Hall and 
Lerner, 2010). The future development of a more integrated capital market union and 
investment products that can be sold across the continent (Letta, 2024) are steps in 
the right direction that could improve the financing of innovative projects and the 
reallocation of R&D. 

3.2.4 What can innovation policy do? 

Universities play a crucial role in fostering innovation in the US, as evidenced by 
causal studies such as those by Azoulay et al. (2019a) and Hausman (2022), but 
generally speaking, the public funding of innovation through government agencies 
has been pivotal in developing radical and risky innovations. Dyèvre (2023) 
highlights the significant role of Advanced Research Projects Agencies (ARPA) in 
the innovative success of American firms and long-term TFP dynamics. Similarly, 
Gross and Sampat (2023) demonstrate how substantial US federal investments 
during WWII had a lasting impact on private innovation and the formation of local 
technology clusters, a mechanism also reported by Kantor and Whalley (2023) 
during the Cold War space race. More recently, the effectiveness of public agencies 
like the National Institute of Health (NIH) during the COVID-19 pandemic in quickly 
mobilizing resources and collaborating with startups and universities to develop a 
vaccine was documented by Kiszewski et al. (2021). 

These instances of positive R&D spillovers from ambitious government-led projects 
have led many scholars, such as Bloom et al. (2019), to advocate for more 
“moonshots” or mission-oriented projects. These projects are supported because 
they drive critical technological innovations needed to address urgent global 
challenges like climate change or the energy transition, where market failures, such 
as the path dependency of dirty innovations highlighted by Aghion et al. (2016), are 
prominent. They also reallocate R&D resources to economic actors capable of 
benefiting from such programs, unlike broader R&D tax credits that discriminate 
based on observable firm characteristics such as size, sector, or age, regardless of 
their innovation potential (Aghion et al., 2024). 

However, as emphasized by Fuest et al. (2024), the operations of ARPA, described 
by Azoulay et al. (2019b), differ from comparable European agencies like the 
European Innovation Council, which focuses too narrowly on technologies close to 
commercialization and does not favor high-risk, high-return projects. 

Finally, the institutional landscape significantly influences the location choices of 
innovative firms, particularly in the digital industry. Unlike traditional sectors reliant on 



physical capital, the digital industry primarily depends on intangible assets, which are 
easier to relocate to more innovation-friendly environments. Demirer et al. (2024) 
highlight that the EU's General Data Protection Regulation (GDPR) has notably 
increased data storage costs in Europe, leading to a 26% reduction in data storage 
and a 15% decrease in data processing activities among European firms compared 
to their U.S. counterparts, rendering them less data-intensive. Similarly, Fuest et al. 
(2024) report that the relative profit margins of firms involved in high-tech sectors in 
Europe, compared to mid-tech firms, are much lower than in the U.S., which can be 
attributed to different tax systems and labour market regulations. Adjusting the 
institutional landscape involves balancing regulations that protect consumers and 
prevent market dominance—a relative success in Europe as documented by 
Philippon (2019)—with the need to foster the development of digital technologies 
that heavily rely on data and intangible assets. Europe’s level of risk aversion seems 
significantly larger than in the US and is reflected in these institutions but also 
represents a significant risk of being stuck in the middle technological trap. Finding 
the right balance will become increasingly crucial as the development and adoption 
of AI technologies become central to firm growth and require dramatic societal 
changes. 

4 Future Challenge for European’s productivity 

Previous sections have outlined Europe's disappointing productivity performance 
while acknowledging significant opportunities for improvement through targeted R&D 
in productivity-enhancing technologies and better designed innovation policies. This 
section discusses the future of productivity by first reviewing the secular stagnation 
hypothesis before examining two pivotal fields—Artificial Intelligence and Green 
Innovation—and evaluates the conditions under which they may potentially elevate 
Europe's economic performance as these technologies continue to advance and 
gain traction. 

4.1 Secular stagnation 

The secular stagnation hypothesis posits that the economy may endure a prolonged 
period of negligible or no economic growth due to persistent shortfalls in demand, 
alongside challenges in achieving substantive productivity improvements. 
Considering the long-term evolution of growth and productivity in European nations 
depicted in Section 2 and the recent slowdown, this hypothesis seems plausible, with 
the positive dynamic trajectory of productivity growth being historically restricted to a 
short period. The literature has identified several possible mechanisms. For 
example, the fact that ideas were getting harder to find (Bloom et al., 2020), or that 
the ICT boost may have ultimately reduced the incentive to innovate by giving some 
superstar firms too much market power (Aghion et al., 2023b; De Ridder, 2024). On 
the other hand, techno-optimists (e.g. Brynjolfson et al., 2021) argue that the pattern 
of productivity growth typically includes a phase of slow growth prior to a 
technological boom, significantly enhancing productivity, similar to the impact 



witnessed with electricity. This perspective suggests that the diffusion of General 
Purpose Technologies usually spans several decades (David, 1990) during which 
productivity is usually low.18 

One argument initially put forward by Gordon (2012) is that the risk of secular 
stagnation reflects a supply-side problem. Gordon suggests that the most 
transformative innovations have already occurred, and that the technologies 
emerging from the third and fourth industrial revolutions do not possess the 
disruptive impact of earlier advancements. IT-intensive sectors, especially in the US, 
where these technologies were more widely adopted, experienced a productivity 
surplus during the 1990s. However, since 2004, despite a 1.5-fold increase in the 
number of patents filed with the USPTO and a 1.3-fold increase at the EPO between 
2004 and 2019, there have been negligible TFP gains in the US manufacturing 
sector and only minimal gains in most European countries (see Chart A7 in the 
Appendix). This appears surprising, as manufacturing is an industry where significant 
productivity improvements from enhanced robots and machinery—which incorporate 
more efficient IT—might be anticipated. One potential explanation is that the surge in 
patenting activity is predominantly driven by technologies that are less conducive to 
productivity enhancements. For instance, Rachel (2022) proposes a model that 
explains the shift in R&D towards technologies oriented towards leisure. Although 
challenging to verify formally, this claim aligns with the evolution in the degree of 
novelty of technologies, as analysed by Kelly et al. (2021), who assess how the text 
of patents differs from those filed previously in similar technological fields. 

Another potential explanation of this new “Solow Paradox” is that while technologies 
exist, and while their productivity potential has been proven (Gal et al, 2019), their 
adoption continues to be insufficient by firms and individuals due to several 
headwinds and inadequate institutions (Andrews et al., 2016). In particular, bad 
management practices, lack of ICT skills, and suboptimal job matching, alongside 
market access, competition, and resource reallocation policies (Andrews et al., 
2018). 

The lack of novel radical productivity-enhancing technologies and the slow diffusion 
of existing digital technologies could be seen as issues that are reversable. 
However, Gordon (2012) argues that the existence of several headwinds will make it 
unlikely: demographic: an aging population will both create an excess of savings 
relative to investment (Baldwin and Teulings, 2014) and depress the average 
worker’s productivity (Gordon, 2017), human capital: increasing further the level of 
education and human capital has decreasing returns and now that a large share of 
the working population has completed secondary education and done some college, 
increasing human capital is much more costly. Other headwinds include the high 
level of public and private debt and environmental constraints, in particular the 

 
18  Note that these explanations for the weak dynamics of labour productivity predominantly focus on the 

contribution of TFP. Yet, the contribution of capital deepening since the Great Financial Crisis in Europe 
is also disappointing, notably as a result of weak investment following the euro area crisis. The 
literature has linked these performances, in particular, to financial fragmentation, policy uncertainty, and 
subdued demand (OECD, 2016). The massive inflow of public investments that followed pandemics 
since 2020 could however reverse this trend. 



question of how to substitute polluting, carbon-based, source of energy and 
production process by clean and efficient alternatives. 

In the next two sections, we examine two critical factors that could influence the 
secular stagnation hypothesis. Firstly, the remarkable development and rapid 
diffusion of AI could herald significant productivity improvements, with some 
proponents suggesting that AI might be the new General Purpose Technology 
sparking a new industrial revolution and a subsequent wave of growth. Secondly, the 
constraints imposed by climate change and the urgency to allocate resources 
towards combating global warming and reducing our environmental footprint could 
potentially hinder long-term growth. However, substantial investments in green 
innovation might lead to important spillovers, providing firms with novel ideas that 
could unlock new growth opportunities and overcome the difficulty to find new ideas 
with adequate innovation policies. 

4.2 Artificial Intelligence 

The recent development of various models of Generative Artificial Intelligence, 
capable of creating text, images, or videos from simple inputs and responding to 
questions with remarkable flexibility since 2022, has sparked discussions about 
whether we are entering a new era. In this era, the potential of computers, fueled by 
extensive data, could be vastly amplified. Many questions previously associated with 
ICT and digital technology waves have re-emerged in the debate: which types of 
jobs are at risk of being automated, which workers will benefit or lose out from the 
development of AI, what the effects on productivity will be, and what types of tasks 
AI can now efficiently assist and complement human work, among others. While 
many of these questions remain unanswered, insights from existing literature on the 
impact of ICT and robotics help frame the discussion by identifying relevant 
channels, accelerators, and obstacles. However, as with any technological wave, the 
initial question is whether AI will diffuse rapidly and under what conditions. We begin 
by exploring this question in the context of Europe and subsequently apply the 
recent framework proposed by Acemoglu (2024) to provide some preliminary 
estimates of the productivity gains potential from AI over the next decade. 

