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Abstract

This paper presents first steps toward robust models for crisis prediction. We conduct a horse race of
conventional statistical methods and more recent machine learning methods as early-warning models.
As individual models are in the literature most often built in isolation of other methods, the exercise is
of high relevance for assessing the relative performance of a wide variety of methods. Further, we test
various ensemble approaches to aggregating the information products of the built models, providing
a more robust basis for measuring country-level vulnerabilities. Finally, we provide approaches to
estimating model uncertainty in early-warning exercises, particularly model performance uncertainty
and model output uncertainty. The approaches put forward in this paper are shown with Europe as a
playground. Generally, our results show that the conventional statistical approaches are outperformed
by more advanced machine learning methods, such as k-nearest neighbors and neural networks, and
particularly by model aggregation approaches through ensemble learning.

Keywords: financial stability, early-warning models, horse race, ensembles, model uncertainty
JEL codes: E44, F30, G01, G15, C43
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Non-technical summary

The repeated occurrence of financial crises at the turn of the 21st century has stimulated theoretical
and empirical work on the phenomenon, not least early-warning models. Yet, the history of these
models goes far back. Despite not always referring to macroprudential analysis, the early days of risk
analysis relied on assessing financial ratios by hand rather than with advanced statistical methods
on computers. During the 1960s, discriminant analysis emerged, being the most dominantly used
technique until the 1980s. After the 1980s, DA has mainly been replaced by logit/probit models.
Applications of these models range from early models for currency crises to recent ones on systemic
financial crises. In parallel, the simple yet intuitive signal extraction approach that simply finds
thresholds on individual indicators has gained popularity. With technological advances, a soar in data
availability and a thriving need for progress in systemic risk identification, a new group of flexible and
non-linear machine learning techniques have been introduced to various forms of financial stability
surveillance. Recent literature indicates that these novel approaches hold promise for systemic risk
identification because of their ability to identify and map complex dependencies. The premise of
difference in performance relates to how methods treat two aspects: individual vs. multiple risk
indicators and linear vs. non-linear relationships. While the simplest approaches linearly link individual
indicators to crises, the more advanced techniques account for both multiple indicators and different
types of non-linearity, such as the mapping of an indicator to crises and interaction effects between
multiple indicators.

Despite the fact that some methods hold promise over others, the use and ranking of them is not an
unproblematic task. This paper touches upon three problem areas. First, there are few objective and
thorough comparisons of conventional and novel methods, and thus neither unanimity on an overall
ranking of methods nor on a single best-performing method. Second, given an objective comparison,
it is still unclear whether one method can be generalized to outperform others on every single dataset.
It is not seldom that different approaches capture different types of vulnerabilities, and hence can be
seen to complement each other. Despite potential differences in performance, this would contradict the
existence of one single best-in-class method, and instead suggest value in simultaneous use of multiple
approaches, or so-called ensembles. Yet, the early-warning literature lacks a structured approach to
the use of multiple methods. Third, even if one could identify the best-performing methods and come
up with an approach to make use of multiple methods simultaneously, the literature on early-warning
models lacks measures of statistical significance or uncertainty. Although crisis probabilities may
breach a threshold, there is no work testing the possibility of an exceedance to have occurred due to
sampling error alone. Likewise, little or no attention has been given to testing equality of two methods’
early-warning performance or individual probabilities and thresholds.

This paper aims at providing a solution to all of the three above mentioned challenges. First,
we conduct an objective horse race of methods for early-warning models, including a large number
of common techniques from conventional statistics and machine learning, with a particular focus on
the problem as a classification task. The objectivity of the exercise derives from identical sampling
into in-sample and out-of-sample data for each method, identical model selection, and identical model
specification. For generalizability and comparability, we make use of cross-validation and recursive
real-time estimation to assure that and assess how results generalize to out-of-sample data. The two
exercises differ in their sampling of data, particularly the in-sample and out-of-sample partitions used
for each estimation. While cross-validation is common in machine learning and allows an efficient use of
small samples, exercises may benefit from the fact that data are sampled randomly despite most likely
exhibiting time dependence. The recursive exercises, on the contrary, account for time dependence
in data by strictly using historical samples for out-of-sample predictions, which nevertheless requires
more data, particularly in the time-series dimension. These two exercises allow exploring performance
across methods, and how that is impacted by the evaluation exercise.

Second, acknowledging the fact that no one method can be generalized to outperform all others, we
put forward two strands of approaches for the simultaneous use of multiple methods. A natural start-
ing point is to collect model signals from all methods in the horse race, in order to assess the number
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of methods that signal for a given country at a given point in time. Two structured approaches involve
choosing the best method (in-sample) for out-of-sample use, and relying on the majority vote of all
methods together. Then, moving toward more standard ensemble methods for the use of multiple meth-
ods, we combine model output probabilities into an arithmetic mean of all methods. With potential
further gains in aggregation, we take a performance-weighted mean by letting methods with better in-
sample performance contribute more to the aggregated model output. Third, we provide approaches
to testing statistical significance in early-warning exercises, including both model performance and
output uncertainty. With the sampling techniques of repeated cross-validation and bootstrapping, we
estimate properties of the performance of models, and may hence test for statistical significance when
ranking models. Further, through sampling techniques, we may also use the variation in model output
and thresholds to compute properties for capturing their reliability for individual observations. Beyond
confidence bands for representation of uncertainty, this also provides a basis for hypothesis testing,
in which an interest of importance ought to be whether a model output is statistically significantly
different from the cut-off threshold.

The approaches put forward in this paper are illustrated in a European setting, for which we use
a large number of macro-financial indicators for 15 European economies since the 1980s. First, we
present rankings of all methods for the objective horse race, after which we proceed to aggregation and
statistical significance tests. Generally, our results show that the classical approaches are outperformed
by more advanced machine learning methods, such as k-nearest neighbors and neural networks, in terms
of the Usefulness and Area Under the Curve (AUC) measures. This holds for both horse race exercises.
While several of the differences in rankings are statistically insignificant, a particular finding is the
outperformance of ensemble models, which is significant in both exercises. More importantly, the
objective exercises in this paper provide strong evidence that early-warning modeling in general is a
useful tool to identify systemic risk at an early stage.
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1. Introduction

Systemic risk measurement lies at the very core of macroprudential oversight, yet anticipating finan-
cial crises and issuing early warnings is intrinsically difficult. The literature on early-warning models
has, nevertheless, shown that it is no impossible task. This paper provides a three-fold contribution to
the early-warning literature: (i) a horse race of early-warning methods, (ii) approaches to aggregating
model output from multiple methods, and (iii) model performance and output uncertainty.

The repeated occurrence of financial crises at the turn of the 21st century has stimulated theoretical
and empirical work on the phenomenon, not least early-warning models. Yet, the history of these
models goes far back. Despite not always referring to macroprudential analysis, the early days of risk
analysis relied on assessing financial ratios by hand rather than with advanced statistical methods on
computers (e.g., Ramser and Foster [66]). After Beaver’s [9] seminal work on a univariate approach to
discriminant analysis (DA), Altman [4] further developed DA for multivariate analysis. Even though
DA suffers from frequently violated assumptions like normality of the indicators, it was the dominant
technique until the 1980s. Frank and Cline [38] and Taffler and Abassi [83], for example, used DA for
predicting sovereign debt crises. After the 1980s, DA has mainly been replaced by logit/probit models.
Applications of these models range from the early model for currency crises by Frankel and Rose [39]
to a recent one on systemic financial crises by Lo Duca and Peltonen [62]. In parallel, the simple yet
intuitive signal extraction approach that simply finds thresholds on individual indicators has gained
popularity, again ranging from early work on currency crises by Kaminsky et al. [51] to later work
on costly asset booms by Alessi and Detken [1]. Yet, these methods suffer from assumptions violated
more often than not, such as fixed distributional relationship between the indicators and the response
(e.g., logistic/normal), and the absence of interactions between indicators (e.g., non-linearities in crisis
probabilities with increases in fragilities). With technological advances, a soar in data availability and a
thriving need for progress in systemic risk identification, a new group of flexible and non-linear machine
learning techniques have been introduced to various forms of financial stability surveillance. Recent
literature indicates that these novel approaches hold promise for systemic risk identification (e.g., as
reviewed in Demyanyk and Hasan [24] and Sarlin [71]).1 The premise of difference in performance
relates to how methods treat two aspects: individual vs. multiple risk indicators and linear vs. non-
linear relationships. While the simplest approaches linearly link individual indicators to crises, the
more advanced techniques account for both multiple indicators and different types of non-linearity,
such as the mapping of an indicator to crises and interaction effects between multiple indicators.

Despite the fact that some methods hold promise over others, the use and ranking of them is not an
unproblematic task. This paper touches upon three problem areas. First, there are few objective and
thorough comparisons of conventional and novel methods, and thus neither unanimity on an overall
ranking of methods nor on a single best-performing method. Though the horse race conducted among
members of the Macro-prudential Research Network of the European System of Central Banks aims
at a prediction competition, it does not provide a solid basis for objective performance comparisons
[3]. Even though disseminating information of models underlying discretionary policy discussion is
a valuable task, the panel of presented methods are built and applied in varying contexts. This
relates more to a horse show than a horse race. Second, given an objective comparison, it is still
unclear whether one method can be generalized to outperform others on every single dataset. It is
not seldom that different approaches capture different types of vulnerabilities, and hence can be seen
to complement each other. Despite potential differences in performance, this would contradict the
existence of one single best-in-class method, and instead suggest value in simultaneous use of multiple
approaches, or so-called ensembles. Yet, the early-warning literature lacks a structured approach to
the use of multiple methods. Third, even if one could identify the best-performing methods and come
up with an approach to make use of multiple methods simultaneously, the literature on early-warning
models lacks measures of statistical significance or uncertainty. Moving beyond the seminal work by

1See also a number of applications, such as Nag and Mitra [63], Franck and Schmied [37], Peltonen [64], Sarlin and
Marghescu [76], Sarlin and Peltonen [77], Sarlin [73] and Alessi and Detken [2].
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El-Shagi et al. [33], where the authors put forward approaches for assessing the null of whether or not
a model is useful, there is a lack of work estimating statistically significant differences in performance
among methods. Likewise, although crisis probabilities may breach a threshold, there is no work testing
the possibility of an exceedance to have occurred due to sampling error alone. While Hurlin et al. [47]
provide a general-purpose equality test for firms’ risk measures, little or no attention has been given to
testing equality of two methods’ early-warning performance or individual probabilities and thresholds.

This paper aims at providing a solution to all of the three above mentioned challenges. First,
we conduct an objective horse race of methods for early-warning models, including a large number
of common techniques from conventional statistics and machine learning, with a particular focus on
the problem as a classification task. The objectivity of the exercise derives from identical sampling
into in-sample and out-of-sample data for each method, identical model selection, and identical model
specification. For generalizability and comparability, we make use of cross-validation and recursive real-
time estimation to assure that and assess how results generalize to out-of-sample data. Rather than
an absolute ranking that could be generalized to any context, this provides evidence on the potential
in more advanced machine learning approaches in these types of exercises, as well as points to the im-
portance of using appropriate resampling techniques, such as accounting for time dependence. Second,
acknowledging the fact that no one method can be generalized to outperform all others, we put forward
two strands of approaches for the simultaneous use of multiple methods. A natural starting point is
to collect model signals from all methods in the horse race, in order to assess the number of methods
that signal for a given country at a given point in time. Two structured approaches involve choosing
the best method (in-sample) for out-of-sample use, and relying on the majority vote of all methods
together. Then, moving toward more standard ensemble methods for the use of multiple methods, we
combine model output probabilities into an arithmetic mean of all methods. With potential further
gains in aggregation, we take a performance-weighted mean by letting methods with better in-sample
performance contribute more to the aggregated model output. Third, we provide approaches to testing
statistical significance in early-warning exercises, including both model performance and output un-
certainty. With the sampling techniques of repeated cross-validation and bootstrapping, we estimate
properties of the performance of models, and may hence test for statistical significance when ranking
models. Further, through sampling techniques, we may also use the variation in model output and
thresholds to compute properties for capturing their reliability for individual observations. Beyond
confidence bands for representation of uncertainty, this also provides a basis for hypothesis testing,
in which an interest of importance ought to be whether a model output is statistically significantly
different from the cut-off threshold.

The approaches put forward in this paper are illustrated in a European setting, for which we use
a large number of macro-financial indicators for 15 European economies since the 1980s. First, we
present rankings of all methods for the objective horse race, after which we proceed to aggregation and
statistical significance tests. Generally, our results show that the classical approaches are outperformed
by more advanced machine learning methods, such as k-nearest neighbors and neural networks, in terms
of the Usefulness and Area Under the Curve (AUC) measures. This holds for both horse race exercises.
While several of the differences in rankings are statistically insignificant, a particular finding is the
outperformance of ensemble models, which is significant in both exercises. More importantly, the
objective exercises in this paper provide strong evidence that early-warning modeling in general is a
useful tool to identify systemic risk at an early stage.