4.2.1 AI innovation in Europe 

Measuring AI adoption and innovation is inherently complex due to the ambiguous 
boundaries defining AI technology and the widespread nature of the underlying 
technologies. Despite these challenges, various reports highlight a significant and 
widening gap between the US and Europe in terms of AI investment and innovation. 
For instance, the 2024 AI Index report by Maslej et al. (2024) reveals that in 2023, 
the US had generated 61 notable machine learning models, compared to 15 in 
China, 8 in France, and 5 in Germany. The disparity in private investment into AI is 
even more pronounced, with the US investing 67 billion dollars, whereas Germany 
and France each invested less than 2 billion, and Europe as a whole (including the 



UK) invested 11 billion. This data underscores the leading position of the US in AI 
development and the considerable investment gap facing Europe. 

To gauge the development and level of AI innovation in Europe and compare it with 
other regions, examining patents appear as a natural approach. Unfortunately, 
directly identifying AI-related patents is challenging due to the absence of a 
systematic label assigned by intellectual property offices (Baruffaldi et al., 2020). To 
navigate this issue, we adopt a strategy that utilizes two criteria. Firstly, although AI 
patents are difficult to pinpoint, research papers rooted in AI are more readily 
identifiable. We leverage the Marx and Fuegi (2020, 2022) patent-to-paper citation 
database, and select papers published in journals and conference proceedings that 
are unequivocally within the domains of Artificial Intelligence, Machine Learning, and 
Computer Vision. Specifically, we include proceedings from three influential AI 
conferences—UAI, NeurIPS, and ICML19—and journals with titles incorporating 
terms such as “Machine Learning,” “Artificial Intelligence,” “Computational Learning,” 
“Data Mining,” “Neural Network,” “Deep Learning,” “Intelligent System,” “Computer 
Vision,” and “Natural Language Processing.” We further enrich this selection with 
historically significant academic papers, as determined by their citation numbers on 
Google Scholar, resulting in a total of 50,911 different papers cited across 19,972 
patents. Secondly, we consider the presence of very specific IPC technological 
classes within a patent, based on a review proposed by Baruffaldi et al. (2020), as 
outlined in their Table 4.7. 

Through this method, we identified 106,867 PCT patent families filed globally from 
2002 to 2022, representing 2.68% of the total, with this share growing over time to 
nearly 4% by 2022. This increasing trend highlights the significant and growing 
impact of AI technologies in the patent landscape. Looking more in details, Chart 14 
reports the average yearly number of AI patents for several regions and for individual 
euro area countries. The euro area as a whole filed on average 475 patents per 
year, around 3 times less than the US and twice less than China. Germany, France 
and Netherlands are the three largest contributors, but Finland and Ireland patent 
relatively more compared to their size. 

 
19  Respectively the Conference on Uncertainty in Artificial Intelligence; Neural Information Processing 

Systems and International Conference on Machine Learning. 



Chart 14 
AI patents by regions 

(number per year) 

 

Sources: Author’s calculation and Google Patent Public Data. 
Notes: Average number of PCT applications filed by year between 2002 and 2022 in the field of Artificial Intelligence in selected 
regions. Patents have been selected based on a procedure described in Section 4.2.1. 

In the field of AI and broadly in computer science, innovation often transcends 
commercial boundaries, making patents a less effective metric for measuring 
advancements. Many pivotal breakthroughs, such as attention-based transformers—
which underpin ChatGPT and many other large language models—were introduced 
through academic papers. Google researchers, for instance, published the 
foundational paper on transformers and made the technology freely available, 
catalyzing widespread adoption and further innovation. A review of journal 
publications within AI highlights the significant contributions of different regions, with 
the US leading in citation-adjusted publications—12.5 million for the US and 7.9 
million for China, compared to 7.7 million for the entire euro area (see Chart A8 in 
the Appendix).20 Moreover, a distinct characteristic of the AI research landscape in 
the US, as noted by Maslej et al. (2024), is the larger proportion, 14%, of 
publications emerge from private companies compared to 9.5% in Europe and 7.4% 
in China, while government based institutions are more prevalent in European AI-
related publications. This fact is corroborated by a manual check of the affiliations of 
authors of the 10 most cited AI papers of all time since 2013 which shows that 
private companies, in particular Microsoft and Google are overrepresented and 
suggests that private firms have a comparative advantage at producing fundamental 
knowledge that will have high impact and will diffuse more broadly (see Table A1 in 
the Appendix). 

Similar to other digital and breakthrough technologies presented in section 3.2.2, 
European firms invest less in AI innovation compared to their American and Chinese 
counterparts but compete in producing the underlying knowledge. This disparity, as 
Bianchini and Ancona (2023) suggest, is not due to a lack of public effort but rather 
issues akin to those faced in the post-WW2 era (see section 2.2), notably a lack of 
coordination in industrial policies. This misalignment hinders the emergence of 

 
20  Numbers are taken from the March 2024’s version of the Country Activity Tracker of the Emerging 

Technology Observatory and count all academic papers published since 2013. 



European tech giants capable of competing across all parts of the value chain with 
American superstar firms, contributing to the talent exodus to the US and the 
frequent acquisition of promising startups by larger foreign entities. However, the 
scale of investment observed in the US indicates that public spending alone cannot 
bridge this gap. For Europe to catch up, there needs to be an adjustment in the 
private financing of AI and other novel technologies. Encouraging venture capital 
investment and enhancing the mobility of financial capital across countries are 
crucial steps in building a more robust ecosystem for AI development in Europe. 

Although European AI-producing firms may not be able to produce innovation at the 
same pace as their US-based competitors, this does not imply that other European 
firms are not adopting existing AI technologies. According to the 2024 AI Index 
Report by Maslej et al. (2024), the proportion of European firms reporting the use of 
AI technologies saw a significant rise in 2023, nearly matching that of North America 
(57% compared to 61%). This increase in adoption marks a notable shift from the 
patterns observed with earlier digital technologies, likely tied to the relatively low 
adoption costs of AI products. These products can often be seamlessly integrated 
into existing digital infrastructures. For instance, Microsoft’s Copilot, embedded 
within well-established software like Excel, exemplifies how AI can be incorporated 
with minimal disruption, reducing the barriers typically associated with adopting new 
technologies. As we will see in the upcoming section, the adoption of readily 
available AI services can rapidly automate some tasks and enhance productivity 
(what Acemoglu, 2024 call easy-to-learn tasks). However, a more profound and 
structural integration of AI into production processes may require more time. Such an 
integration demands the development of specific skills and capabilities not just for 
using AI tools, but for innovating within the AI space itself. For this second wave of a 
deeper integration of AI within the production system, being able to develop a strong 
ecosystem of AI producing firm will be particularly critical. 

4.2.2 Growth effect 

Automation and growth 

There are multiple ways in which AI can impact economic growth. Firstly, AI can 
boost individual workers’ productivity by automating routine tasks. Similar to digital 
technologies, it is unlikely that AI will replace every aspect of a worker's role; instead, 
it will substitute specific tasks, allowing workers to reallocate their time towards more 
creative activities, social interactions, and areas where they typically find greater 
satisfaction and add more value. For instance, journalists might use AI to sift through 
extensive archives for relevant references, perform spell checks, synthesize 
pertinent news reports, and translate sources. However, they will continue to write 
most of the analyses, conduct interviews, and decide which experts to feature, thus 
enhancing productivity by reducing the time and resource spent on some tasks. 
Secondly, AI can also complement workers and enhance efficiency even in core 
tasks. For example, a software developer might use AI tools to generate code, 



identify bugs, or manage development pipelines, thereby boosting efficiency. Thirdly, 
AI can accelerate product innovation (Babina et al., 2024) by improving the 
productivity of R&D, or by automating the production of idea itself (Aghion et al., 
2017). Finally, AI can lead to capital deepening by substituting labour with capital, as 
in previous waves of innovation. 

Acemoglu (2024) adapts the task-based framework of Acemoglu and Autor (2011) 
and Acemoglu and Restrepo (2018, 2020) and proposes a simple formula to 
evaluate the impact of the first two channels (the automation channel). This formula 
is a variation of the famous Hulten theorem where the aggregate impact of AI is 
equal to the product of the GDP share of task that will be impacted by AI over the 
next 10 years with the average cost saving (or equivalently productivity gains) from 
automating or completing these tasks with AI. Acemoglu (2024) considers that only 
5% of the GDP will be actually impacted by AI over the next 10 years, particularly 
because many tasks that could be automated are unlikely to be automated due to 
the very high cost of such a transformation (Svanberg et al., 2024). The average 
productivity gains on impacted task are estimated at 27% based on microeconomic 
evidences from several articles (in particular Brynjolfsson et al., 2023). This implies 
that the expected macroeconomic effects of AI would lead to a modest increase of 
0.71% in TFP over a decade, corresponding to an annual TFP growth rate increase 
of about 0.07%, very far from the impact of previous GPT waves (see Table 1). 

Other experts are more optimistic. In its Spring 2024 World Economic Outlook, the 
IMF forecast a 0.8pp yearly impact of AI on growth (Li and Noureldin, 2024) based 
on results from Cazzaniga et al. (2024). Using a comparison with previous 
technological waves, Aghion and Bouverot (2024) also forecasts an effect reaching 
0.8pp per year in the next 10 years. Note that these impacts are not limited to the 
automation channels contrary to Acemoglu (2024)’s estimate, however the latter 
argues that these alternative channels should not play too high a role in the next ten 
years. Finally, Aghion and Bunel (2024) conciliates Acemoglu (2024)’s methodology 
with Aghion and Bouverot (2024) and shows that a cumulative gain of about 7% in 
the next 10 years from the automation channel can be achieved with reasonable 
hypothesis on the efficiency gains from AI and the share of tasks that are impacted. 

An evaluation for European countries 

An appealing feature of Acemoglu (2024)’s approach is that it requires only minimal 
data to estimate the aggregate impact of AI on TFP, through the automation channel. 
More precisely, the aggregate effect if equal to the product of four components: (1) 
Share of GDP accounted for by exposed tasks, (2) Share of these tasks for which it 
is cost-effective to use AI (3) Average saving cost from AI adoption and (4) the 
labour share. 

We use this formula to provide several estimations of the effect by European 
country. The first and fourth components are the one that naturally differ across 
countries. In particular, the distribution of employment across occupations will pin 
down the first component as we will assume that a given occupation is equally 



exposed in all countries. We also provide alternative estimates of the average 
increase in productivity from adopting AI on relevant task and on the share of tasks 
for which it is cost-effective to use AI based to gauge the range of credible effect that 
we would expect. 

Exposed task and share of GDP 

With the rapid advancement of generative AI, it has become increasingly clear that 
this technology could significantly influence a wide range of occupations, including 
those in creative sectors and complex, non-routine tasks previously considered 
immune to automation (Autor, 2015). Advances in AI capabilities such as image 
recognition, natural language processing, and predictive analytics have contributed 
to the emergence of a new generation of robots capable of performing social 
interactions with humans. Consequently, numerous studies have been conducted to 
assess the vulnerability of various occupations to AI. For example, Webb (2020) 
analysed the alignment between job descriptions and AI patent texts, proposing that 
similarities could indicate a potential risk of automation. Eloundou et al. (2023) 
examined the impact of the GPT language model, suggesting that an occupation is 
exposed if the technology can substantially reduce the time required for certain 
tasks, and reported that such exposed tasks constitute about 20% of GDP. Felten et 
al. (2021) developed the AI Occupational Exposure (AIOE) indicator, which Pizzinelli 
et al. (2023) also utilized, measuring exposure based on AI's capabilities with 
potential levels reaching up to 60% of GDP in some countries. Gmyrek et al. (2023) 
employed GPT-4 to predict typical tasks in various professions and evaluate their 
automation potential, reporting exposure levels comparable to those found by 
Eloundou et al. (2023) and used by Acemoglu (2024). 

We have applied the AIOE methodology described by Felten et al. (2021) to each 2-
digit ISCO08 occupation.21 While this measure does not specify a clear threshold for 
classifying occupations as 'exposed by AI', we adopt the approach of Pizzinelli et al. 
(2023) by considering an occupation as exposed to AI if its AIOE score exceeds the 
mean. Alternatively, we assess individual exposure by analysing each of the 16,937 
tasks listed in the Bureau of Labor Statistics’ O*NET database, version 28.1. Using 
GPT-4, we estimate an exposure score for each task based on its short description 
available in ONET and a specific prompt detailed in Table A2 in the Appendix. A task 
is deemed exposed to AI if it scores above 0.8.22 We then aggregate these scores at 
the 2-digit ISCO level based on each task's importance to the occupation. The first 
methodology indicates an exposure level of 43% in the Euro area, while the second 
methodology yields 52%, both of which are higher than the values reported by 

 
21  This is an aggregated level of analysis as 2-digit ISCO08 occupations include broad groups such as 

“teaching professional (23)” or “Managers (11)”. This is unfortunately the most detailed level for which 
we can have employment by sector and country which are necessary to construct our estimates. 

22  This is an arbitrary choice of course and alternative numbers will yield alternative aggregate effects. We 
explore alternative values, but we should emphasize at this stage that the goal of this exercise is not so 
much to give an exact prediction but rather to consider plausible order of magnitude for the TFP gains 
from the automation channel in the medium run and put this in perspective with measured TFP growth 
rates in the 20th century as reported in Table 1. 



Eloundou et al. (2023), who focused solely on the impact of generative AI, and are 
more aligned with the findings of Pizzinelli et al. (2023). 

Cost-efficient automation 

An essential aspect of AI's impact on employment, and consequently on economic 
growth through the automation channel, concerns not only whether an occupation 
has tasks susceptible to automation but also whether it is economically viable to 
automate these tasks. Svanberg et al. (2024) highlight this critical point in the context 
of computer vision technologies. They argue that the costs associated with 
implementing, maintaining, training, and upgrading such technologies can be 
prohibitively high, and in particularly much higher than their labour cost, making it 
infeasible for most firms, except those large enough to realize economies of scale. 

Broadly, several barriers could deter a firm from adopting AI for specific tasks, even 
if these tasks are highly exposed to automation and could theoretically be performed 
by AI. For instance, while many basic administrative tasks can be efficiently 
managed by technologies like ChatGPT at minimal cost, and without significant 
managerial decisions, the application of such generic AI technologies is often 
restricted to tasks where errors have minor consequences, and the need for 
personalization and creativity is low. Conversely, many tasks remain challenging to 
automate with current technology due to insufficient model precision, which may not 
meet the required quality standards for products or services. Moreover, training such 
specialized models could be cost-prohibitive, especially if they are tailored to a 
limited set of tasks. Thus, in the medium term, we can expect that productivity gains 
from AI will be confined primarily to tasks that are easier to automate. Acemoglu 
(2024) estimates that only 23% of tasks that are exposed to automation are feasible 
to automate with current AI technology, based on the case study by Svanberg et al. 
(2024) on computer vision and assuming a relatively pessimistic projection of 
declining technology costs. 

We construct an alternative estimate by using the AI Occupational Exposure (AIOE) 
metric from Felten et al. (2021) with our own exposure scores to identify occupations 
that are highly exposed to AI and yet contain a significant proportion of tasks that are 
difficult to automate. Specifically, we consider occupations where more than 50% of 
tasks have a score lower than 0.75 as having a high exposure based on their 
characteristics but with many tasks considered challenging to automate. This 
approach suggests that automating all tasks within these occupations would require 
multiple specialized models, making it expensive in the medium term. We find that 
40% of the occupations in the set of those exposed fit this description, which broadly 
corresponds to Svanberg et al. (2024)'s alternative projection in the case of a 20% 
annual cost decline in the cost of computer vision technology.23 

 
23  A 20% annual decline in cost may appear extreme, but it is, in fact, not uncommon within the context of 

computing costs in machine learning (Thompson et al., 2020). Note also that this number of 40% has 
been calculated at the 4-digit ISCO level to improve the precision. 



Labour cost saving (or productivity) 

Several studies have sought to quantify the efficiency gains derived from the 
adoption of AI in exposed tasks. This is notably evident in high-skilled professions 
such as developers, consultants, and analysts, as well as in roles requiring less 
education, like customer support positions. For tasks amenable to AI, significant 
productivity enhancements have been reported. For instance, Noy and Zhang (2023) 
observed a 40% increase in efficiency for analysts, while Peng et al. (2023) noted a 
56% improvement for developers using Copilot. Additionally, AI has been shown to 
enhance analytical skills—Schoenegger et al. (2024) documented a 23% increase in 
prediction accuracy in a forecasting tournament—and to boost creativity, as 
demonstrated by Doshi et al. (2023). 

However, these productivity gains are not uniformly distributed across all workers. 
Dell'Acqua et al. (2023) highlighted that significant gains are primarily realized in 
tasks where AI has a comparative advantage. Workers using AI indiscriminately 
across various tasks without strategic integration into their workflow tended to show 
lesser productivity improvements. Furthermore, Brynjolfson et al. (2023) found that, 
in contrast to earlier technological adoptions, initially less productive workers tend to 
benefit more substantially from AI, experiencing greater productivity gains. 

Acemoglu (2024) adopts an average value of 27%, derived from the findings of 
Brynjolfson et al. (2023) and Peng et al. (2023), to estimate these effects. Notably, 
Brynjolfson et al. (2023) also indicated that the productivity effect of AI adoption 
grows over time as workers become more adept at leveraging AI capabilities, with 
long-term effects being approximately twice as significant as short-term impacts. 
Based on this, we adopt a central estimate of 35% for our analyses. 

Results 

To conclude, we measure the labour share in 2022 in the national account. We 
predict TFP gains of 2.9% in the medium run (say in the next ten years) in the euro 
area, equivalent to an additional 0.29 percentage points per year. This projection is 
derived by multiplying the following factors: 0.43 (GDP share of exposed tasks), 0.4 
(share of tasks that can be automated among these exposed tasks), 0.35 (efficiency 
gains on these tasks), and 0.48 (the labour share). These estimates significantly 
surpass Acemoglu (2024)’s forecast of a 0.7pp gain over the same period, yet 
remain largely below the annual TFP impacts of ICT in the US, estimated at 0.8pp by 
Aghion and Bouverot (2024).They are nevertheless insufficient to restore GDP 
growth to its 20th-century average (see Table 1). Alternative estimates will make this 
10-year predicted impact range between 1.3 and 4.5%. Chart 15 reports the effect of 
individual euro area countries. 



Chart 15 
Estimated TFP gains in the next 10 years from AI 

(in %) 

 

Sources: Author’s calculation based on Acemoglu (2024). 
Notes: Bars present the central scenario of total TFP gains from AI through the automation channel by adapting Acemoglu (2024)’s 
model to European countries. This scenario uses a threshold of 0.8 to defined exposed tasks, considers that 40% of exposed tasks 
can indeed be feasibly automated and assumes a 35% higher productivity in these tasks. Lower bounds use respectively 0.85, 0.23 
and 27% and upper bounds use 0.75, 0.45 and 40%. 

These estimates, while indicative, are surrounded by considerable uncertainty. The 
projected productivity gains from the automation channel in the medium term are 
inherently limited by the relatively modest share of tasks that are both exposed to AI 
and cost-effective to automate. Moreover, these figures should be regarded as 
preliminary due to several missing dimensions in the analysis. Firstly, the GDP share 
attributed to occupations and industries most exposed to AI will likely evolve as AI 
adoption progresses. Secondly, predicting the future development of AI capabilities 
and associated implementation costs is challenging. Lastly, there are practical limits 
to how effectively workers can reallocate their time to more creative and valuable 
tasks, constrained by their capacity to focus on complex tasks continuously. These 
factors suggest that while automation may drive significant changes, the extent of 
these changes remains highly uncertain. 