This paper is organized as follows. In Section 2, we describe the used data, including indicators
and events, the methods for the early-warning models, and estimation strategies. Then, we present the
set-up for the horse race, as well as approaches for aggregating model output and computing model
uncertainty. In Section 4, we present results of the horse race, its aggregations, and model uncertainty
in a European setting. Finally, we conclude in Section 5.
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2. Data and methods

This section presents the data and methods used in the paper. Whereas the dataset covers both cri-
sis event definitions and vulnerability indicators, the methods include classification techniques ranging
from conventional statistical modeling to more recent machine learning algorithms.

2.1. Data

The dataset used in this paper has been collected with the aim of covering as many European
economies as possible. While a focus on similar economies might improve homogeneity in early-warning
models, we aim at collecting a dataset as large as possible for the data-demanding estimations. The data
used in this paper are quarterly and span from 1976Q1 to 2014Q3. The sample is an unbalanced panel
with 15 European Union countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden, and the United Kingdom. In
total, the sample includes 15 crisis events, which cover systemic banking crises. The dataset consists
of two parts: crisis events and vulnerability indicators. In the following, we provide a more detailed
description of the two parts.

Crisis events. The crisis events used in this paper are chosen as to cover country-level distress in the
financial sector. We are concerned with banking crises with systemic implications and hence mainly
rely on the IMF’s crisis event initiative by Laeven and Valencia [59]. Yet, as their database is partly
annual, we complement our events with starting dates from the quarterly database collected by the
European System of Central Banks (ESCB) Heads of Research Group, and as reported in Babecky
et al. [7]. The database includes banking, currency and debt crisis events for a global set of advanced
economies from 1970 to 2012, of which we only use systemic banking crisis events.2 In general, both of
the above databases are a compilation of crisis events from a large number of influential papers, which
have been complemented and cross-checked by ESCB Heads of Research. The paper with which the
events have been cross-checked include Kindleberger and Aliber [53], IMF [48], Reinhart and Rogoff
[67], Caprio and Klingebiel [19], Caprio et al. [20], and Kaminsky and Reinhart [50] among many
others.

Early-warning indicators. The second part of the dataset consists of a number of country-level vulner-
ability indicators. Generally, these cover a range of macro-financial imbalances. We include measures
covering asset prices (e.g., house and stock prices), leverage (e.g., mortgages, private loans and house-
hold loans), business cycle indicators (GDP and inflation), measures from the EU Macroeconomic
Imbalance Procedure (e.g., current account deficits and government debt), and the banking sector
(e.g., loans to deposits). In most cases, we have relied on the most commonly used transformation,
such as ratios to GDP or income, growth rates, and absolute and relative deviations from a trend. The
indicators are sourced from Eurostat, OECD, ECB Statistical Data Warehouse and the BIS Statistics.

For detrending, the trend is extracted using one-sided Hodrick–Prescott filter (HP filter). This
means that each point of the trend line corresponds to the ordinary HP trend calculated recursively
from the beginning of the series to each point in time. By doing this, we do not use future information
when calculating the trend, but rather use the information set available to the policymaker at each
point in time. The smoothness parameter of the HP filter is specified to be 400 000 as suggested by
Drehmann et al. [25]. This has been suggested to appropriately capture the nature of financial cycles
in quarterly data. Growth rates are defined to be annual, whereas we follow Lainà et al. [60] by using
both absolute and relative deviations from trend, of which the latter differs from the former by relating
the deviation to the value of the trend. The indicators used in this paper combine several sources for
broad coverage and for deriving ratios of appropriate variables, and are presented in Table 1. Their
descriptive statistics are shown in Table 2.

2To include events after 2012, as well as some minor amendments to the original event database by Babecky et al.
(2013), we rely on an update by the Countercyclical Capital Buffer Working Group within the ESCB.
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As proper use of data is essential in order to obtain an objective indication of the usefulness of
any modeling approach, a note regarding the relationship between crisis events and indicators is in
order. Whilst the uncertainty regarding the definitions of crisis events cannot be disputed, this holds
true for any empirical exercise. To visualize the relationship between the actual crisis events and the
indicators, as well as their lead time, we include time-series plots for each indicator from t−12 to t+ 8
around crisis occurrences in Figure A.1. The figure illustrates that patterns of several indicators, such
as the credit gap and asset price changes, for instance, take elevated values prior to crisis events, which
is indeed in line with the early-warning literature.

Table 1: A list of indicators.

 

Variable name Definition Transformation and additional info

House prices to income Nominal house prices and nominal disposable income per head Ratio, index based in 2010

Current account to GDP Nominal current account balance and nominal GDP Ratio

Government debt to GDP Nominal general government consolidated gross debt and nominal  GDP Ratio

Debt to service ratio Debt service costs and nominal income of households and non-financial 

corporations

Ratio

Loans to income Nominal household loans and gross disposable income Ratio

Credit to GDP Nominal total credit to the private non-financial sector and nominal GDP Ratio

Bond yield Real long-term government bond yield Level

GDP growth Real gross domestic product 1-year growth rate

Credit growth Real total credit to private non-financial sector 1-year growth rate

Inflation Real consumer price index 1-year growth rate

House price growth Real residential property price index 1-year growth rate

Stock price growth Real stock price index 1-year growth rate

Credit to GDP gap Nominal bank credit to the private non-financial sector and nominal GDP Absolute trend deviation, λ=400,000

House price gap Deviation from trend of the real residential property price index Relative trend deviation, λ=400,000

Table 2: Descriptive statistics of indicators.

 

Variable Observations Min Max Mean St. dev. Skew Kurtosis

House prices to income 2005 0.56 185.71 86.86 24.42 0.78 1.54

Current account to GDP 1698 -24.71 14.72 -0.13 5.79 -0.59 0.85

Government debt to GDP 1684 0.33 175.06 60.96 33.29 0.40 -0.12

Debt to service ratio 2367 0.66 118.10 22.28 16.31 3.28 12.40

Loans to income 1759 0.21 272.37 114.71 57.86 1.01 0.34

Credit to GDP 2468 0.69 458.30 127.20 61.70 1.64 3.99

GDP growth 2841 -18.79 15.72 2.53 3.26 -0.65 4.18

Bond yield 2453 -36.16 23.92 2.93 3.34 -1.35 13.13

Credit growth 2422 -13.98 39.14 4.83 5.99 0.76 2.13

Inflation 2933 -6.09 301.72 5.78 11.08 17.75 418.88

House price growth 2173 -41.92 62.22 1.88 8.53 0.76 4.51

Stock price growth 2288 -64.68 237.46 6.37 28.94 1.27 5.79

Credit to GDP gap 2438 -81.89 92.01 3.78 13.63 0.64 8.45

House price gap 2207 -41.90 46.63 1.30 13.72 0.21 0.65

2.2. Early warning as a classification problem
Early-warning models require evaluation criteria that account for the nature of the underlying

problem, which relates to low-probability, high-impact events. It is of central importance that the
evaluation framework resembles the decision problem faced by a policymaker. The signal evaluation
framework focuses on a policymaker with relative preferences between type I and II errors, and the
usefulness that she derives by using a model, in relation to not using it. In the vein of the loss-function
approach proposed by Alessi and Detken [1], the framework applied here follows an updated and
extended version in Sarlin [74].

To mimic an ideal leading indicator, we build a binary state variable Cn(h) ∈ {0, 1} for observation
n (where n = 1, 2, . . . , N) given a specified forecast horizon h. Let Cn(h) be a binary indicator that

ECB Working Paper 1900, April 2016 7



8

is one during pre-crisis periods and zero otherwise. For detecting events Cn using information from
indicators, we need to estimate the probability of being in a vulnerable state pn ∈ [0, 1]. Herein,
we make use of a number of different methods m for estimating pmn , ranging from the simple signal
extraction approach to more sophisticated techniques from machine learning. The probability pn is
turned into a binary prediction Bn, which takes the value one if pn exceeds a specified threshold
τ ∈ [0, 1] and zero otherwise. The correspondence between the prediction Bn and the ideal leading
indicator Cn can then be summarized into a so-called contingency matrix, as described in Table 3.

Table 3: A contingency matrix.

Actual class Cn

Pre-crisis period Tranquil period

Predicted class Pn

Signal
Correct call False alarm

True positive (TP) False positive (FP)

No signal
Missed crisis Correct silence

False negative (FN) True negative (TN)

The frequencies of prediction-realization combinations in the contingency matrix can be used for
computing measures of classification performance. A policymaker can be thought to be primarily con-
cerned with two types of errors: issuing a false alarm and missing a crisis. The evaluation framework de-
scribed below is based upon that in Sarlin [74] for turning policymakers’ preferences into a loss function,
where the policymaker has relative preferences between type I and II errors. While type I errors repre-
sent the share of missed crises to the frequency of crises T1 ∈ [0, 1] =FN/(TP+FN), type II errors rep-
resent the share of issued false alarms to the frequency of tranquil periods T2 ∈ [0, 1] =FP/(FP+TN).
Given probabilities pn of a model, the policymaker then finds an optimal threshold τ∗ such that her loss
is minimized. The loss of a policymaker includes T1 and T2, weighted by relative preferences between
missing crises (µ) and issuing false alarms (1 − µ). By accounting for unconditional probabilities of
crises P1 = Pr(C = 1) and tranquil periods P2 = Pr(C = 0) = 1− P1, as classes are not of equal size
and errors are scaled with class size, the loss function can be written as follows:

L(µ) = µT1P1 + (1− µ)T2P2. (1)

Further, the Usefulness of a model can be defined in a more intuitive manner. First, the absolute
Usefulness (Ua) is given by:

Ua(µ) = min(µP1, (1− µ)P2)− L(µ), (2)

which computes the superiority of a model in relation to not using any model. As the unconditional
probabilities are commonly unbalanced and the policymaker may be more concerned about the rare
class, a policymaker could achieve a loss of min(µP1, (1− µ)P2) by either always or never signaling a
crisis. This predicament highlights the challenge in building a Useful early-warning model: With a non-
perfect model, it would otherwise easily pay-off for the policymaker to always signal the high-frequency
class. Second, we can compute the relative Usefulness Ur as follows:

Ur(µ) =
Ua(µ)

min(µP1, (1− µ)P2)
, (3)

where Ua of the model is compared with the maximum possible usefulness of the model. That is, the
loss of disregarding the model is the maximum available Usefulness. Hence, Ur reports Ua as a share
of the Usefulness that a policymaker would gain with a perfectly-performing model, which supports
interpretation of the measure. It is worth noting that Ua better lends to comparisons over different µ.

Beyond the above measures, the contingency matrix may be used for computing a wide range of

ECB Working Paper 1900, April 2016 8



9

other quantitative measures.3 Receiver operating characteristics (ROC) curves and the area under the
ROC curve (AUC) are also used for comparing performance of early-warning models and indicators.
The ROC curve plots, for the complete range of τ ∈ [0, 1], the conditional probability of positives to
the conditional probability of negatives:

ROC =
Pr(P = 1 | C = 1)

1− Pr(P = 0 | C = 0)
.

2.3. Classification methods

The purpose of any classification algorithm is to identify to which of a set of classes a new obser-
vation belongs, based on one or more predictor variables. Classification is considered an instance of
supervised learning, where a training set of correctly identified observations is available. In this paper,
a number of probabilistic classifiers are used, whose outputs are probabilities indicating to which of the
qualitative classes an observation belongs. In our case, the dependent (or outcome) variable represents
the two classes of pre-crisis periods (1) and tranquil periods (0).

Generally, a classifier attempts to assign each observation to the most likely class, given its predictor
values. For the binary case, where there are only two possible classes, an optimal classifier (which
minimizes the error rate) predicts class one if Pr(Y = 1|X = x) > 0.5, and class zero otherwise. This
classifier is denoted as the Bayes classifier. Ideally, one would like to predict qualitative responses
using the Bayes classifier, but for real-world data, however, the conditional distribution of Y given X
is unknown. Thus, the goal of many approaches is to estimate this conditional distribution and classify
an observation to the category with the highest estimated probability. For real-world applications, it
may also be noted that the optimal threshold τ between classes is not always 0.5, but varies. This
optimal threshold may be a result of optimizing the above discussed Usefulness, and is examined in
further detail later in the paper.

This paper aims to gather a versatile set of different classification methods, from the simple approach
of signal extraction to the considerably more computationally intensive neural networks and support
vector machines. The methods used for deriving early-warning models have been put into context in
Figure 1 and papers applying these methods in an early-warning exercise have been reviewed in Table
4. The methods are presented in more detail below.