Additional (long-run) channels 

More importantly, these numbers do not take into account two important channels. 
On the one hand, if AI can impact the generation of new idea and improve the 
productivity of R&D which could alleviate the trends in how harder good ideas are to 
find over time. Jones (2023b) offers a useful framework for understanding the impact 
of AI on growth through Weitzman (1998)’s recombinant growth model. In this model, 
growth stems from the generation of new ideas, which are themselves combinations 
of existing ideas. The primary limitation to growth is the capacity of a finite (but 
growing) number of researchers to study an exponentially increasing set of ideas 
and assess their relevance. The integration of AI could mitigate this bottleneck. AI 
excels at combining existing “recipes” (i.e., generative AI “creates” by blending 
information learned from a wealth of existing inputs) and could accelerate the pace 
at which we evaluate these combinations by either dismissing irrelevant 
combinations or identifying pertinent ones in areas researchers might not consider. 



The potential for growth through the integration of AI in generating new ideas and 
enhancing R&D productivity could be significant as AI could lead to the development 
of new products or even solve major challenges such as the generation and storage 
of clean energy. However, these advantages must be weighed against the limitations 
highlighted by the digital revolution, where technology rents could diminish 
innovation incentives among the most efficient firms, leading to suboptimal 
investments in innovation. For instance, Aghion et al. (2023b) illustrate how the 
declining cost of IT in the 1990s disproportionately benefited the most efficient firms 
by reducing the resources needed to manage their vast number of production units. 
Initially, this led to increased innovation and expansion, but ultimately it reduced 
competition and had negative effects on growth and welfare. Similarly, De Ridder 
(2024) discusses how the nature of intangibles increased fixed production costs, a 
phenomenon that could recur with AI if competition policies do not adapt. 

4.3 Environmental transition 

Climate change is leading to rising temperatures and an increase in adverse extreme 
events such as flooding, which pose significant risks to the economy and the stability 
of the financial system. Without substantial mitigation measures, all aspects of the 
production function—labour, capital, and TFP—will suffer adverse impacts. 
Moreover, even robust measures to accelerate the transition to cleaner energy may 
not completely prevent some of these effects from materializing. 

Transitioning to sustainable energy sources and environmentally friendly production 
and consumption practices is arguably one of the greatest challenges facing 
humanity. It requires substantial investments from both the private and public sectors 
to alter the environmental footprint of our consumption and firms' production 
processes. For instance, the European Commission estimates that annual energy 
investments in the EU will need to reach €396 billion from 2021 to 2030, and €520-
575 billion per year through 2050, to achieve the goal of climate neutrality in energy 
production. 

Ambitious public policies like the European Green Deal, which plans around 600 
billion euros in investments to significantly reduce carbon emission without harming 
economic growth or increasing inequality, are already underway. However, to 
achieve these objectives and limit global warming to levels that will not severely 
impact the economy and society at large, firms must also enhance their capacity to 
adopt greener technologies. In this section, we first review the literature on the 
negative impacts of climate change on growth and productivity. We then discuss how 
a transition towards green innovation may generate positive externalities and spur 
growth, provided that institutions are adapted to support the development of green 
technologies. 



4.3.1 The impact of climate change on productivity 

The direct impact of climate change on the economy is predominantly negative. 
Physical risks posed by extreme weather events such as storms, flooding, wildfires, 
and rising temperatures are expected to adversely affect TFP, capital stock, and 
labour supply, thereby exerting large and potentially non-linear impacts on both GDP 
levels and growth rates (Burke et al., 2015; Dell et al., 2012). Bijnens et al. (2024) 
provide a comprehensive summary of these impacts. Concerning the stock of 
capital, climate change is projected to increase the capital depreciation rate, 
shortening the average lifespan of capital assets due to more frequent damage and 
escalating global uncertainty, which diminishes investment incentives. Bilal and 
Rossi-Hansberg (2023) analyse these effects within a general equilibrium 
framework, illustrating that an increase in global temperatures could be interpreted 
as an elevation in the U.S. capital depreciation rate, with pronounced local impacts—
specifically, a potential 2 to 4 percentage point increase per 1°C rise in global mean 
temperatures along the South-Eastern Atlantic coast. 

Regarding labour inputs, higher temperatures and pollution levels may exacerbate 
mortality rates and chronic illnesses, reducing the available labour supply for tasks 
incompatible with extreme weather conditions. This spatial heterogeneity in climate 
impacts is likely to spur significant migration waves, further exacerbating local skill 
shortages (Leduc and Wilson, 2024). Additionally, TFP is affected as heatwaves and 
adverse weather conditions can diminish individual worker efficiency. Bijnens et al. 
(2024) suggest that in countries with an average annual temperature of 25°C, labour 
productivity could decline by 0.4 percentage points for each additional degree 
Celsius, reflecting a complex interaction of reduced investment and disruptions in 
global value chains. 

4.3.2 Transition to greener economy and productivity 

Without mitigation measures, the impact of climate change on productivity will be 
severe. However, policies promoting environmental transitions could also 
independently influence productivity. On one hand, the introduction of more 
standards and regulations increases uncertainty and risks, making some capital 
assets obsolete and stranded. This compels firms, governments, and individuals to 
shift their investments from polluting or energy-inefficient capital towards newer, 
cleaner technologies. Yet, the productivity gains from such investments may not be 
immediately evident. Additionally, these regulations can impose production 
constraints and prompt firms to adopt less efficient processes in the short term. On 
the other hand, in the longer-run, massive public investments into green innovation 
can generate positive spillovers to firms even in fields that are not directly linked to 
energy, just like what was observed with the impact of similar innovation policies 
during World War Two and the Cold War in the US (see section 3.2.3). While green 
innovation itself may not solve all the problems of climate change and may face 
technological bottlenecks, it may have the advantage of mitigating the negative 
impacts environmental transitions on climate change. Without surprise, how to 
design the right policies to enhance green innovation, or low-carbon innovation has 



received considerable attention in the institutional and academic literature 
(Cervantes et al., 2023). 

Measuring green innovation can be naturally done with patent data. The OECD 
offers a classification of patents into green and non-green technologies based on 
their technological class (Haščič and Migotto, 2015). Aghion et al. (2024) applied this 
classification to patents in many different countries and report a consistent pattern 
also shown in Chart 16 for European patents: the green intensity of newly issued 
patents has plateaued after the Great Financial Crisis, at a level between 10% and 
15% depending on the countries. They link this pattern to the path dependency of 
firms from their innovation history. As noted by Acemoglu et al. (2012), this path 
dependence grants established firms a comparative advantage in technologies they 
are familiar with, often those that rely on fossil fuels or polluting activities. Therefore, 
companies that have historically innovated in such “dirty” technologies are likely to 
persist in this direction, continuing to develop and enhance these technologies even 
as new, cleaner options may emerge. More generally, the pervasive uncertainty 
associated with the environmental transition often makes established firms reluctant 
to move away from their polluting activities. As Aghion et al. (2016) note, 
transitioning to a clean economy can be exceedingly slow without public intervention 
due to path dependence in firms' innovation strategies. Firms with a history of 
success in polluting industries, such as those in the mid-tech manufacturing sectors 
prevalent in Europe—like large appliance and automotive manufacturers (see 
Section 3.2)—tend to stick with familiar technologies. 

For this reason, young firms play an important role in fostering green innovation as 
they are not encumbered by the same path dependencies and may possess a 
comparative advantage in developing green technologies. However, this also means 
that green innovation, primarily driven by young firms, is vulnerable to financial 
difficulties because these firms often face considerable financial constraints. Young 
firms lack established transaction histories and track records, which raises the costs 
for banks to monitor them and leads to limited access to bank financing. 
Furthermore, these firms usually cannot tap into bond or equity markets, restricting 
their ability to find financial alternatives to bank loans. 



Chart 16 
Share of green patents 

(% of total) 

 

Sources: Aghion et al. (2024) 
Notes: Only patents from the European Patent Office are included. A patent is defined as green if it has at least one technological 
class matching the list presented in Haščič and Migotto (2015). 

Aghion et al., (2024) explores this story with a quantitative growth model and find 
that find that the tightening of credit for young firms after 2010 can explain around 
60% of the recent slowdown in the rise of green patenting. 

Green patents are special in several respects. By employing the methodology of 
Haščič and Migotto (2015), we demonstrate in Table 7 that green patents filed at the 
EPO generally generate significantly more citations and are of higher value 
according to various quality composite indicators defined by Squicciarini et al. 
(2013). More notably, these patents also exhibit higher generality and originality 
indices on average, suggesting that green innovation often relies on the integration 
of diverse, previously unrelated technologies and tends to inspire follow-up 
applications across a broader spectrum of technological fields. Consequently, green 
patents are more likely to catalyse the generation of new ideas across various 
domains. These findings hold true, conditional on the technological class and the 
year of application (see Table 7). 

Table 7 
Green patents and quality indicators 

 Forward Citations Quality Indicator (OECD) Generality Originality 

Green patent  0.353 0.016 0.039 0.044 

 (0.0408) (0.0014) (0.0144) (0.0131) 

Average value 0.978 0.314 0.351 0.675 

Sources: Author’s calculation based on Haščič and Migotto (2015)’s methodology and Squicciarini et al. (2013). 
Notes: OLS estimation of a model where the dependent variable is given as a column name and the regressor is a dummy variable 
equal to 1 is a patent is labelled as green. All patents from the EPO for which we could retrieve an entry in Squicciarini et al. (2013) are 
included, number of observations: 2,249,577. All models include a technological class-filing year fixed effects where the technological 
class is the NBER technological class in 35 broad groups. Standard errors are clustered at the technological class level. 

The stagnation in the development of green patents, despite significant public and 
private investments—a trend similarly observed in other countries as highlighted by 
Aghion et al. (2024)—raises concerns about the ability of these investments to 
produce substantial positive spillovers to other productivity-enhancing technologies. 



Although individual green patents may possess this potential, the broader impact 
remains limited. This situation underscores the need for substantial changes in the 
policy mix to break the path dependency of large polluting firms and lower financial 
barriers for emerging innovators in green technology. Without such reforms, the 
anticipated benefits may fail to materialize. 

5 Policy Implications and Conclusion 

Before concluding, we summarize the policy implications of this article. 

Strengthening Coordination Among European Countries. Innovation policy in 
Europe has suffered and continues to suffer from a lack of coordination among 
European countries, which is necessary to maximize the benefits of innovation and 
technology adoption. This is particularly crucial in the wake of a new technology 
revolution. Europe has not fully capitalized on its assets, notably the size of its single 
market and the quality of its basic sciences, to develop digital giants since the 1990s. 
Therefore, it is paramount to better coordinate innovation policies across member 
countries to foster a unified strategy that will avoid the fragmentation of R&D efforts, 
promote the integration of several key sectors, and intensify the collaboration 
between university-driven scientific discoveries and the private sector. This 
enhanced coordination is the condition for a successful industrial policy that could 
boost overall productivity from investing in the green and AI transition.24 

Rethink the allocation of R&D subsidies and focus on mission-oriented 
projects. To escape the middle technology trap and foster innovation that leads to 
substantial productivity gains, Europe needs to rethink its allocation of R&D 
subsidies. Current investments tend to favour established sectors like automotive 
and mechanical engineering, while high-tech sectors such as biotechnology and ICT 
remain underfunded. By reallocating subsidies towards mission-oriented projects 
that target high-potential sectors, and by integrating public and private research 
efforts more effectively, Europe can stimulate breakthrough innovations and catch-up 
with China and the US without increasing its public R&D expenditures. This strategy 
can be further strengthened by building around its leadership in green technology. 
The continent has the potential to lead the world in sustainable innovations, which 
are crucial for addressing global environmental challenges and can generate 
significant productivity gains and spillover to the whole economy. However, to fully 
realize this potential, it is essential to remove barriers that young firms face in 
accessing external finance. This includes improving venture capital availability and 
creating supportive regulatory frameworks that encourage investment in green 
startups. 

Enhancing the Adoption and Generation of AI Technologies. To fully harness 
the potential of AI, policies must encourage not only the use of AI tools but also the 

 
24  The recent Letta report (Letta, 2024) accordingly stresses that the single market remains a remarkable 

catalyst for growth but needs to be adapted and accelerate its integration around the green and digital 
transition. 



development of AI innovations within Europe. This includes investing in AI education 
and training to build a skilled workforce capable of leveraging AI technologies. 
Additionally, fostering an environment that supports AI startups and encouraging 
venture capital investment are crucial steps. AI can significantly boost productivity by 
automating routine tasks and enhancing R&D efficiency through the generation of 
new ideas and innovations. However, these benefits will only be realized if there is a 
coordinated effort to integrate AI into existing production processes and ensure that 
the workforce is equipped to work alongside these new technologies. 

Transforming the Labour Market after the Covid-19. The transformation of labour 
markets following the 2020’s pandemic, highlights the need for adaptable and 
resilient workforce policies. The crisis has accelerated the shift towards remote work, 
automation, and the gig economy, fundamentally altering traditional labour market 
dynamics. Policies should focus on supporting workers through these transitions by 
enhancing social safety nets, providing reskilling and upskilling opportunities, and 
promoting flexible work arrangements. Ensuring that labour market regulations adapt 
to new forms of employment is crucial. 

Focusing on Europe’s comparative advantages. European countries are moving 
away from the technological frontier after missing the ICT revolution in the 1990s and 
lagging behind in the production of digital innovations and biotechnologies. However, 
Europe has many assets that should be leveraged more effectively. First, it has a 
large market and a rich, educated population whose savings should be redirected 
towards financing innovation, particularly for young firms, through a more integrated 
capital market. Second, Europe has a strong capability to generate important ideas 
and crucial knowledge that has been the foundation of significant innovations 
developed elsewhere. Strengthening the link between universities and firms and 
redirecting public R&D expenditures towards riskier, long-term projects would help 
capitalize on this pool of scientific excellence. Third, Europe holds a relatively 
leading position in producing green innovations25 and reducing CO2 emissions. To 
maintain this position in the future, it is essential to support young firms in financing 
their R&D projects. 

Conclusion 

This paper has explored the broad spectrum of European productivity, spanning from 
the end of the 19th century to its historical peaks in the mid-20th century, through 
present-day challenges, and into a promising yet uncertain future. This long-term 
view highlights the remarkable growth of the post-WW2 era while also allowing 
appreciation of the relative and progressive decline initiated after the 1970s. We 
documented how this trend can be related to inadequate industrial and innovation 
policies that suffered from a lack of coordination across countries, inadequate 
incentives for collaboration with the university ecosystem, and a financial system that 
does not adequately support risk-taking and the development of rapidly growing 
startups poised to become leaders in new technological waves. 

 
25  Europe as a whole (including the UK and Switzerland) has more PCT patent families in green 

technologies than any other region in the world in 2022. 



As a result, the gap with the US has been particularly marked since 1995, raising 
significant concerns about the future of European economic growth, especially 
considering that the European innovation landscape continues to suffer from the 
same issues that contributed to its relative slowdown after the oil crisis. The future of 
European productivity could hinge on the effective adoption of Artificial Intelligence 
and climate-related innovations. These technologies hold significant potential to drive 
productivity gains and could reverse this negative trend. However, we show that the 
gains from substituting easy-to-automate tasks with AI are relatively modest. To 
realize the full potential of AI, Europe must encourage firms to invest in developing 
new models that will improve the quality of goods and services, create new ideas, 
and solve complex problems. Similarly, we show that the development of green 
innovation, mostly driven by young firms, has halted since the Great Financial Crisis 
due to credit constraints. Deriving significant gains from these technological 
revolutions will thus require better-targeted policy interventions that ensure a better 
allocation of resources and foster an environment that supports radical technological 
adoption and development. 

The paper also examines post-pandemic trends and the dramatic accelerating 
relative decline of the euro area compared to the US in terms of labour productivity. 
Understanding the underlying factors behind this dynamics is particularly crucial for 
public policy and for monetary policy in particular, namely whether this results from 
deep structural factors or is a transitory phase exacerbated by multiple shocks. We 
argue that this accelerating decline is largely driven by transitory factors and will 
likely be largely reversed in the near future. However, structural factors negatively 
impacting European productivity for several decades and the threat of a more global 
period of secular stagnation, particularly resulting from decreasing returns of 
education, demographic shifts, and growing inequality, raise questions about the 
ability of European countries to fully bounce back from these major shocks. 

Historically, Europe has shown remarkable resilience and an ability for technological 
and economic transformation, especially in the post-World War II period and at a 
time when the continent was clearly lagging behind the US. By capitalizing on its 
comparative advantage and its lead in green technology, Europe has a unique 
chance to fully embrace the fourth industrial revolution and to restore potential output 
at a higher level. 

References 

Acemoglu, D. (2024). The Simple Macroeconomics of AI. Unpublished. 

Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and 
directed technical change. American economic review, 102(1), 131-166. 

Acemoglu, D., & Restrepo, P. (2018). The race between man and machine: 
Implications of technology for growth, factor shares, and employment. American 
economic review, 108(6), 1488-1542. 



Acemoglu, D., & Restrepo, P. (2020). Robots and jobs: Evidence from US labor 
markets. Journal of political economy, 128(6), 2188-2244. 

Acemoglu, D., & Autor, D. (2011). Skills, tasks and technologies: Implications for 
employment and earnings. In Handbook of labor economics (Vol. 4, pp. 1043-1171). 
Elsevier. 

Aghion, P., Bergeaud, A., De Ridder, M., & Van Reenen, J. (2024). Lost in transition: 
Financial barriers to green growth. 

Aghion, P., Akcigit, U., & Howitt, P. (2014). What do we learn from Schumpeterian 
growth theory? In Handbook of economic growth (Vol. 2, pp. 515-563). Elsevier. 

Aghion, L., Howitt, P., & Levine, R. (2018). Financial development and innovation-led 
growth. In Handbook of finance and development (pp. 3-30). Edward Elgar 
Publishing. 

Aghion, P., Jones, B. F., & Jones, C. I. (2017). Artificial intelligence and economic 
growth (Vol. 23928). Cambridge, MA: National Bureau of Economic Research. 

Aghion, P., Dechezleprêtre, A., Hemous, D., Martin, R., & Van Reenen, J. (2016). 
Carbon taxes, path dependency, and directed technical change: Evidence from the 
auto industry. Journal of Political Economy, 124(1), 1-51. 

Aghion, P., Bergeaud, A., Gigout, T., Lequien, M., & Melitz, M. (2023a). Exporting 
ideas: Knowledge flows from expanding trade in goods. CEP Discussion Paper 
#1960. 

Aghion, P., Bergeaud, A., Boppart, T., Klenow, P. J., & Li, H. (2023b). A theory of 
falling growth and rising rents. Review of Economic Studies, 90(6), 2675-2702. 

Aghion, P., Bergeaud, A., Boppart, T., Klenow, P., & Li, H. (2024). Good rents versus 
bad rents: R&D misallocation and growth. 

Aghion, P. & Bouverot, A. (2024) Commission de l’intelligence artificielle, “IA : Notre 
ambition pour la France,” Technical Report 2024. 

Aghion P. & Bunel, S. (2024) AI and Growth: where do we stand? Mimeo LSE. 