Signal extraction. The signal extraction approach introduced by Kaminsky et al. [51] simply analyzes
the level of an indicator, and issues a signal if the value exceeds a specified threshold. In order to issue
binary signals, we specify the threshold value as to optimize classification performance, which is herein
measured with relative Usefulness [50]. However, the key limitation of this approach is that it does not
enable any interaction between or weighting of indicators, while an advantage is that it demonstrates
a more direct measure of the importance and provides a ranking of each indicator.4 Despite this, it is
one of the most commonly applied early-warning techniques.

Linear Discriminant Analysis (LDA). LDA, introduced by Fisher [36], is a commonly used method
in statistics for expressing one dependent variable as a linear combination of one or more continuous
predictors. LDA assumes that the predictor variables are normally distributed, with a mean vector and
a common covariance matrix for all classes, and implements Bayes’ theorem to approximate the Bayes
classifier. LDA has been shown to perform well on small data sets, if the above-mentioned conditions
apply. Yet even though DA suffers from the frequently violated assumptions, it was the dominant
technique until the 1980s, after which it was oftentimes replaced by logit/probit models.

3Some of the commonly used evaluation measures include: Recall positives (or TP rate) = TP/(TP+FN), Recall
negatives (or TN rate) = TN/(TN+FP), Precision positives = TP/(TP+FP), Precision negatives = TN/(TN+FN),
Accuracy = (TP+TN)/(TP+TN+FP+FN), FP rate = FP/(FP+TN), and FN rate = FN/(FN+TP)

4We are aware of the multivariate signal extraction, but do not consider it herein as we judge logit analysis, among
others, to cover the idea of estimating weights for transforming multiple indicators into one output.
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Figure 1: A taxonomy of classification methods

Quadratic Discriminant Analysis (QDA). QDA is a variant of LDA, which estimates a separate covari-
ance matrix for each class (see, e.g., Venables and Ripley [86]). This causes the number of parameters
to estimate to rise significantly, but consequently results in a non-linear decision boundary. To the
best of our knowledge, QDA has not been applied for early-warning exercises at the country level.

Logit analysis. Much of the early-warning literature deals with models that rely on logit/probit regres-
sion. Logit analysis uses the logistic function to describe the probability of an observation belonging
to one of two classes, based on a regression of one or more continuous predictors. For the case with

one predictor variable, the logistic function is p(X) = eβ0+β1X

1+eβ0+β1X
. From this, it is obvious to extend

the function to the case of several predictors. Logit and probit models have frequently been applied
to predicting financial crises, as can be seen in an early review by Berg et al. [11]. However, the dis-
tributional (logistic/normal) assumption on the relationship between the indicators and the response
as well as the absence of interactions between variables may often be violated. Lo Duca and Peltonen
[62], for example, show that the probability of a crisis increases non-linearly as the number of fragilities
increase.

Logit LASSO. The LASSO (Least Absolute Shrinkage and Selection Operator) logistic regression (Tib-
shirani [84]) attempts to select the most relevant predictor variables for inference and is often applied
to problems with a large number of predictors. The method maximizes the log likelihood subject to a
bound on the sum of absolute values of the coefficients maxβl(β | y)− λ

∑
i | βi |, for which the | βi |

is penalized by the L1 norm. This implies that the LASSO sets some coefficients to equal zero, and
produces sparse models with a simultaneous variable selection. The optimal penalization parameter λ
is oftentimes chosen empirically via cross-validation. We are only aware of the use of the Logit LASSO
in this context in Lang et al. [61], wherein it is mainly used to identify risks in bank-level data, but
also aggregated to the country level for assessing risks in entire banking sectors.

Naive Bayes. In machine learning, the Naive Bayes method is one of the most common Bayesian
network methods (see e.g. Kohavi et al. [57]). Bayesian learning is based on calculating the probability
of each hypothesis (or relation between predictor and response), given the data. The method is called
’naive’ as it assumes that the predictor variables are conditionally independent. Consequently, the
method may give high weights to several predictors which are correlated, unlike the methods discussed
above, which balance the influence of all predictors. However, the method has been known to scale well
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to large problems. To the best of our knowledge, Naive Bayes has not been applied for early-warning
exercises at the country level.

k-nearest neighbors (KNN). KNN is a non-parametric method which uses similarity functions to de-
termine the class of an observation based on its k nearest observations (see, e.g. Altman [5]). Given
a positive integer k and an observation x0, the algorithm first identifies the k points xk in the data
closest to x0. The probability for belonging to a class is then estimated as the fraction of the k closest
points, whose response values correspond with the respective class. The method is considered to be
among the simplest in the realm of machine learning, and has two free parameters, the integer k and
a parameter which affects the search distance for neighbors, which can be optimized for each data
set. As with Naive Bayes, we are not aware of previous use of KNN in early-warning exercises at the
country level.

Classification trees. Classification trees, as discussed by Breiman et al. [17], implement a decision tree-
type structure, which reach a decision by performing a sequence of tests on the values of the predictors.
In a classification tree, the classes are represented by leaves, and the conjunctions of predictors are
represented by the branches leading to the classes. These conjunction rules segment the predictor space
into a number of simpler regions, allowing for decision boundaries of complex shapes. Given similar loss
functions, an identical result could also be reached through sequential signal extraction. The method
has proven successful in many areas of machine learning, and has the advantage of high interpretability.
To reduce complexity and improve generalizability, sections of the tree are often pruned until optimal
out-of-sample performance is reached. The degree of pruning is determined by a complexity parameter,
which is used in this paper as a free parameter. In the early-warning literature, the use of classification
trees has been fairly common.

Random forest. The random forest method, introduced by Breiman [15], uses classification trees as
building blocks to construct a more sophisticated method, at the expense of interpretability. The
method grows a number of classification trees based on differently sampled subsets of the data. Ad-
ditionally, at each split, a randomly selected sample is drawn from the full set of predictors. Only
predictors from this sample are considered as candidates for the split, effectively forcing diversity in
each tree. Lastly, the average of all trees is calculated. As there is less correlation between the trees,
this leads to a reduction in variance in the average. In this paper, two free parameters are considered:
the number of trees, and the number of predictors sampled as candidates at each split. To the best of
our knowledge, random forests have only been applied to early-warning exercises in Alessi and Detken
[2].

Artificial Neural Networks (ANN). Inspired by the functioning of neurons in the human brain, ANNs
are composed of nodes or units connected by weighted links (see, e.g., Venables and Ripley [86]). These
weights act as network parameters that are tuned iteratively by a learning algorithm. The simplest
type of ANN is the single hidden layer feed-forward neural network (SLFN), which has one input,
hidden and output layer. The input layer distributes the input values to the units in the hidden layer,
whereas the unit(s) in the output layer computes the weighted sum of the inputs from the hidden
layer, in order to yield a classifier probability. Despite ANNs with no size restrictions are universal
approximators for any continuous function [44], computation time increases exponentially and their
interpretability diminishes as ANNs grow in size. Further, discriminant and logit/probit analysis can
in fact be related to very simple ANNs [68, 70]: so-called single-layer perceptrons (i.e., no hidden
layer) with a threshold and logistic activation function. This paper uses a basic SLFN with three free
parameters: the number of units in the hidden layer, the maximum number of iterations, and the
weight decay. The first parameter controls the complexity of the network, while the last two are used
to control how the learning algorithm converges. The use of ANNs has been fairly common in the
academic early-warning literature.
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Extreme Learning Machines (ELM). As introduced by Huang et al. [46], the ELM refers to a specific
learning algorithm used to train a SLFN-type neural network. Unlike conventional iterative learning
algorithms, the ELM algorithm randomizes the input weights and analytically determines the output
weights of the network. When trained with this algorithm, the SLFN generally requires a higher
number of units in the hidden layer, but computation time is greatly reduced and the resulting neural
network may have better generalization ability. In this paper, two free parameters are considered:
the number of units in the hidden layer, and the type of activation function used in the network. To
the best of our knowledge, we are not aware of previous applications of the ELM algorithm to crisis
prediction.

Support Vector Machines (SVM). The SVM, introduced by Cortes and Vapnik [23], is one of the most
popular machine learning methods for supervised learning. It is a non-parametric method that uses
hyperplanes in a high-dimensional space to construct a decision boundary for a separation between
classes. It comes with several desirable properties. First, an SVM constructs a maximum margin sep-
arator, i.e. the chosen decision boundary is the one with the largest possible distance to the training
data points, enhancing generalization performance. Second, it relies on support vectors when con-
structing this separator, and not on all the data points, such as in logistic regression. These properties
lead to the method having high flexibility, but still being somewhat resistant to overfitting. However,
SVMs lack interpretability. The free parameters considered are: the cost parameter, which affects
the tolerance for misclassified observations when constructing the separator; the gamma parameter,
defining the area of influence for a support vector; and the kernel type used. We are not aware of
studies using SVMs for the purpose of deriving early-warning models.

Table 4: Literature review.
Method Currency crisis Sovereign crisis Banking crisis

Signal extraction [51] [54] [12] [1]
LDA – [38] [83] –
QDA – – –
Logit [32] [39] [69] [10] [18] [80] [40] [8] [62]

Logit LASSO – – [61]
KNN – – –
Trees [49] [21] [79] [26]

Random forest – – [2]
ANN [63] [37] [64] [76] [34] [71]
ELM – – –
SVM – – –

3. Horse race, aggregation and model uncertainty

This section presents the methodology behind the robust and objective horse race and its aggrega-
tion, as well as approaches for estimating model uncertainty.

3.1. Set-up of the horse race

To continue from the data, classification problem and methods presented in Section 2, we herein
focus on the set-up for and parameters used in the horse race, ranging from details in the use of data
and general specification of the classification problem to estimation strategies and modeling. The aim
of the set-up is to mimic real-time use as much as possible by both using data in a realistic manner and
tackling the classification problem using state-of-the-art specifications. The specification needs also to
be generic in nature, as the objectivity of a horse race relies on applying the same procedures to all
methods.
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Model specifications. This section describes the choices regarding model specifications that underlie the
exercises in this paper. In all choices, we have tried to follow the convention in the most recent literature
on the topic. Despite the fact that model output is country-specific, the literature has preferred the use
of pooled data and models (e.g., Fuertes and Kalotychou [40], Sarlin and Peltonen [77]). In theory, one
would desire to account for country-specific effects describing crises, but the rationale behind pooled
models descends from the aim to capture a wide variety of crises and the relatively small number of
events in individual countries. Further, as we are interested in vulnerabilities prior to crises and do not
lag explanatory variables for this purpose, the benchmark dependent variable is defined as a specified
number of years prior to the crisis. In the horse race, the benchmark is 5–12 quarters prior to a crisis.

As proposed by Bussière and Fratzscher [18], we account for post-crisis and crisis bias by not in-
cluding periods when a crisis occurs or the two years thereafter. The excluded observations are not
informative regarding the transition from tranquil times to distress events, as they can neither be
considered “normal” periods nor vulnerabilities prior to crises. Following the same reasoning, observa-
tions 1–4 quarters prior to crises are also left out. To issue binary signals with method m, we need to
specify a threshold value τ on the estimated probabilities pmn , which is set as to optimize Usefulness (as
outlined in Section 2.2). We assume a policymaker to be more concerned of missing a crisis than giving
a false alarm. Hence, the benchmark preference µ is assumed to be 0.8. This reasoning follows the fact
that a signal is treated as a call for internal investigation, whereas significant negative repercussions
of a false alarm only descend from external announcements.

For comparability, we consistently transform output probabilities of each method into their own
percentile distributions of in-sample data. This is particularly relevant for model aggregation, as it
is important for model output to be on the same scale. More specifically, the empirical cumulative
distribution function is computed based on the in-sample probabilities for each method, and both the
in-sample and out-of-sample probabilities are converted to percentiles of the in-sample probabilities.

Estimation strategies. With the aim of tackling the classification problem at hand, this paper uses two
conceptually different estimation strategies. First, we use cross-validation for preventing overfitting
and for objective comparisons of generalization performance. Second, we test the performance of
methods when applied in the manner of a real-time exercise.

The resampling method of cross-validation, as introduced by Stone [82] in the 1970s, is commonly
used in machine learning to assess the generalization performance of a model on out-of-sample data
and to prevent overfitting. Out of a range of different approaches to cross-validation, we make use of
so-called K-fold cross-validation. In line with the famous evidence by Shao [81], leave-one-out cross-
validation does not lead to a consistent estimate of the underlying true model, whereas certain kinds
of leave-n-out cross-validation are consistent. Further, Breiman [14] shows that leave-one-out cross-
validation may also run into trouble with the problem that a small change in the data causes a large
change in the model selected, whereas Breiman and Spector [16] and Kohavi [56] found that K-fold
works better than leave-one-out cross-validation. For an extensive survey article on cross-validation see
Arlot and Celisse [6]. Cross-validation is used here in two ways. The first aim of cross-validation is to
function as a tool for model selection for obtaining optimal free parameters, with the aim of generalizing
data rather than (over)fitting on in-sample data. The other aim relates to objective comparisons of
models’ performance on out-of-sample data, given an identical sampling for the cross-validated model
estimations. The scheme used herein involves sampling data into K folds for cross-validation and
functions as follows:

1. Randomly split the set of observations into K folds of approximately equal size.

2. For the kth out-of-sample validation fold, fit a model to and compute an optimal threshold
τ∗ using UK−1

r (µ) with the remaining K − 1 folds, also called the in-sample data. Apply the
threshold to the kth fold and collect its out-of-sample Ukr (µ).

3. Repeat Steps 1 and 2 for k = 1, 2, ...,K, and collect out-of-sample performance for allK validation
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sets as UKr (µ) = 1
K

∑K
k=1 U

k
r (µ).5

For model selection, a grid search of free parameters is performed for the methods supporting those. As
stated previously, K-fold cross-validation is used and the free parameters yielding the best performance
on the out-of-sample data are stored and applied in subsequent analysis. The literature has generally
preferred small values for K, with K = 10 being among the most prominently used number of folds
(see e.g. Zhang [88].) The cross-validated horse race makes use of 10-fold cross-validation to provide
objective relative assessments of generalization performance of different models. The latter purpose of
cross-validation is central for the horse race, as it allows for comparisons of models, and thus different
modeling techniques, but still assures identical sampling.

The standard approach to cross-validation may not, however, be entirely unproblematic. As we
make use of panel data, including a cross-sectional and time dimension, we should also account for
the fact that the data are more likely to exhibit temporal dependencies. Although the cross-validation
literature has put forward advanced techniques to decrease the impact of dependence, such as a so-
called modified cross-validation by Chu and Marron [22] (further examples in Arlot and Celisse [6]),
the most prominent approach is to limit estimation samples to historical data for each prediction. To
test models from the viewpoint of real-time analysis, we use a recursive exercise that derives a new
model at each quarter using only information available up to that point in time.6 This enables testing
whether the use of a method would have provided means for predicting the global financial crisis of
2007–2008, and how methods are ranked in terms of performance for the task. This involves accounting
for publication lags by lagging accounting based measures with 2 quarters and market-based variables
with 1 quarter. The recursive algorithm proceeds as follows. We estimate a model at each quarter
with all available information up to that point, evaluate the signals to set an optimal threshold τ∗,
and provide an estimate of the current vulnerability of each economy with the same threshold as
on in-sample data. The threshold is thus time-varying. At the end, we collect all probabilities and
thresholds, as well as the signals, and evaluate how well the model has performed in out-of-sample
analysis. As any ex post assessment, it is crucial to acknowledge that also this exercise is performed in
a quasi real-time manner with the following caveats. Given how data providers report data, it is not
possible to account for data revisions, and potential changes may hence have occurred after the first
release. Moreover, we experiment with two different approaches for real-time use of pre-crisis periods
as the dependent variable. With a forecast horizon of three years, we will at each quarter know with
certainty only after three years whether or not the current quarter is a pre-crisis period to a crisis
event (unless a crisis has occurred in the past three years). We test both dropping a window of equal
length as the forecast horizon and using pre-crisis periods for the assigned quarters.7 As a horse race,
the recursive estimations test the models from the viewpoint of real-time analysis. Using in-sample
data ranging back as far as possible, the recursive exercise starts from 2005Q2, with the exception of
the QDA method, for which analysis starts from 2006Q2, due to requirements of more training data
than for the other methods. This procedure enables us to test performance with no prior information
on the build-up phase of the recent crisis.

5This is only a simplification of the precise implementation. We in fact sum up all elements of the contingency matrix,
and only then compute a final Usefulness UK

r (µ).
6It is worth noting that it is still well-motivated to use two separate tests, cross-validated and recursive evaluations.

If we would also optimize free parameters with respect to recursive evaluations, then we might risk overfitting them
to the specific case at hand. Thus, in case optimal parameters chosen with cross-validation also perform in recursive
evaluations, we can assure that models are not overfitting data.

7Drawbacks of dropping a pre-crisis window are that it would require a much later starting date of the recursion due
to the short time series and that it would distort the real relationship between indicators and pre-crisis events. The
latter argument implies that model selection, particularly variable selection, with dropped quarters would be biased. For
instance, if one indicator perfectly signals all simultaneous crises in 2008, but not earlier crises, a recursive test would
show bad performance, and point to concluding that the indicator is not useful. In contrast to lags on the independent
variables, which impact the relationship to the dependent variable, it is worth noting that using the approach with
pre-crisis periods does not impact the latest available relationship in data and information set at each quarter.
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3.2. Aggregation procedures

From individual methods, we move forward to combining the outputs of several different methods
into one through a number of aggregation procedures. The approaches here descend from the subfield
of machine learning focusing on ensemble learning, wherein the main objective is the use of multiple
statistical learning algorithms for better predictive performance. Although we aim for simplicity and
do not adopt the most complex algorithms herein, we make use of the two common approaches in
ensemble learning: bagging and boosting. Bagging stands for Bootstrap Aggregation [13] and makes
use of resampling from the original data, which is to be aggregated into one model output. While being
an approach for ensemble learning, we discuss this under the topic of resampling and model uncertainty,
as can be seen in Section 3.3. Boosting [78] refers to computing output from multiple models and then
averaging the results with specified weights, which we mainly rely on in our aggregation procedures
below. A third group of stacking approaches [87], which add another layer of models on top of individual
model output to improve performance, are not used in this paper for the sake of simplicity. Again,
we use the optimal free parameters identified through cross-validated grid searches, and then estimate
individual methods. For this, we make use of four different aggregation procedures: the best-of and
voting approaches, and arithmetic and weighted averages of probabilities.

The best-of approach simply makes use of one single method m by choosing the most accurate one.
To use information in a truthful manner, we always choose the method, independent of the exercise
(i.e., cross-validation or recursion), which has the best in-sample relative Usefulness. Voting simply
makes use of the signals Bmn of all methods m = 1, 2, ...,M for each observation xn in order to signal
or not based upon a majority vote. That is, the aggregate Ban chooses for observation xn the class that
receives the largest total vote from all individual methods:

Ban =

{
1 if 1

M

∑M
m=1B

m
n > 0.5

0 otherwise
,

where Bmn is the binary output for method m and observation n, and Ban is the binary output of the
majority vote aggregate.

Aggregating probabilities requires an earlier intervention in modeling. In contrast to the best-
of and voting approaches, we directly make use of the probabilities pmn of each method m for all
observations n to average them into aggregate probabilities. The simpler case uses an arithmetic
mean to derive aggregate probabilities pan. For weighted aggregate probabilities pan, we make use of
in-sample model performance when setting the weights of methods, so that the most accurate method
(in-sample) is given the most weight in the aggregate. The non-weighted and weighted probabilities
pan for observations xn can be derived as follows:

pan =

M∑
m=1

wm∑M
m=1 wm

pmj

where the probabilities pmn of each method m are weighted with its performance measure wm for all
observations n. In this paper, we make use of weights wm = Umr (µ), but the approach is flexible
for any chosen measure, such as the AUC. This weighting has the property of giving the least useful
method the smallest weight, and accordingly a bias towards the more useful ones. The arithmetic mean
can be shown to result in pan = 1

M

∑M
m=1 p

m
n for wm = 1. To make use of only available information

in a real-time set-up, the Umr (µ) used for weighting refers always to in-sample results. In order to
assure non-negative weights, we drop methods with negative values (i.e., Umr (µ) < 0) from the vector
of performance measures. In the event that all methods show a negative Usefulness, they are given
weights of equal size. After computing aggregate probabilities pan, they are treated as if they were
outputs for a single method (i.e., pmn ), and optimal thresholds τ∗ identified accordingly. In contrast,
the best-of approach signals based upon the identified individual method and voting signals if and only
if a majority of the methods signal, which imposes no requirement of a separate threshold. Thus, the
overall cross-validated Usefulness of the aggregate is calculated in the same manner as for individual

ECB Working Paper 1900, April 2016 15



16

methods. Likewise, for the recursive model, the procedure is identical, including the use of in-sample
Usefulness Umr (µ) for weighting.

3.3. Model uncertainty

We herein tackle uncertainty in classification tasks concerning model performance uncertainty and
model output uncertainty. While descending from multiple sources and relating to multiple features,
we are particularly concerned with uncertainties coupled with model parameters.8 Accordingly, we
assess the extent to which model parameters, and hence predictions, vary if models were estimated
with different datasets. With varying data variation in the predictions is caused by imprecise parameter
values, as otherwise predictions would always be the same. Not to confuse variability with measures of
model performance, zero parameter value uncertainty in the predictions would still not imply perfectly
accurate predictions. To represent any uncertainty, we need to derive properties of the estimates,
including standard errors (SEs), confidence intervals (CIs) and critical values (CVs). To move toward
robust statistical analysis in early-warning modeling, we first present our general approach to early-
warning inference through resampling, and then present the required specification for assessing model
performance and output uncertainty.

Early-warning inference. The standard approaches to inference and deriving properties of estimates
descend from conventional statistical theory. If we know the data generating process (DGP), we also

know that for data x1, x2, ..., xN , we have the mean θ̂ =
∑N
n=1 xn/N as an estimate of the expected

value of x, the SE σ̂ =

√∑N
n=1

(
xn − θ̂

)2
/N2 showing how well θ̂ estimates the true expectation, and

the CI through θ̂±t·σ̂ (where t is the CV). Yet, we seldom do know the DGP, and hence cannot generate
new samples from the original population. In the vein of the above described cross-validation [82], we
can generally mimic the process of obtaining new data through the family of resampling techniques,
including also permutation tests [35], the jackknife [65] and bootstraps [27]. At this stage, we broadly
define resampling as random and repeated sampling of sub-samples from the same, known sample.
Thus, without generating additional samples, we can use the sampling distribution of estimators to
derive the variability of the estimator of interest and its properties (i.e., SEs, CIs and CVs). For
a general discussion of resampling techniques for deriving properties of an estimator, the reader is
referred to original works by Efron [28, 29] and Efron and Tibshirani [30, 31].

Let us consider a sample with n = 1, ..., N independent observations of one dependent variable yn
and G+1 explanatory variables xn. We consider our resamplings to be paired by drawing independently
N pairs (xn, yn) from the observed sample. Resampling involves drawing randomly samples s = 1, ..., S
from the observed sample, in which case an individual sample is (xsn, y

s
n). To estimate SEs for any

estimator θ̂, we make use of the empirical standard deviation of resamplings θ̂ for approximating the
SE σ(θ̂). We proceed as follows:

1. Draw S independent samples (xsn, y
s
n) of size N from (xn, yn).

2. Estimate the parameter θ through θ̂∗s for each resampling s = 1, ..., S.

3. Estimate σ(θ̂) by σ̂ =

√
1

S−1

∑S
s=1

(
θ̂∗s − θ̂∗

)2
, where θ̂∗ = 1

S

∑S
s=1 θ̂

∗
s .

Now, given a consistent and asymptotically normally distributed estimator θ̂, the resampled SEs can be
used to construct approximate CIs and to perform asymptotic tests based on the normal distribution,
respectively. Thus, we can use percentiles to construct a two-sided asymmetric but equal-tailed (1−α)
CI, where the empirical percentiles of the resamplings (α/2 and 1− α/2) are used as lower and upper

8Beyond model parameter uncertainty, and no matter how precise the estimates are, models will not be perfect and
hence there is always a residual model error. To this end, we are not tackling uncertainty in model output (or model
error) resulting from errors in the model structure, which particularly relates to the used crisis events and indicators in
our dataset (i.e., independent and dependent variables).
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limits for the confidence bounds. We make use of the above Steps 1 and 2, and then proceed instead
as follows:

4. Order the resampled replications of estimator θ̂ such that θ̂∗1 ≤ ... ≤ θ̂∗B . With the S · α/2th
and S · (1−α/2)th ordered elements as the lower and upper limits of the confidence bounds, the

estimated (1− α) CI of θ̂ is
[
θ̂∗S·α/2, θ̂

∗
S·(1−α/2)

]
.

Using the above discussed resampled SEs and approximate CI, we can use a conventional (but approx-
imate) two-sided hypothesis test of the null H0 : θ = θ0. In case θ0 is outside the two-tailed (1−α) CI
with the significance level α, the null hypothesis is rejected. Yet, if we have two resampled estimators
θ̂i and θ̂j with non-overlapping CIs, it is obvious that they are necessarily significantly different, but
it is not necessarily true that they are not significantly different if they overlap. Rather than mean
CIs, we are concerned with the test statistic for the difference between two means. Two means are
significantly different for (1 − α) confidence levels when the CI for the difference between the group

means does not contain zero:
(
θ̂i − θ̂j

)
− t
√
σ̂2
i + σ̂2

j > 0.9 Yet, we may be violating the normality

assumption as the traditional Student t distribution for calculating CIs relies on a sampling from a
normal population.