Aksoy, C. G., Barrero, J. M., Bloom, N., Davis, S. J., Dolls, M., & Zarate, P. 
(2022). Working from home around the world (No. w30446). National Bureau of 
Economic Research. 

Andrews, D., Nicoletti, G., & Timiliotis, C. (2018). Digital technology diffusion: A 
matter of capabilities, incentives or both? 

Andrews, D., Criscuolo, C., & Gal, P. N. (2016). The best versus the rest: the global 
productivity slowdown, divergence across firms and the role of public policy. 

Arce, O., Consolo, A., Dias da Silva, A. & Mohr, M. (2023) More jobs but fewer 
working hours. ECB Blog 7 June 2023. 



Autor, D. H. (2015). Why are there still so many jobs? The history and future of 
workplace automation. Journal of economic perspectives, 29(3), 3-30. 

Autor, D., & Salomons, A. (2017). Does productivity growth threaten employment. 
In ECB Forum on Central Banking, Sintra, Portugal (pp. 26-28). 

Azoulay, P., Graff Zivin, J. S., Li, D., & Sampat, B. N. (2019a). Public R&D 
investments and private-sector patenting: evidence from NIH funding rules. The 
Review of economic studies, 86(1), 117-152. 

Azoulay, P., Fuchs, E., Goldstein, A. P., & Kearney, M. (2019b). Funding 
breakthrough research: promises and challenges of the “ARPA Model”. Innovation 
policy and the economy, 19(1), 69-96. 

Babina, T., Fedyk, A., He, A., & Hodson, J. (2024). Artificial intelligence, firm growth, 
and product innovation. Journal of Financial Economics, 151, 103745. 

Baffigi, A. (2011). Italian national accounts, 1861-2011. Bank of Italy Economic 
History Working Paper, (18). 

Baldwin, R., & Teulings, C. (2014). Secular stagnation: facts, causes and 
cures. London: Centre for Economic Policy Research-CEPR. 

Barrero, J. M., Bloom, N., Buckman, S., & Davis, S. (2024). SWAA April 2024 
Updates. Work from Home Research. 

Barrero, J. M., Bloom, N., & Davis, S. J. (2020). 60 million fewer commuting hours 
per day: How Americans use time saved by working from home. University of 
Chicago, Becker Friedman Institute for Economics Working Paper, (2020-132). 

Barrero, J. M., Bloom, N., Davis, S. J., & Meyer, B. H. (2021a, COVID-19 is a 
persistent reallocation shock. In AEA Papers and Proceedings (Vol. 111, pp. 287-
291). 2014 Broadway, Suite 305, Nashville, TN 37203: American Economic 
Association. 

Barrero, J. M., Bloom, N., & Davis, S. J. (2021b). Let me work from home, or I will 
find another job. University of Chicago, Becker Friedman Institute for Economics 
Working Paper, (2021-87). 

Barrero, J. M., Bloom, N., & Davis, S. J. (2023). The evolution of work from 
home. Journal of Economic Perspectives, 37(4), 23-49. 

Barro, R. J., & Ursúa, J. F. (2008). Macroeconomic crises since 1870 (No. w13940). 
National Bureau of Economic Research. 

Barsky, R. B., & Kilian, L. (2002). Oil and the macroeconomy since the 
1970s. Journal of Economic Perspectives, 18(4), 115-134. 

Baruffaldi, S., van Beuzekom, B., Dernis, H., Harhoff, D., Rao, N., Rosenfeld, D., & 
Squicciarini, M. (2020). Identifying and measuring developments in artificial 
intelligence: Making the impossible possible. 



Bergeaud, A., & Verluise, C. (2024). A new dataset to study a century of innovation 
in Europe and in the US. Research Policy, 53(1), 104903. 

Bergeaud, A., & Verluise, C. (2023). Identifying technology clusters based on 
automated patent landscaping. Plos one, 18(12), e0295587. 

Bergeaud, A., Guillouzouic, A., Henry, E., & Malgouyres, C. (2022b). From public 
labs to private firms: magnitude and channels of R&D spillovers. 

Bergeaud, A, Gozen, R. and Van Reenen, J. (2023) Mapping International 
Technological Trajectories: Evidence from Multiple Patent Offices over Four 
Centuries. Mimeo LSE. 

Bergeaud, A., & Lepetit, M. (2020). RESEARCH PROGRAM CH. DUPIN. 

Bergeaud, A., & Ray, S. (2020). The macroeconomics of teleworking. Economic 
research, 231, 2. 

Bergeaud, A., Cette, G., & Stary, J. (2022a). Recruitment Difficulties and Firms’ 
Characteristics: An Analysis of French Company Data. Economie et 
Statistique/Economics and Statistics, (534-35), 43-59. 

Bergeaud, A., Cette, G., & Drapala, S. (2023). Telework and Productivity Before, 
During and After the COVID-19 Crisis. Economie et Statistique/Economics and 
Statistics, 539, 73-89. 

Bergeaud, A., Cette, G., & Lecat, R. (2016). Productivity trends in advanced 
countries between 1890 and 2012. Review of Income and Wealth, 62(3), 420-444. 

Bergeaud, A., Cette, G., & Lecat, R. (2017). Total factor productivity in advanced 
countries: A long-term perspective. International Productivity Monitor, (32), 6. 

Bianchini, N. & Ancona, L. (2023) Artificial intelligence: Europe needs to start 
dreaming again. Schuman Papers n°728. 

Bilal, A., & Rossi-Hansberg, E. (2023). Anticipating climate change across the United 
States (No. w31323). National Bureau of Economic Research w31323. 

Bijnens, G., Anyfantaki, S., Colciago, A., De Mulder, J., Falck, E., Labhard, V., 
Lopez-Garcia, P., Lourenço, N., Meriküll, J., Parker, M., Röhe, O., Schroth, J., 
Schulte, P. & Strobel, J. (2024). The impact of climate change and policies on 
productivity. ECB Occasional Paper, (2024/340). 

Blanchard, O. (2002). The economic future of Europe. Journal of Economic 
Perspectives, 18(4), 3-26. 

Bloom, N., & Van Reenen, J. (2007). Measuring and explaining management 
practices across firms and countries. The quarterly journal of Economics, 122(4), 
1351-1408. 



Bloom, N., Sadun, R., & Reenen, J. V. (2012). Americans do IT better: US 
multinationals and the productivity miracle. American Economic Review, 102(1), 167-
201. 

Bloom, N., Liang, J., Roberts, J., & Ying, Z. J. (2015). Does working from home 
work? Evidence from a Chinese experiment. The Quarterly journal of 
economics, 130(1), 165-218. 

Bloom, N., Van Reenen, J., & Williams, H. (2019). A toolkit of policies to promote 
innovation. Journal of economic perspectives, 33(3), 163-184. 

Bloom, N., Jones, C. I., Van Reenen, J., & Webb, M. (2020). Are ideas getting 
harder to find? American Economic Review, 110(4), 1104-1144. 

Bloom, N., Bunn, P., Mizen, P., Smietanka, P., & Thwaites, G. (2023). The impact of 
COVID-19 on productivity. Review of Economics and Statistics, 1-45. 

Bontadini, F., Corrado, C., Haskel, J., Iommi, M., & Jona-Lasinio, C. (2023). 
EUKLEMS & INTANProd: industry productivity accounts with intangibles. Sources of 
growth and productivity trends: methods and main measurement challenges, Luiss 
Lab of European Economics, Rome. 

Bresnahan, T. F., & Malerba, F. (1997). Industrial dynamics and the evolution of 
firms' and nations' competitive capabilities in the world computer industry. CESPRI. 

Bundesbank (2024). Development in euro area business dynamism. Monthly Report 
– March 2024. 

Brynjolfsson, E., Rock, D., & Syverson, C. (2021). The productivity J-curve: How 
intangibles complement general purpose technologies. American Economic Journal: 
Macroeconomics, 13(1), 333-372. 

Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at work (No. 
w31161). National Bureau of Economic Research. 

Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of 
temperature on economic production. Nature, 527(7577), 235-239. 

Cazzaniga, M., Jaumotte, F., Li, L., Melina, G., Panton, A. J., Pizzinelli, C., Rockall, 
E. & Tavares, M. M. (2024). Gen-AI: Artificial Intelligence and the Future of 
Work. Staff Discussion Notes, 2024(001). 

Cervantes, M., Criscuolo, C., Dechezleprêtre, A., & Pilat, D. (2023). Driving low-
carbon innovations for climate neutrality. 

Cette, G., Devillard, A., & Spiezia, V. (2022). Growth factors in developed countries: 
A 1960–2019 growth accounting decomposition. Comparative Economic Studies, 1-
27. 



Cette, G., Drapala, S., & Lopez, J. (2023). The circular relationship between 
productivity and hours worked: A long-term analysis. Comparative Economic 
Studies, 65(4), 650-664. 

Cohen, A. J., & Harcourt, G. C. (2003). Retrospectives whatever happened to the 
Cambridge capital theory controversies? Journal of Economic Perspectives, 17(1), 
199-214. 

Criscuolo, C., Gal, P., Leidecker, T., Losma, F., & Nicoletti, G. (2023). Les liens entre 
télétravail et productivité pendant et après la pandémie de Covid-19/The Role of 
Telework for Productivity During and Post COVID-19. Economie et 
Statistique, 539(1), 53-75. 

Criscuolo, C. (2021). Productivity and Business Dynamics through the lens of 
COVID-19: the shock, risks and opportunities. Beyond the pandemic: the future of 
monetary policy, 117. 

David, P. A. (1990). The dynamo and the computer: an historical perspective on the 
modern productivity paradox. The American Economic Review, 80(2), 355-361. 

Delgado, M., Porter, M. E., & Stern, S. (2010). Clusters and 
entrepreneurship. Journal of economic geography, 10(4), 495-518. 