Even though we could by the central limit theorem argue for the distributions to be approximately
normal if the sampling of the parent population is independent, the degree of the approximation would
still depend on the sample size N and on how close the parent population is to the normal. As
the common purpose behind resampling is not to impose such distributional assumptions, a common
approach is to rely on so-called resampled t intervals. Thus, based upon statistics of the resamplings,
we can solve for t∗ and use confidence cut-offs on the empirical distribution. Given consistent estimates

of θ̂ and σ̂(θ̂), and a normal asymptotic distribution of the t-statistic t = θ̂−θ0
σ̂(θ̂)

→ N(0, 1), we can derive

approximate symmetrical CVs t∗ from percentiles of the empirical distribution of all resamplings for
the t-statistic.

1. Consistently estimate the parameter θ and σ(θ̂) using the observed sample: θ̂ and σ̂(θ̂).

2. Draw S independent resamplings (xsn, y
s
n) of size N from (xn, yn).

3. Assuming θ0 = θ̂, estimate the t-value t∗s =
θ̂∗s−θ̂
σ̂∗
s (θ̂)

for s = 1, ..., S where θ̂∗s and σ̂∗
s (θ̂) are resampled

estimates of θ and its SE.

4. Order the resampled replications of t such that |t*1| ≤ ... ≤ |t*S |. With the S · (1− α)th ordered

element as the CV, we have tα/2 =
∣∣∣t∗S·(1−α)∣∣∣ and t1−α/2 =

∣∣∣t∗S·(1−α)∣∣∣.
With these symmetrical CVs, we can utilize the above described mean-comparison test. Yet, as CVs
for the resampled t intervals may differ for the two means, we amend the test statistic as follows:

(
θ̂i − θ̂j

)
−
t∗jS·(1−α) + t∗iS·(1−α)

2

√
σ̂2
i + σ̂2

j > 0.

Model performance uncertainty. For a robust horse race, and ranking of methods, we make use of
resampling techniques to assess variability of model performance. We compute for each individual
method and the aggregates resampled SEs for the relative Usefulness and AUC measures. Then, we
use the SEs to obtain CVs for the measures, analyze pairwise among methods and aggregates whether
intervals exhibit statistically significant overlaps, and produce a matrix that represents pairwise sig-
nificant differences among methods and aggregates. More formally, the null hypothesis that methods i

9In contrast to the test statistic, we can see that two means have no overlap if the lower bound of the CI for the
greater mean is greater than the upper bound of the CI for the smaller mean, or θ̂i + t · σ̂i > θ̂j + t · σ̂j . While simple

algebra gives that there is no overlap if θ̂i − θ̂j > t
(
σ̂i + σ̂j

)
, the test statistic only differs through the square root and

the sum of squares: θ̂i − θ̂j > t
√
σ̂2
i + σ̂2

j . As
√
σ̂2
i + σ̂2

j < σ̂i + σ̂j , it is obvious that the mean difference becomes

significant before there is no overlap between the two group-mean CIs.
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and j have equal out-of-sample performance can be expressed as H0 : U ir(µ) = U jr (µ) (and likewise for
AUC). To this end, the alternative hypothesis of a difference in out-of-sample performance of methods
i and j is H1 : U ir(µ) 6= U jr (µ).

In machine learning, supervised learning algorithms are said to be prevented from generalizing
beyond their training data due to two sources of error: bias and variance. While bias refers to error
from erroneous assumptions in the learning algorithm (i.e., underfit), variance relates to error from
sensitivity to small fluctuations in the training set (i.e., overfit). The above described K-fold cross-
validation may run the risk of leading to models with high variance and non-zero yet small bias
(e.g., Kohavi [56], Hastie et al. [41]). To address the possibility of a relatively high variance and to
better derive estimates of properties (i.e., SEs, CIs and CVs), repeated cross-validations are oftentimes
advocated. This allows averaging model performance, and hence ranking average performance rather
than individual estimations, as well as better enables deriving properties of the estimates.10 For
both individual methods and aggregates, we make use of 500 repetitions of the cross-validations (i.e.,
S = 500).

In the recursive exercises, we opt to make use of resampling with replacement to assess model
performance uncertainty due to limited sample sizes for the early quarters. The family of bootstrapping
approaches was introduced by Efron [27] and Efron and Tibshirani [31]. Given data x1, x2, ..., xN ,
bootstrapping implies drawing a random sample of size N through resampling with replacement from
x, leaving some data points out while others will be duplicated. Accordingly, an average of roughly
63% of the training data is utilized for each bootstrap. However, the standard bootstrap procedure
assumes data to be i.i.d., and thus does not account for possible dependencies present in the data.
Since early-warning models commonly use panel data, both cross-sectional and time-series dependence
are to be assumed. In line with Kapetanios [52] and Hounkannounon [45], we thus utilize a double
bootstrap for the robust recursive horse race, consisting of two components: cross-sectional resampling
and the moving block bootstrap. For panel data of dimensions E × T , where E is the number of
entities, and T is the number of periods, cross-sectional resampling entails drawing full time-series for
E entities with replacement. The moving block bootstrap, introduced by Künsch [55], draws blocks
of a defined size B of observations, in order to preserve temporal dependency within the resampled
blocks. Our double bootstrap procedure combines both in the following way:

1. From the available in-sample data of dimensions E×N , draw E entities with replacement. This
constitutes the pseudo-sample S∗.

2. From the obtained pseudo-sample S∗, draw a randomly selected block of size B from all E
entities.

3. Repeat 2. until the length of all combined blocks is > N by cutting at the end. This constitutes
the final bootstrap sample S∗∗.

For each quarter, we draw randomly the bootstrap sample S∗∗ from the available in-sample data using
the above procedure, which is repeated 500 times. Each of these bootstraps are treated individually to
compute the performance of individual methods and the aggregates. These results are then averaged
to obtain the corresponding results of a robust bootstrapped classifier for each method and aggregate.

Model output uncertainty. In order to assess the reliability of estimated probabilities and optimal
thresholds, and hence signals, we study the notion of model output uncertainty. The question of
interest would be whether or not an estimated probability is statistically significantly above or below a
given optimal threshold. More formally, the null hypothesis that probabilities pn ∈ [0, 1] and optimal
thresholds τ∗n ∈ [0, 1] are equal can be expressed as H0 : pn = τ∗n. Hence, the alternative hypothesis of
a difference in probabilities pn and optimal thresholds τ∗n is H1 : pn 6= τ∗n. This can be tested both for
probabilities of individual methods pmn and probabilities of aggregates pan as well as their thresholds
τ∗mn and τ∗an .

10Repeated cross-validations are not entirely unproblematic (e.g., Vanwinckelen and Blockeel [85]), yet still one of the
better approaches to simultaneously assess generalizability and uncertainty.
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We assess the trustworthiness of the output of models, be they individual methods or aggregates, by
computing SEs for the estimated probabilities and the optimal thresholds. We follow the approach for
model performance uncertainty to compute CVs and mean-comparison tests. For both cross-validation
and bootstraps, the 500 resamplings of the out-of-sample probabilities are computed separately for each
method and averaged with and without weighting, as above discussed (i.e., S = 500). From these, the
mean and the SE are drawn and used to construct a CV for individual methods and the aggregates,
based on bootstrapped crisis probabilities and optimal thresholds, which allows us to test when model
output is statistically significantly above or below a threshold. The above implemented bootstraps
also serve another purpose. We make use of the CI as a visual representation of uncertainty. Thus,

we produce confidence bands
[
θ̂∗S·α/2, θ̂

∗
S·(1−α/2)

]
around time-series of probabilities and thresholds for

each method and country, which is useful information for policy purposes when assessing the reliability
of model output.

3.4. Summary of horse race exercises

To sum up the above described exercises, we herein provide a simplified description of the cross-
validated and the recursive horse races, as well as steps within them.

� Cross-validation: Split the full sample into k folds of equal size, and estimate models and thresh-
olds using the remaining k − 1 folds of data. Collect out-of-sample probabilities and binary
predictions for each left-out fold.

� Recursive: Utilize an out-of-sample span split into individual quarters, for which the model is
estimated and optimal threshold computed using all data available up until each quarter.

For both exercises, all out-of-sample output is finally reassembled and performance summarized in
terms of a range of evaluation measures. The two exercises differ in their sampling of data, particularly
the in-sample and out-of-sample partitions used for each estimation. While cross-validation is common
in machine learning and allows an efficient use of small samples, exercises may benefit from the fact that
data are sampled randomly despite most likely exhibiting time dependence. The recursive exercises, on
the contrary, account for time dependence in data by strictly using historical samples for out-of-sample
predictions, which nevertheless requires more data, particularly in the time-series dimension. These
two exercises allow exploring performance across methods, and how that is impacted by the evaluation
exercise.

For both exercises, we go through the following steps to estimate individual models, aggregate
model output and represent model and performance uncertainty:

� Following the above exercises, estimate models with all individual methods m = 1, 2, ...,M .

� Aggregate model output pm from M models to pa using four approaches: best-of, voting, non-
weighted and weighted.

� Represent model performance uncertainty for individual and aggregated methods by repeating
the exercises using sampling of in-sample data with and without replacement and reporting
statistically significant rankings.

� Represent model output uncertainty for individual and aggregated methods by repeating the ex-
ercises using sampling of in-sample data with and without replacement and reporting statistically
significant signals and non-signals.

4. The European crisis as a playground

This section applies the above introduced concepts in practice. Using a European sample, we
implement the horse race with a large number methods, apply aggregation procedures and illustrate
the use and usefulness of accounting for and representing model uncertainty.
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4.1. Model selection

To start with, we need to derive suitable (i.e., optimal) values for the free parameters for a number
of methods. Roughly half of the above discussed methods have one or more free parameters relating
to their learning algorithm, for which optimal values are identified empirically. In summary, these
methods are: signal extraction, LASSO, KNN, classification trees, random forest, ANN, ELM and
SVM. To perform model selection for these six methods, we make use of a grid search to find optimal
free parameters with respect to out-of-sample performance. A set of tested values are selected based
upon common rules of thumb for each free parameter (i.e., usually minimum and maximum values and
regular steps in between), whereafter an exhaustive grid search is performed on the discrete parameter
space of the Cartesian product of the parameter sets. To obtain generalizable models, we use 10-fold
cross-validation and optimize out-of-sample Usefulness for guiding the specifications of the algorithms.
Finally, the parameter combinations yielding the highest out-of-sample Usefulness are chosen, as is
optimal for each method. For the signal extraction method, we vary the used indicator, and the
indicator with the highest Usefulness is chosen (for a full table see Table A.1 in the Appendix).11 The
chosen parameters are reported in Table 5.12

Table 5: Optimal parameters obtained through a grid-search algorithm.

Method Parameters

Signal extraction Debt service ratio

Logit LASSO λ = 0.0012

KNN k = 2 Distance = 1

Trees Complexity = 0.01

Random forest No. of trees = 180 No. of predictors sampled = 5

ANN No. of hidden layer units = 8 Max no. of iterations = 200 Weight decay = 0.005

ELM No. of hidden layer units = 300 Activation function = Tan-sig

SVM γ = 0.4 Cost = 1 Kernel = Radial basis

4.2. A horse race of early-warning models

We conduct in this section two types of horse races: a cross-validated and a recursive. This provides
a starting point for the ranking of early-warning methods and simultaneous use of multiple models.

Cross-validated race. The first approach to ranking early-warning methods uses 10-fold cross-validation.
Rather than optimizing free parameters, the cross-validation exercise aims at producing comparable
models with all included methods, which can be assured due to the similar sampling of data and
modeling specifications. For the above discussed methods, we use the optimal parameters as shown in
Table 5. Methods with no free parameters are run through the 10-fold cross-validation without any
further ado. Table 6 presents the out-of-sample results of the cross-validation horse race for the indi-
vidual early-warning methods, sorted by descending Usefulness. At first, we can note that the simple
approaches, such as signal extraction, LDA and logit analysis, are outperformed in terms of Usefulness
by most machine learning techniques. At the other end, the methods with highest Usefulness are KNN
and SVM. In terms of AUC, QDA, random forest, ANN, ELM and SVM yield good results. It is still
worth noting that a standard cross-validated test does not account for potential excessive correlation

11As the poor performance of signal extraction may arise questions, we also show results for µ = 0.9193 = 1−Pr(C = 1)
in Table A.2 in the Appendix. Given the unconditional probabilities of events, this preference parameter has potential
to yield the largest Usefulness. Accordingly, we can also find much larger Usefulness values for most indicators. This
highlights the sensitivity of signal extraction to the chosen preferences.

12It may be noted the the optimal amount of hidden units for the ELM method returned by the grid-search algorithm
is unusually high. However, as seen below in the cross-validated and particularly real-time exercises, the results obtained
using the ELM method do not seem to exhibit overfitting. Also, by comparing results of the ELM to those of the ANN,
which has only eight hidden units, out-of-sample results are in all tests similar in nature.
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across folds due to dependence in data, and hence the more flexible non-linear approaches are also
more prone to exhibit a too good model fit. Yet, this can easily be controlled for with the recursive
real-time analysis.

Table 6: A horse race of cross-validated estimations.

 

Rank Method Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) U r (μ ) AUC

1 KNN 89 11 1048 4 0.89 0.96 1.00 0.99 0.99 0.01 0.04 0.06 93 % 0.988

2 SVM 91 22 1037 2 0.81 0.98 1.00 0.98 0.98 0.02 0.02 0.06 92 % 0.998

3 ELM 87 18 1041 6 0.83 0.94 0.99 0.98 0.98 0.02 0.07 0.06 89 % 0.997

4 Neural network 85 11 1048 8 0.89 0.91 0.99 0.99 0.98 0.01 0.09 0.06 88 % 0.995

5 QDA 79 18 1041 14 0.81 0.85 0.99 0.98 0.97 0.02 0.15 0.05 80 % 0.984

6 Random forest 72 12 1047 21 0.86 0.77 0.98 0.99 0.97 0.01 0.23 0.05 74 % 0.997

7 Classification tree 72 15 1044 21 0.83 0.77 0.98 0.99 0.97 0.01 0.23 0.05 73 % 0.901

8 Naive Bayes 72 66 993 21 0.52 0.77 0.98 0.94 0.92 0.06 0.23 0.04 60 % 0.949

9 Logit LASSO 76 101 958 17 0.43 0.82 0.98 0.91 0.90 0.10 0.18 0.04 55 % 0.935

10 Logit 75 99 960 18 0.43 0.81 0.98 0.91 0.90 0.09 0.19 0.04 54 % 0.934

11 LDA 76 122 937 17 0.38 0.82 0.98 0.89 0.88 0.12 0.18 0.03 49 % 0.927

12 Signal extraction 15 39 1020 78 0.28 0.16 0.93 0.96 0.90 0.04 0.84 0.00 6 % 0.692

Negatives

Notes: The table reports a ranking of cross-validated out-of-sample performance for all methods given optimal thresholds with preferences of 

0.8 and a forecast horizon of 5-12 quarters. The table also reports in columns the following measures to assess the overall performance of the 

models: TP = True positives, FP = False positives, TN= True negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall 

positives = TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall negatives = TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), absolute 

and relative usefulness Ua and Ur (see formulae 1-3), and AUC = area under the ROC curve (TP rate to FP rate). See Section 2.2 for further details 

on the measures.

TP FP TN FN

Positives

Recursive race. To further test the performance of all individual methods, we conduct a recursive
horse race among the approaches. As outlined in Section 3.1, we estimate new models with the
available information in each quarter to identify vulnerabilities in the same quarter, starting from
2005Q2 (2006Q2 for QDA). Besides for a few exceptions, the results in Table 7 are in line with those
in the cross-validated horse race in Table 6. For instance, the top six methods are the same with only
minor differences in ranks, and classification trees perform poorly in the recursive exercise and logit
in the cross-validated exercise. Generally, machine learning based approaches again outperform more
conventional techniques from the early-warning literature.

We also experiment with so-called “unknown events” in recursive exercises, as any given quarter
is known to be tranquil only when the forecast horizon has passed. Hence, we test two approaches:
(i) dropping a window of equal length as the forecast horizon at each quarter, and (ii) simply using
pre-crisis periods for the assigned quarters. We can conclude that dropping quarters had no impact on
the ranking of methods and only minor negative impact on the levels of performance measures. Besides
for a starting quarter only in 2005Q3 due to data requirements (and only 2006Q2 for QDA), Table
A.3 in the Appendix shows results for a similar recursive exercise as in Table 7, but where a pre-crisis
window prior to each prediction quarter has been dropped. It is to be noted that data sparsity hinders
this exercise with the current set of indicators, due to which we drop the indicator loans to income.
Although the table shows a drop in average Ur from 46% to 32% and average AUC from 0.87 to 0.86,
which might also relate to dropping one indicator, the rankings of individual methods are with a few
exceptions unchanged. The largest change in rankings occurs for QDA, but this might to a large extent
descend from the change in the starting quarter, as well as refers only to Usefulness as AUC is close
to unchanged. Moreover, while the Ur (AUC) drop for machine learning approaches is on average 13
percentage points (0.01), the more conventional statistical approaches drop by 16 percentage points
(0.05). Hence, this does not point to an overfit caused by assigning events to reference quarters.

The added value of a palette of methods is that it not only allows for handpicking the best-in-class
techniques, but also the simultaneous use of all or a number of methods. As some of the recent machine
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learning approaches may be seen as less interpretable for those unfamiliar with them, the simultaneous
use of a large number of methods may build confidence through performance comparisons and the
simultaneous assessment of model output. The purpose of multiple models would hence relate to
confirmatory uses, as policy is most often an end product of a discretionary process. On the other
hand, the dissimilarity in model output may also be seen as a way to illustrate uncertainty of or
variation in model output. Yet, this requires a more structured assessment (as is done in Section 4.4).

Table 7: A horse race of recursive real-time estimations.

 

Rank Method Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) U r (μ ) AUC

1 KNN 78 4 247 13 0.95 0.86 0.95 0.98 0.95 0.02 0.14 0.11 78 % 0.976

2 QDA 44 5 230 12 0.90 0.79 0.95 0.98 0.94 0.02 0.21 0.12 76 % 0.981

3 Neural network 79 13 238 12 0.86 0.87 0.95 0.95 0.93 0.05 0.13 0.11 76 % 0.962

4 SVM 76 3 248 15 0.96 0.84 0.94 0.99 0.95 0.01 0.17 0.11 75 % 0.928

5 ELM 75 10 241 16 0.88 0.82 0.94 0.96 0.92 0.04 0.18 0.10 71 % 0.943

6 Random forest 71 14 237 20 0.84 0.78 0.92 0.94 0.90 0.06 0.22 0.09 63 % 0.955

7 Logit 81 91 160 10 0.47 0.89 0.94 0.64 0.71 0.36 0.11 0.07 48 % 0.901

8 Logit LASSO 76 91 160 15 0.46 0.84 0.91 0.64 0.69 0.36 0.17 0.06 40 % 0.881

9 Naive Bayes 57 38 213 34 0.60 0.63 0.86 0.85 0.79 0.15 0.37 0.05 31 % 0.878

10 LDA 69 93 158 22 0.43 0.76 0.88 0.63 0.66 0.37 0.24 0.04 28 % 0.851

11 Classification tree 42 24 227 49 0.64 0.46 0.82 0.90 0.79 0.10 0.54 0.02 12 % 0.616

12 Signal extraction 25 85 166 66 0.23 0.28 0.72 0.66 0.56 0.34 0.73 -0.06 -39 % 0.616

Negatives

Notes: The table reports a ranking of recursive out-of-sample performance for all methods given optimal thresholds with preferences of 0.8 and a 

forecast horizon of 5-12 quarters. The table also reports in columns the following measures to assess the overall performance of the models: TP 

= True positives, FP = False positives, TN= True negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall positives = 

TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall negatives = TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), absolute and relative 

usefulness Ua and Ur (see formulae 1-3), and AUC = area under the ROC curve (TP rate to FP rate). See Section 2.2 for further details on the 

measures.

TP FP TN FN

Positives

4.3. Aggregation of models

Beyond the use of a single technique, or many techniques in concert, the obvious next step is to
aggregate them into one model output. This is done with four approaches, as outlined in Section
3.2. The first two approaches combine the signals of individual methods, by using (i) only the best
method for out-of-sample analysis as per in-sample performance, and (ii) a majority vote to allow for
the simultaneous use of all model signals. The third and the fourth approach rely on the estimated
probabilities for each method by deriving an arithmetic and weighted mean of the probability for all
methods present in Tables 6 and 7. A natural way for weighting model output is to use their in-sample
performance, in our case relative Usefulness. This allows for giving a larger weight to those methods
that perform better and yields a similar model output as for individual methods, which can be tested
through cross-validated and recursive exercises.

Table 8 presents results for four different aggregation approaches for both the cross-validated and
recursive exercises. The simultaneous use of many models yields in general good results. While cross-
validated models rank among top five, in recursive estimations three out of four of the aggregated
approaches rank among the best two individual approaches. One potential explanation to better per-
formance in the recursive exercise is that it is a more stringent test and the cross-validated exercise
might be biased through excessive correlation among folds. Thus, when removing the potential de-
pendence in sampling, ensemble methods perform better than individual machine learning methods.
Further to this, we decrease uncertainty in the chosen method, as in-sample (or a priori) performance
is not an undisputed indicator of future performance. That is, beyond the potential in convincing
policymakers’ who might have a taste for one method over others, the aggregation tackles the problem
of choosing one method based upon performance. While in-sample performance might indicate that
one method outperforms others, it might still relate to sampling errors or an overfit to the sample at
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hand, and hence perform poorly on out-of-sample data. This highlights the value of using an aggrega-
tion rather than the choice of one single approach, however that is done. We again experiment with
so-called “unknown events” in recursive exercises. Table A.4 in the Appendix shows similar results to
those in Table 8 for individual methods, when dropping unknown events in the recursive exercise. The
aggregates show a drop in average Ur from 77% to 67%, whereas the AUC on average similar. Again,
no overfitting can be observed even with the more stringent test.13

As can be observed in Table 8, in most cases the other aggregation approaches do not perform much
better than the results of the simple arithmetic mean. This may be related to the fact that model
diversity has been shown to improve performance at the aggregate level (e.g., Kuncheva and Whitaker
[58]). For instance, more random methods (e.g., random forests) have been shown to produce a stronger
aggregate than more deliberate techniques (e.g., Ho [42]), in which case the aggregated models not
only use resampled observations but also resampled variables. As the better methods of our aggregate
may give similar model output, they might lead to lesser degree of diversity in the aggregate, but it
is also worth noting that we are close to reaching perfect performance, at which stage performance
improvements obviously become more challenging. Further approaches to ensemble learning should be
a topic of future work, as more diversity could easily be introduced to the different learning algorithms
through various approaches, such as variable and observation resampling.

Table 8: Aggregated results of cross-validated and recursive estimations.

 

Rank Method Estimation Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) U r (μ ) AUC

5 Non-weighted Cross-val. 92 41 1018 1 0.69 0.99 1.00 0.96 0.96 0.04 0.01 0.06 88 % 0.996

5 Weighted Cross-val. 86 32 1027 7 0.73 0.93 0.99 0.97 0.97 0.03 0.08 0.05 84 % 0.992

3 Best-of Cross-val. 89 15 1044 4 0.86 0.96 1.00 0.99 0.98 0.01 0.04 0.06 92 % 0.988

5 Voting Cross-val. 83 10 1049 10 0.89 0.89 0.99 0.99 0.98 0.01 0.11 0.06 87 % 0.942

2 Non-weighted Recursive 80 10 241 11 0.89 0.88 0.96 0.96 0.94 0.04 0.12 0.12 79 % 0.961

1 Weighted Recursive 84 31 220 7 0.73 0.92 0.97 0.88 0.89 0.12 0.08 0.11 77 % 0.945

1 Best-of Recursive 80 5 246 11 0.94 0.88 0.96 0.98 0.95 0.02 0.12 0.12 81 % 0.927

5 Voting Recursive 77 10 241 14 0.89 0.85 0.95 0.96 0.93 0.04 0.15 0.11 74 % 0.903

Negatives

Notes: The table reports cross-validated and recursive out-of-sample performance for the aggregates given optimal thresholds with preferences 

of 0.8 and a forecast horizon of 5-12 quarters. The first column resports its ranking vis-à-vis individual methods (Tables 4 and 5). The table also 

reports in columns the following measures to assess the overall performance of the models: TP = True positives, FP = False positives, TN= True 

negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall positives = TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall 

negatives = TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), absolute and relative usefulness Ua and Ur (see formulae 1-3), and AUC = area 

under the ROC curve (TP rate to FP rate). See Section 2.2 for further details on the measures.

TP FP TN FN

Positives

4.4. Model uncertainty

The final step in our empirical analysis involves computing model uncertainty, particularly related
to model performance and output.

Model performance uncertainty. One may question the above horse races to be outcomes of potential
biases due to sampling error and randomness in non-deterministic methods. This we ought to test
statistically for any rank inference to be valid. Hence, we perform similar exercises as in Tables 6, 7
and 8, but resample to account for model uncertainty. For the cross-validated exercise, we draw 500
samples for the 10 folds, and report average results, including SEs for three key performance measures.
Thus, Table 9 presents a robust horse race of cross-validated estimations. We can observe that KNN,
SVM, ANN and ELM are still the top-performing methods. They are followed by the aggregates,
whereafter the same methods as in Table 6 follow (descending order of performance): random forests,
QDA, classification trees, logit, LASSO, LDA and signal extraction.