Dell, M., Jones, B. F., & Olken, B. A. (2012). Temperature shocks and economic 
growth: Evidence from the last half century. American Economic Journal: 
Macroeconomics, 4(3), 66-95. 

Dell'Acqua, F., McFowland, E., Mollick, E. R., Lifshitz-Assaf, H., Kellogg, K., 
Rajendran, S., Krayer, L., Candelon, F. & Lakhani, K. R. (2023). Navigating the 
jagged technological frontier: Field experimental evidence of the effects of AI on 
knowledge worker productivity and quality. Harvard Business School Technology & 
Operations Mgt. Unit Working Paper, (24-013). 

Demirer, M., Hernández, D. J. J., Li, D., & Peng, S. (2024). Data, Privacy Laws and 
Firm Production: Evidence from the GDPR (No. w32146). National Bureau of 
Economic Research. 

De Ridder, M. (2024). Market power and innovation in the intangible 
economy. American Economic Review, 114(1), 199-251. 

Devulder, A, Ducoudré, B, Lemoigne, M & Zubert, T (2024). Comment expliquer les 
pertes de productivité observées en France depuis la période pré-Covid? Bulletin de 
la Banque de France 251/1. 

Dingel, J. I., & Neiman, B. (2020). How many jobs can be done at home?  Journal of 
public economics, 189, 104235. 

Doshi, A. R., & Hauser, O. (2023). Generative artificial intelligence enhances 
creativity. Available at SSRN. 

Dyevre, A. (2023). Public R&D spillovers and productivity growth. Working paper. 



Eaton, J., & Kortum, S. (1999). International technology diffusion: Theory and 
measurement. International Economic Review, 40(3), 537-570. 

ECB (2020). Financial Integration and Structure in the Euro Area. 

Eichengreen, B. J. (1993). Reconstructing Europe's trade and payments: the 
European Payments Union. University of Michigan Press. 

Eichengreen, B. (2006). The European economy since 1945: coordinated capitalism 
and beyond. Princeton University Press. 

Eloundou, T., Manning, S., Mishkin, P., & Rock, D. (2023). Gpts are gpts: An early 
look at the labor market impact potential of large language models. arXiv preprint 
arXiv:2303.10130. 

Felten, E., Raj, M., & Seamans, R. (2021). Occupational, industry, and geographic 
exposure to artificial intelligence: A novel dataset and its potential uses. Strategic 
Management Journal, 42(12), 2195-2217. 

Felten, E., Raj, M., & Seamans, R. (2023). How will Language Modelers like 
ChatGPT Affect Occupations and Industries?  arXiv preprint arXiv:2303.01157. 

Ferguson Jr, R. W., & Wascher, W. L. (2004). Distinguished lecture on economics in 
Government: lessons from past productivity booms. Journal of Economic 
Perspectives, 18(2), 3-28. 

Fernald, J. G., Inklaar, R., & Ruzic, D. (2023, February). The productivity slowdown 
in advanced economies: common shocks or common trends? Federal Reserve Bank 
of San Francisco. 

Fernald, J. G. (2015). Productivity and Potential Output before, during, and after the 
Great Recession. NBER macroeconomics annual, 29(1), 1-51. 

Fuest, C., Gros, D., Mengel, P., Presidente, G. and Tirole, J. (2024) How to Escape 
the Middle Technology Trap A Report by the European Policy Analysis Group. 

Gal, P., Nicoletti, G., von Rüden, C., Sorbe, S., & Renault, T. (2019). Digitalization 
and productivity: in search of the holy grail-firm-level empirical evidence from 
European countries. International Productivity Monitor, 37(Fall), 39-71. 

Galor, O. (2005). From stagnation to growth: unified growth theory. Handbook of 
economic growth, 1, 171-293. 

Garcia-Macia, D. (2017). The financing of ideas and the great deviation (No. 
2017/176). International Monetary Fund. 

Gayer, C., Reuter, A., Thum-Thysen, A., & Verwey, M. (2024) Vulnerabilities of the 
labour market: A new survey-based measure of labour hoarding in the EU. VoxEu 
Column (7 Mar 2024). 

Gmyrek, P., Berg, J., & Bescond, D. (2023). Generative AI and Jobs: A global 
analysis of potential effects on job quantity and quality. ILO Working Paper, 96. 



Goldin, I., Koutroumpis, P., Lafond, F., & Winkler, J. (2024). Why is productivity 
slowing down? Journal of Economic Literature, 62(1), 196-268. 

Gordon, R. J. (1999). US economic growth since 1870: one big wave?  American 
Economic Review, 89(2), 123-128. 

Gordon, R. J. (2012). Is US economic growth over? Faltering innovation confronts 
the six headwinds (No. w18315). National Bureau of Economic Research. 

Gordon, R. (2017). The rise and fall of American growth: The US standard of living 
since the civil war. Princeton university press.Gordon, R. J., & Sayed, H. (2019). The 
industry anatomy of the transatlantic productivity growth slowdown (No. w25703). 
National Bureau of Economic Research. 

Griliches, Z. (1998). Patent statistics as economic indicators: a survey. In R&D and 
productivity: the econometric evidence (pp. 287-343). University of Chicago Press. 

Gross, D. P., & Sampat, B. N. (2023). America, jump-started: World War II R&D and 
the takeoff of the US innovation system. American Economic Review, 113(12), 3323-
3356. 

Guerini, M., Nesta, L., Ragot, X., & Schiavo, S. (2024). Zombification of the 
economy? Assessing the effectiveness of French government support during 
COVID-19 lockdown. Journal of Economic Behavior & Organization, 218, 263-280. 

Haščič, I., & Migotto, M. (2015). Measuring environmental innovation using patent 
data. 

Hall, B. H., & Lerner, J. (2010). The financing of R&D and innovation. In Handbook of 
the Economics of Innovation (Vol. 1, pp. 609-639). North-Holland. 

Hamilton, J. D. (1983). Oil and the macroeconomy since World War II. Journal of 
political economy, 91(2), 228-248. 

Hausman, N. (2022). University innovation and local economic growth. Review of 
Economics and Statistics, 104(4), 718-735. 

Herrigel, G. (1997). Industrial constructions: The sources of German industrial 
power (Vol. 9). Cambridge University Press. 

Hu, A. G., & Jefferson, G. H. (2009). A great wall of patents: What is behind China's 
recent patent explosion?  Journal of Development Economics, 90(1), 57-68. 

IEA (1982) World Energy Outlook 1982, International Energy Agency, Paris. 

Jones, C. I. (2002). Sources of US economic growth in a world of ideas. American 
economic review, 92(1), 220-239. 

Jones, C. I. (2023a). The Outlook for Long-Term Economic Growth (No. w31648). 
National Bureau of Economic Research. 



Jones, C. I. (2023b). Recipes and economic growth: A combinatorial march down an 
exponential tail. Journal of Political Economy, 131(8), 1994-2031. 

Jorgenson, D. W. (1984). The role of energy in productivity growth. The Energy 
Journal, 5(3), 11-26. 

Jorgenson, D. W. (2001). Information technology and the US economy. American 
Economic Review, 91(1), 1-32. 

Kantor, S., & Whalley, A. T. (2023). Moonshot: Public R&D and growth (No. 
w31471). National Bureau of Economic Research. 

Kelly, B., Papanikolaou, D., Seru, A., & Taddy, M. (2021). Measuring technological 
innovation over the long run. American Economic Review: Insights, 3(3), 303-320. 

Kiszewski, A. E., Cleary, E. G., Jackson, M. J., & Ledley, F. D. (2021). NIH funding 
for vaccine readiness before the COVID-19 pandemic. Vaccine, 39(17), 2458-2466. 

Lalinsky, T., Anastasatou, M., Anyfantaki, S., Benkovskis, K., Bergeaud, A., Bun, M., 
and cohautors (2024). The impact of the COVID-19 pandemic and policy support on 
productivity. 

Leduc, S., & Wilson, D. J. (2023, July). Climate Change and the Geography of the 
US Economy. Federal Reserve Bank of San Francisco. 

LeMoigne, M. (2020). Exploring the ‘Fissured workplace’: Internal job ladders’ 
fragmentation and its effect on plants and workers. Working Paper. 

Lesterquy, P., Stojanovic, E., Dekoninck, H. & Zory, J. (2024) Baisse de la 
productivité du travail dans l’industrie en France en 2023: un constat et des leviers 
d’action. Bulletin de la Banque de France #251/2. 

Letta, E. (2024). Much More Than a Market-Speed, Security, Solidarity: Empowering 
the Single Market to deliver a sustainable future and prosperity for all EU Citizens. 

Li, N & Noureldin, D. (2024) World Must Prioritize Productivity Reforms to Revive 
Medium-Term Growth. IMF Blog, April 2024. 

Lopez-Garcia, P., and Szörfi, B. (2021). “Key factors behind productivity trends in 
euro area countries”. Economic Bulletin Articles, 7/2021. 

Maddison, A. (2006). The world economy. OECD publishing. 

Madsen, J. B. (2010). The anatomy of growth in the OECD since 1870. Journal of 
Monetary Economics, 57(6), 753-767. 

Marx, M., & Fuegi, A. (2020). Reliance on science: Worldwide front‐page patent 
citations to scientific articles. Strategic Management Journal, 41(9), 1572-1594. 

Marx, M., & Fuegi, A. (2022). Reliance on science by inventors: Hybrid extraction of 
in‐text patent‐to‐article citations. Journal of Economics & Management 
Strategy, 31(2), 369-392. 



Maslej, N., Fattorini, L., Perrault, R., Parli, V., Reuel, A., Brynjolfsson, E., 
Etchemendy, J., Ligett, K., Lyons, T., Manyika, J., Niebles, J.C., Shoham, Y., Wald, 
R. & Clark, J. (2024) “The AI Index 2024 Annual Report,” AI Index Steering 
Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA, April 
2024. 