13Beyond having similar results, a key argument for assigning events to the reference quarters in the sequel was that
we would otherwise need to use a later starting date of the recursion due to the short time series.
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In addition to a simple ranking, we also use Usefulness to assess statistical significance of rankings
among all other methods. The cross-comparison matrix for all methods can be found in Table A.5 in
the Appendix. The second column in Table 9 summarizes the results by showing the first lower-ranked
method that is statistically significantly different from each method. This indicates clustering of model
performance both among the best-in-class and worst-in-class methods. All methods until rank 6 are
shown to be better than non-weighted aggregates ranked at number 8. Likewise, all methods above
rank 11 seem to belong to a similarly performing group. The methods ranked below the 11th have
larger bilateral differences in performance, particularly signal extraction, which is significantly poorer
than all other approaches. It is also worth noting the true ensemble approaches (i.e., aggregations
excluding the best-of approach) decrease variation in model performance, which is expected as model
averaging decreases the impact of extreme outcomes. This is obviously of key concern when aiming
at robust early-warning models for policymaking. As a further robustness check, we also provide
cross-validated out-of-sample ROC curve plots for all methods and the aggregates in Figure A.2 in the
Appendix. Yet, we prefer to focus on the Usefulness-based rankings as they focus on a relevant point
of the AUC (µ = 0.8), rather than covering all potential preferences of a policymaker.

Table 9: A robust horse race of cross-validated estimations.

 

Rank Method Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) S.E. U r (μ ) S.E. AUC S.E.

1 4 KNN 88 10 1049 5 0.90 0.95 1.00 0.99 0.99 0.01 0.05 0.06 0.001 92 % 0.016 0.987 0.006

2 7 SVM 89 18 1041 4 0.84 0.96 1.00 0.98 0.98 0.02 0.04 0.06 0.001 91 % 0.017 0.998 0.001

3 8 Neural network 87 15 1044 6 0.86 0.94 0.99 0.99 0.98 0.01 0.06 0.06 0.001 90 % 0.022 0.996 0.003

4 8 ELM 87 22 1037 6 0.80 0.94 0.99 0.98 0.98 0.02 0.06 0.06 0.001 88 % 0.023 0.991 0.005

5 8 Weighted 89 30 1029 4 0.75 0.96 1.00 0.97 0.97 0.03 0.04 0.06 0.001 88 % 0.012 0.995 0.001

6 8 Voting 84 10 1049 9 0.90 0.90 0.99 0.99 0.98 0.01 0.10 0.06 0.001 88 % 0.017 0.947 0.008

7 11 Best-of 79 5 1054 14 0.95 0.86 0.99 1.00 0.98 0.00 0.15 0.05 0.002 84 % 0.030 0.991 0.005

8 11 Non-weighted 87 39 1020 6 0.70 0.94 0.99 0.96 0.96 0.04 0.07 0.05 0.001 83 % 0.010 0.992 0.001

9 11 Random forest 81 20 1039 12 0.81 0.88 0.99 0.98 0.97 0.02 0.13 0.05 0.003 82 % 0.042 0.996 0.001

10 11 QDA 78 18 1041 15 0.82 0.84 0.99 0.98 0.97 0.02 0.16 0.05 0.002 79 % 0.024 0.984 0.001

11 13 Classific. tree 63 13 1046 30 0.83 0.67 0.97 0.99 0.96 0.01 0.33 0.04 0.002 64 % 0.027 0.882 0.018

12 13 Naive Bayes 75 78 981 18 0.49 0.81 0.98 0.93 0.92 0.07 0.20 0.04 0.001 60 % 0.019 0.948 0.002

13 15 Logit 75 100 959 18 0.43 0.81 0.98 0.91 0.90 0.10 0.19 0.04 0.001 54 % 0.018 0.933 0.008

14 15 Logit LASSO 74 100 959 19 0.43 0.80 0.98 0.91 0.90 0.09 0.20 0.03 0.001 53 % 0.017 0.934 0.001

15 16 LDA 74 120 939 19 0.38 0.80 0.98 0.89 0.88 0.11 0.20 0.03 0.001 48 % 0.022 0.927 0.002

16 - Signal extract. 15 46 1013 78 0.25 0.16 0.93 0.96 0.89 0.04 0.84 0.00 0.001 4 % 0.014 0.712 0.000

Negatives

Notes: The table reports out-of-sample performance for all methods for 500 repeated cross-validations with optimal thresholds given preferences of 0.8 and a 

forecast horizon of 5-12 quarters. The table ranks methods based upon relative Usefulness, for which the second column provides significant differences 

among methods. The table also reports in columns the following measures to assess the overall performance of the models: TP = True positives, FP = False 

positives, TN= True negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall positives = TP/(TP+FN), Precision negatives = TN/(TN+FN), 

Recall negatives = TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), absolute and relative usefulness Ua and Ur (see formulae 1-3), and AUC = area 

under the ROC curve (TP rate to FP rate), as well as S.E. = standard errors. See Section 2.2 for further details on the measures.

Sig > 

rank TP FP TN FN

Positives

To again perform the more stringent recursive real-time evaluation, but as a robust exercise, we
combine the recursive horse race with double resampling. In Table 10, we draw 500 bootstrap samples
of in-sample data for each quarter, and again report average out-of-sample results, including its SE. In
comparison with the results for the single estimations in Table 7, the rankings exhibit slight differences.
Whilst most machine learning methods still outperform the more conventional methods, the difference
is smaller in general. In particular, ANN exhibits best Usefulness among the individual methods, while
its counterpart SVM performs worse than in the single estimations. Most notably, Logit LASSO and
classification trees show a positive increase in ranking. Again, based upon the statistical significances
of the cross-comparison matrix in Table A.6 in the Appendix, we report significant differences in ranks
in the second column of Table 10. Compared to the cross-validation exercise, the variation in in-sample
data introduced by the double bootstrap has a notable effect on the variation in performance, and hence
also on the significant differences in ranks. The top three methods in Table 10 are aggregates, being
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the only methods statistically significantly better than any other method than signal extraction. Next
is a large intermediate group of approaches, with signal extraction being the worst-in-class method.
Again, we also provide recursive out-of-sample ROC curve plots for all methods and the aggregates in
Figure A.3 in the Appendix.

In line with this, as there is no one single performance measure, we also rank methods in both of
the two exercises based upon their AUC, compute their variation in the exercise and conduct equality
tests. For both the cross-validated and the recursive exercises, these tables show coinciding results
with the Usefulness-based rankings, as is shown in the Appendix in A.7 and A.8. For cross-validated
evaluations, one key difference is that the AUC ranking shows better relative performance for the
random forest and the best-of and non-weighted aggregates, whereas the KNN and QDA improve their
ranking in the recursive exercise.

Table 10: A robust horse race of recursive real-time estimations.

 

Rank Method Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) S.E. U r (μ ) S.E. AUC S.E.

1 5 Weighted 81 44 207 10 0.658 0.89 0.955 0.825 0.842 0.175 0.109 0.1 0.01 67 % 0.06 0.921 0.02

2 5 Non-weighted 83 59 192 8 0.591 0.91 0.962 0.763 0.803 0.237 0.086 0.09 0.01 64 % 0.05 0.91 0.018

3 7 Best-of 77 53 198 14 0.612 0.84 0.935 0.79 0.804 0.21 0.158 0.08 0.01 56 % 0.1 0.842 0.042

4 16 Neural network 60 31 220 31 0.661 0.67 0.879 0.875 0.819 0.125 0.335 0.06 0.02 39 % 0.14 0.863 0.035

5 16 KNN 54 9 242 37 0.857 0.59 0.867 0.964 0.864 0.036 0.412 0.05 0.02 37 % 0.13 0.901 0.029

6 16 QDA 20 2 233 36 0.895 0.36 0.868 0.99 0.869 0.01 0.636 0.05 0.02 35 % 0.1 0.872 0.048

7 16 Voting 52 23 228 39 0.693 0.571 0.854 0.908 0.819 0.092 0.429 0.042 0.01 29 % 0.1 0.740 0.034

8 16 Logit LASSO 68 100 151 23 0.408 0.75 0.869 0.603 0.642 0.397 0.252 0.04 0.02 24 % 0.13 0.764 0.059

9 16 Classific. tree 58 61 190 33 0.495 0.64 0.855 0.756 0.726 0.244 0.358 0.04 0.02 24 % 0.17 0.754 0.065

10 16 Logit 59 75 176 32 0.441 0.65 0.849 0.699 0.687 0.301 0.346 0.03 0.02 20 % 0.14 0.813 0.044

11 16 Random forest 48 30 221 43 0.614 0.53 0.839 0.879 0.785 0.121 0.472 0.03 0.03 19 % 0.18 0.762 0.074

12 16 ELM 53 64 187 38 0.454 0.58 0.832 0.745 0.702 0.255 0.418 0.02 0.02 14 % 0.14 0.724 0.043

13 16 SVM 50 60 191 41 0.471 0.55 0.825 0.762 0.707 0.238 0.446 0.02 0.03 12 % 0.18 0.725 0.082

14 16 LDA 55 80 171 36 0.406 0.6 0.825 0.681 0.659 0.319 0.401 0.02 0.02 10 % 0.14 0.757 0.042

15 16 Naive Bayes 39 33 218 52 0.542 0.43 0.809 0.869 0.752 0.131 0.568 0.01 0.02 5 % 0.13 0.781 0.051

16  - Signal extract. 31 85 166 60 0.266 0.34 0.733 0.662 0.575 0.338 0.665 -0.04 0.02 -30 % 0.1 0.609 0.028

Negatives

Notes: The table reports recursive out-of-sample performance with 500 recursively generated bootstraps for all methods with optimal thresholds given 

preferences of 0.8 and a forecast horizon of 5-12 quarters. The table ranks methods based upon relative Usefulness, for which the second column provides 

significant differences among methods. The table also reports in columns the following measures to assess the overall performance of the models: TP = 

True positives, FP = False positives, TN= True negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall positives = TP/(TP+FN), Precision 

negatives = TN/(TN+FN), Recall negatives = TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), absolute and relative usefulness U a and Ur (see formulae 

1-3), and AUC = area under the ROC curve (TP rate to FP rate), as well as S.E. = standard errors. See Section 2.2 for further details on the measures.

Sig > 

rank TP FP TN FN

Positives

Model output uncertainty. This section goes beyond pure measurement of classification performance
by first illustrating more qualitatively the value of representing uncertainty for early-warning models.
In line with Section 3.3, we provide confidence intervals (CIs) as an estimate of the uncertainty in
a crisis probability and its threshold. When computed for the aggregates, we also capture increases
in the variance of sample probabilities due to disagreement in model output among methods, beyond
variation caused by resampling. In Figure 2, we show line charts with crisis probabilities and thresholds
for United Kingdom and Sweden from 2004Q1–2014Q1 for one individual method (KNN), where tubes
around lines represent CIs. The probability observations that are not found to statistically significantly
differ from a threshold (i.e., above or below) are shown with circles. This represents uncertainty, and
hence points to the need for further scrutiny, rather than a mechanical classification into vulnerable or
tranquil periods. Thus, the interpretation may indicate vulnerability for an observation to be below
the threshold or vice versa.
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Figure 2: Probabilities and thresholds, and their CIs, of KNN for United Kingdom and Sweden

For UK, the left chart in Figure 2 illustrates first one elevated signal (but no threshold exceedance)
already in 2002, and then during the pre-crisis period larger variation in elevated probabilities, which
cause an insignificant difference to the threshold and hence an indication of potential vulnerability.
This would have indicated vulnerability four quarters earlier than without considering uncertainty.
On the other hand, the right chart in Figure 2 shows for Sweden that the two observations after a
post-crisis period are elevated but below the threshold. In the correct context, and in conjunction
with expert judgment, this would most likely not be related to a boom-bust type of an imbalance, but
rather elevated values in the aftermath of a crisis.

As a next step in showing the usefulness of incorporating uncertainty in models, we conduct an
early-warning exercise in which we disregard observations whose probabilities pmn and pan do not sta-
tistically significantly differ from thresholds τmn and τan , respectively. Due to larger data needs in the
recursive exercise, which would leave us with small samples, we only conduct a cross-validated horse
race of methods, as well as compare it to the exercise in Table 9. In this case, the cross-validated ex-
ercise functions well as a test of the impact of disregarding insignificant observations on early-warning
performance. In Table 11, rather than focusing on specific rankings of methods, we enable a comparison
of the results of the new performance evaluation to the full results in Table 9.14 With the exception of
signal extraction, which anyhow exhibits low Usefulness, we can observe that all methods yield better
performance when dropping insignificant observations. While this is intuitive, as the dropped observa-
tions are borderline cases, the results mainly function as general-purpose evidence of our model output
uncertainty measure and the usefulness of considering statistical significance vis-à-vis thresholds.