Melitz, M. J., & Polanec, S. (2015). Dynamic Olley‐Pakes productivity decomposition 
with entry and exit. The Rand journal of economics, 46(2), 362-375. 

Mohnen, P., & Hoareau, C. (2003). What type of enterprise forges close links with 
universities and government labs? Evidence from CIS 2. Managerial and decision 
economics, 24(2‐3), 133-145. 

Nordhaus, W. D. (1996). Do real-output and real-wage measures capture reality? 
The history of lighting suggests not. In The economics of new goods (pp. 27-70). 
University of Chicago Press. 

Noy, S., & Zhang, W. (2023). Experimental evidence on the productivity effects of 
generative artificial intelligence. Science, 381(6654), 187-192. 

OECD (2016). Economic Policy Reforms 2016-Going for Growth Interim Report. 
OECD Publishing. 

OECD (2019), Going Digital: Shaping Policies, Improving Lives, OECD Publishing, 
Paris. 

Owen, G. (2012). Industrial policy in Europe since the Second World War: what has 
been learnt? (No. 1/2012). ECIPE occasional paper. 

Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of ai on 
developer productivity: Evidence from github copilot. arXiv preprint 
arXiv:2302.06590. 

Philippon, T. (2019). The great reversal: How America gave up on free markets. 
Harvard University Press. 

Pizzinelli, C., Panton, A., Mendes Tavares, M., Cazzaniga, M., & Li, L. (2023). Labor 
Market Exposure to AI: Cross-country Differences and Distributional Implications. 

Prados De La Escosura, L. (2003). El progreso económico de España: 1850-2000. 
Fundación BBVA (Madrid). 

Prescott, E. C. (2004). Why do Americans work so much more than Europeans? 
NBER working paper #10316. 

Rachel, L. (2022). Leisure-enhancing technological change. Mimeo, London School 
of Economics. 

Schivardi, F., & Schmitz, T. (2020). The IT revolution and southern Europe’s two lost 
decades. Journal of the European Economic Association, 18(5), 2441-2486. 

https://doi.org/10.1787/9789264312012-en


Schnabel, I. (2024) “From laggard to leader? Closing the euro area’s technology 
gap”. Inaugural lecture of the EMU Lab 16 February 2024.  

Schoenegger, P., Park, P. S., Karger, E., & Tetlock, P. E. (2024). AI-Augmented 
Predictions: LLM Assistants Improve Human Forecasting Accuracy. arXiv preprint 
arXiv:2402.07862. 

Schurr, S. H., & Netschert, B. C. (1960). Energy in the American economy, 1850-
1975. John Hopkins Press. 

Schurr, S. H. (1982). Energy efficiency and productive efficiency: some thoughts 
based on American experience. The Energy Journal, 3(3), 3-14. 

Servan-Schreiber, J. J. (1967). Le défi américain. DeNoel, Paris. 

Smil, V. (2010) Energy Transitions: History, Requirements, Prospects. 

Smits, J. P., Horlings, E., & Van Zanden, J. L. (2000). Dutch GNP and its 
components, 1800-1913. 

Squicciarini, M. P., & Voigtländer, N. (2015). Human capital and industrialization: 
Evidence from the age of enlightenment. The Quarterly Journal of 
Economics, 130(4), 1825-1883. 

Squicciarini, M., Dernis, H., & Criscuolo, C. (2013). Measuring patent quality: 
Indicators of technological and economic value. OECD Publishing. 

Strauss, D, Fleming, S., Romei, V. and Arnold, V. (2024) “Europe faces 
‘competitiveness crisis’ as US widens productivity gap”. Financial Times March 9 
2024. 

Svanberg, M., Li, W, Fleming, M., Goehring, B. & Thompson, N. (2024). Beyond AI 
Exposure: Which Tasks are Cost-Effective to Automate with Computer Vision? 
Working paper FutureTech MIT. 

Thompson, N. C., Greenewald, K., Lee, K., & Manso, G. F. (2020). The 
computational limits of deep learning. arXiv preprint arXiv:2007.05558. 

Valero, A., & Van Reenen, J. (2019). The economic impact of universities: Evidence 
from across the globe. Economics of Education Review, 68, 53-67. 

Verluise, C. & De Rassenfosse, G. (2020) PatCit: A Comprehensive Dataset of 
Patent Citations. Available in Zenodo (doi 10.5281/zenodo.3710994). 

Weitzman, M. L. (1998). Recombinant growth. The Quarterly Journal of 
Economics, 113(2), 331-360. 

Yergin, D. (2011). The prize: The epic quest for oil, money & power. Simon and 
Schuster. 

https://www.ecb.europa.eu/press/key/date/2024/html/ecb.sp240216%7Edf6f8d9c31.en.html
https://www.ecb.europa.eu/press/key/date/2024/html/ecb.sp240216%7Edf6f8d9c31.en.html
https://www.ft.com/content/22089f01-8468-4905-8e36-fd35d2b2293e
https://www.ft.com/content/22089f01-8468-4905-8e36-fd35d2b2293e


Appendix 

Chart A1 
Growth accounting – comparison with the US 

(in %) 

 

  



 

Sources: Long Term Productivity Project (Bergeaud et al., 2016, updated from here). 
Notes: These charts replicate Chart 2b for Germany, France, Italy, Spain and Netherlands. 

http://www.longtermproductivity.com/


Chart A2 
TFP in the euro area 1890-2022 

a) TFP in the Euro area 
(logarithmic scale) 

 

b) TFP in 5 countries 
(logarithmic scale) 

 

Sources: Long Term Productivity Project (Bergeaud et al., 2016, updated from here). 
Notes: TFP is defined as a Solow residuals from dividing the level of GDP in constant US dollars of 2015 by a weighted geometrical 
mean of total hours worked and the physical stock of capital. 

http://www.longtermproductivity.com/


Chart A3 
Federal fundings in Energy and Patenting in Coal 

(%) 

 

Sources: Dyèvre (2024) for chart A3a and Google Patent Public Dataset for chart A3b  
Notes: Chart A3a reports the composition of outlays for the conduct of R&D labelled as energy over the total excluding defence and is 
originated from the White House Historical Table. Chart A3b plots the share of patents with an IPC code starting with C10J3: 
“Production of gases containing carbon monoxide and hydrogen”. 



Chart A4 
Labour productivity and deviation from trend by sector 

(in %) 

 

  



 



Sources: Eurostat Quarterly National Accounts. 
Notes: These graphs replicate Chart7b separately for each sector presented in Table 3. 

Chart A5 
Within-Between decomposition of labour productivity in the euro area 

(in %) 

 

Sources: Eurostat Quarterly National Accounts  
Notes: Decomposition of labour productivity into a within component and a between component following the Olley and Pakes (1996) 
decomposition presented in equation (3). Each of the two terms are taken in logarithm and residualised on their 2010q1-2019q4 trend. 

Chart A6 
Monthly production and energy intensity 

(index (2015 = 100)) 

 

Sources: Eurostat short-term indicator and Eurostat energy statistics 
Notes: 24 2-digit manufacturing sectors are split into 2 groups of equal size based on their consumption of electricity and heat in 2019 
divided by their value added. For the two groups, we calculate the unweighted average index of production every month. 



Chart A7 
TFP in the manufacturing sector 

(index, 2015 = 100) 

 

Sources: EU Klems 
Notes: Index of TFP in the euro area is calculated by aggregating Germany, France, Italy, Spain, the Netherlands, Austria and Finland 
using nominal value added weights. 

Chart A8 
Number of AI academic papers weighted by citations by origin of the authors 

(index, 2015 = 100) 

 

Sources: Country Activity Tracker of the Emerging Technology Observatory (March 2024’s version) 
Notes: Number of papers published in AI since 2013, weighted by citation received as of 2024. The allocation of authors is based on 
their affiliation at the time the paper was published. 



Table A1 
Top 10 most AI cited papers 

Rank Title Affiliations 

1 Deep Residual Learning for Image Recognition  Microsoft Research 

2 Adam: A Method for Stochastic Optimization University of Amsterdam, OpenAI 

3 Very Deep Convolutional Networks for Large-Scale Image Recognition  University of Oxford 

4 Attention is All You Need Google, University of Toronto 

5 BERT: Pre-training of Deep Bidirectional Transformers for Language 
Understanding  

Google 

6 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal 
Networks 

Microsoft, University of Sciences and 
Technology of Hefei (China) 

7 Going Deeper with Convolutions  Google, University of North Carolina, 
University of Michigan 

8 Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift 

Google 

9 Fully convolutional networks for semantic segmentation UC Berkeley 

10 Dropout: a simple way to prevent neural networks from overfitting University of Toronto 

Sources: Country Activity Tracker of the Emerging Technology Observatory (March 2024’s version). 
Notes: Affiliation of authors have been retrieved by looking at the first page of each published version. 

Table A2 
Prompt used for GPT4 

Task Assessment 

Consider the full range of what Generative AI can currently achieve and what it is projected to do efficiently over a 
reasonable time horizon. This includes advancements in automation, data analysis, natural language processing, creative 
generation, and other emerging technologies. Take also into consideration what AI cannot do efficiently and the limitation 
of other related technologies such as robotics. 

Based on AI Capabilities described above, analyse the task '{description}' in the following dimension: 

• Substitution Potential: Assess the extent to which AI and generative AI could potentially replace human labour in this task. 

• Consider factors like technological feasibility, complexity, ethical considerations, and practical limitations. 

Instructions: 

• Provide a score ranging from 0 to 1 with 2 decimals. No explanations are required. Only the scores should be given, 
representing the substitution potential of AI for the task respectively. 

Score: 
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