14Voting is not considered as there is no direct approach to deriving statistical significance of binary majority votes.
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Table 11: A robust and significant horse race of cross-validated estimations.

 

Rank Method Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) S.E. U r (μ ) S.E. AUC S.E.

1 ELM 54 0 233 0 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.15 0.000 100 % 0.003 1.000 0.000

2 SVM 72 0 650 0 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.08 0.000 100 % 0.003 1.000 0.000

3 Neural network 58 0 810 0 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.05 0.000 100 % 0.005 1.000 0.000

4 Random forest 46 0 766 0 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.05 0.000 100 % 0.007 1.000 0.000

5 Best-of 84 10 859 0 0.89 1.00 1.00 0.99 0.99 0.01 0.00 0.06 0.001 97 % 0.009 0.999 0.001

6 Weighted 85 13 1014 2 0.86 0.98 1.00 0.99 0.99 0.01 0.02 0.06 0.000 94 % 0.007 0.998 0.000

8 KNN 76 17 981 1 0.82 0.99 1.00 0.98 0.98 0.02 0.01 0.05 0.000 93 % 0.003 0.997 0.001

7 Non-weighted 82 15 999 4 0.85 0.96 1.00 0.99 0.98 0.02 0.04 0.06 0.001 92 % 0.011 0.996 0.000

9 QDA 60 7 1023 6 0.89 0.91 0.99 0.99 0.99 0.01 0.09 0.04 0.000 88 % 0.008 0.986 0.001

10 Classific. tree 43 0 710 9 0.99 0.82 0.99 1.00 0.99 0.00 0.18 0.05 0.001 82 % 0.015 0.919 0.016

11 Naive Bayes 65 40 941 8 0.62 0.89 0.99 0.96 0.95 0.04 0.11 0.04 0.000 75 % 0.003 0.959 0.002

12 Logit LASSO 63 77 928 13 0.45 0.83 0.99 0.92 0.92 0.08 0.17 0.03 0.000 58 % 0.003 0.945 0.001

13 Logit 61 79 922 13 0.44 0.82 0.99 0.92 0.91 0.08 0.18 0.03 0.000 56 % 0.006 0.946 0.007

14 LDA 64 90 899 12 0.42 0.84 0.99 0.91 0.90 0.09 0.16 0.03 0.000 55 % 0.006 0.942 0.002

15 Signal extract. 0 23 987 77 0.02 0.01 0.93 0.98 0.91 0.02 1.00 0.00 0.000 -7 % 0.008 0.690 0.000

Negatives

Notes: The table reports out-of-sample performance for all methods for 500 repeated cross-validations with optimal thresholds given preferences of 

0.8 and a forecast horizon of 5-12 quarters. The table ranks methods based upon relative Usefulness. The table also reports in columns the following 

measures to assess the overall performance of the models: TP = True positives, FP = False positives, TN= True negatives, FN = False negatives, 

Precision positives = TP/(TP+FP), Recall positives = TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall negatives = TN/(TN+FP), Accuracy = 

(TP+TN)/(TP+TN+FP+FN), absolute and relative usefulness Ua and Ur (see formulae 1-3), AUC = area under the ROC curve (TP rate to FP rate) and 

OT = optimal thresholds, as well as S.E. = standard errors. See Section 2.2 for further details on the measures.

TP FP TN FN

Positives

5. Conclusion

This paper has presented first steps toward robust early-warning models. As early-warning models
are oftentimes built in isolation of other methods, the exercise is of high relevance for assessing the
relative performance of a wide variety of methods.

We have conducted a cross-validated and recursive horse race of conventional statistical and more
recent machine learning methods. This provided information on best-performing approaches, as well as
an overall ranking of early-warning methods. The value of the horse race descends from its robustness
and objectivity. Further, we have tested four structured approaches to aggregating the information
products of built early-warning models. Two structured approaches involve choosing the best method
(in-sample) for out-of-sample use, and relying on the majority vote of all methods together. Then,
moving toward more standard ensemble methods for the use of multiple modeling techniques, we
combined model outputs into an arithmetic mean and performance-weighted mean of all methods.
Finally, we provided approaches for estimating model uncertainty in early-warning exercises. One
approach to tackling model performance uncertainty, and provide robust rankings of methods, is the
use of mean-comparison tests on model performance. Also, we allow for testing whether differences
among the model output and thresholds are statistically significantly different, as well as show that
accounting for this in signaling exercises yields added value. All approaches put forward in this paper
have been applied in a European setting, particularly in predicting the still ongoing financial crisis using
a broad set of indicators. Generally, our results show that the conventional statistical approaches are
outperformed by more advanced machine learning methods, such as k-nearest neighbors and neural
networks, and particularly by model aggregation approaches through ensemble learning.

The value and implications of this paper are manifold. First, we provide an approach for conducting
robust and objective horse races, as well as an application to Europe. In relation to previous efforts,
this provides the first objective comparison of model performance, as we assure a similar setting for
each method when being evaluated, including data, forecast horizons, post-crisis bias, loss function,
policymaker’s preferences and overall exercise implementation. The robustness descends from the
use of resampling to assess performance, which assures stable results not only with respect to small
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variation in data but also for the non-deterministic modeling techniques. In the recursive real-time
exercises that control for non-linear function approximators overfitting data, we still find recent machine
learning approaches to outperform conventional statistical methods. Beyond showing that machine
learning approaches have potential in these types of exercises, this also points to the importance of
using appropriate resampling techniques, such as accounting for time dependence. Second, given the
number of different available methods, the use of multiple modeling techniques is a necessity in order
to collect information of different types of vulnerabilities. This might involve the simultaneous use of
multiple models in parallel or some type of aggregation. In addition to improvements in performance
and robustness, this may be valuable due to the fact that some of the more recent machine learning
techniques are oftentimes seen as opaque in their functioning and less interpretable. For instance, if a
majority vote of a panel of models points to a vulnerability, preferences against one individual modeling
approach are less of a concern. Thus, as the ensemble models both perform well in horse races and
decrease variability in model performance, structured approaches to aggregate model output ought
to be one part of a robust early-warning toolbox. Third, even though techniques and data for early-
warning analysis are advancing, and so is performance, it is of central importance to understand the
uncertainty in models. A key topic is to assure that breaching a threshold is not due to sampling error
alone. Likewise, we should be concerned with observations below but close to a threshold, particularly
when the difference is not of significant size.

For the future, we hope that a large number of approaches for measuring systemic risk, including
those presented herein, are to be implemented in a more structured and user-friendly manner. In par-
ticular, a broad palette of measurement techniques requires a common platform for modeling systemic
risk and visualizing information products, as well as means to interact with both model parameters and
visual interfaces. This could, for instance, involve the use of visualization and interaction techniques
provided in the VisRisk platform for visual systemic risk analytics [72], as well as more advanced
data and dimension reduction techniques [73, 75]. In conjunction with these types of interfaces, we
hope that this paper generally stimulates the simultaneous use of a broad panel of methods, and their
aggregates, as well as accounting for uncertainty when interpreting results.
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Appendix A. Robustness tests and additional results

Table A.1: Cross-validated results for signal extraction.

 

Method Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) U r (μ ) AUC

Debt to service ratio 15 39 1020 78 0.28 0.16 0.93 0.96 0.90 0.04 0.84 0.00 6 % 0.51

Inflation 39 133 926 54 0.23 0.42 0.95 0.87 0.84 0.13 0.58 0.00 6 % 0.50

Government debt to GDP 12 35 1024 81 0.26 0.13 0.93 0.97 0.90 0.03 0.87 0.00 4 % 0.51

Credit growth 15 49 1010 78 0.23 0.16 0.93 0.95 0.89 0.05 0.84 0.00 3 % 0.50

House prices to income 0 0 1059 93 NA 0.00 0.92 1.00 0.92 0.00 1.00 0.00 0 % 0.52

Current account to GDP 0 0 1059 93 NA 0.00 0.92 1.00 0.92 0.00 1.00 0.00 0 % 0.50

Loans to income 0 0 1059 93 NA 0.00 0.92 1.00 0.92 0.00 1.00 0.00 0 % 0.51

Credit to GDP 0 0 1059 93 NA 0.00 0.92 1.00 0.92 0.00 1.00 0.00 0 % 0.50

GDP growth 0 0 1059 93 NA 0.00 0.92 1.00 0.92 0.00 1.00 0.00 0 % 0.50

Bond yield 0 0 1059 93 NA 0.00 0.92 1.00 0.92 0.00 1.00 0.00 0 % 0.49

House price growth 11 47 1012 82 0.19 0.12 0.93 0.96 0.89 0.04 0.88 0.00 -1 % 0.50

House price gap 26 109 950 67 0.19 0.28 0.93 0.90 0.85 0.10 0.72 0.00 -1 % 0.51

Stock price growth 6 42 1017 87 0.13 0.07 0.92 0.96 0.89 0.04 0.94 0.00 -5 % 0.51

Credit to GDP gap 49 221 838 44 0.18 0.53 0.95 0.79 0.77 0.21 0.47 0.00 -7 % 0.51

Notes: The table reports cross-validated out-of-sample performance for signal extraction with optimal thresholds with preferences of 0.8 The 

forecast horizon is 5-12 quarters. The table also reports in columns the following measures to assess the overall performance of the models: TP = 

True positives, FP = False positives, TN= True negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall positives = 

TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall negatives = TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), absolute and relative 

usefulness Ua and Ur (see formulae 1-3), and AUC = area under the ROC curve (TP rate to FP rate). See Section 2.2 for further details on the 

measures.

TP FP TN FN

Positives Negatives

Table A.2: Cross-validated results for signal extraction with µ = 0.9193.

 

Method Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) U r (μ ) AUC

Stock price growth 83 360 699 10 0.19 0.89 0.99 0.66 0.68 0.34 0.11 0.04 55 % 0.78

Credit to GDP gap 72 306 753 21 0.19 0.77 0.97 0.71 0.72 0.29 0.23 0.04 49 % 0.77

Debt to service ratio 53 225 834 40 0.19 0.57 0.95 0.79 0.77 0.21 0.43 0.03 36 % 0.71

Credit growth 68 407 652 25 0.14 0.73 0.96 0.62 0.63 0.38 0.27 0.03 35 % 0.70

House price gap 57 292 767 36 0.16 0.61 0.96 0.72 0.72 0.28 0.39 0.03 34 % 0.66

Inflation 73 484 575 20 0.13 0.79 0.97 0.54 0.56 0.46 0.22 0.02 33 % 0.76

Government debt to GDP 55 287 772 38 0.16 0.59 0.95 0.73 0.72 0.27 0.41 0.02 32 % 0.71

Bond yield 72 497 562 21 0.13 0.77 0.96 0.53 0.55 0.47 0.23 0.02 31 % 0.74

GDP growth 76 554 505 17 0.12 0.82 0.97 0.48 0.50 0.52 0.18 0.02 29 % 0.71

House price growth 66 484 575 27 0.12 0.71 0.96 0.54 0.56 0.46 0.29 0.02 25 % 0.65

Current account to GDP 90 799 260 3 0.10 0.97 0.99 0.25 0.30 0.75 0.03 0.02 21 % 0.64

House prices to income 81 844 215 12 0.09 0.87 0.95 0.20 0.26 0.80 0.13 0.01 7 % 0.54

Credit to GDP 47 557 502 46 0.08 0.51 0.92 0.47 0.48 0.53 0.50 0.00 -2 % 0.53

Loans to income 74 899 160 19 0.08 0.80 0.89 0.15 0.20 0.85 0.20 0.00 -5 % 0.76

Notes: The table reports cross-validated out-of-sample performance for signal extraction with optimal thresholds with preferences of 0.9193 (1-

Pr(C =1)). The forecast horizon is 5-12 quarters. The table also reports in columns the following measures to assess the overall performance of 

the models: TP = True positives, FP = False positives, TN= True negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall 

positives = TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall negatives = TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), absolute 

and relative usefulness Ua and Ur (see formulae 1-3), and AUC = area under the ROC curve (TP rate to FP rate). See Section 2.2 for further details 

on the measures.

TP FP TN FN

Positives Negatives
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Table A.3: A horse race of recursive real-time estimations with dropped windows.

 

Method Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) U r (μ ) AUC

KNN 72 5 239 14 0.94 0.84 0.95 0.98 0.94 0.02 0.16 0.11 75 % 0.979

Neural network 74 21 223 12 0.78 0.86 0.95 0.91 0.90 0.09 0.14 0.11 72 % 0.969

SVM 74 23 221 12 0.76 0.86 0.95 0.91 0.89 0.09 0.14 0.11 71 % 0.952

ELM 75 33 211 11 0.69 0.87 0.95 0.87 0.87 0.14 0.13 0.10 68 % 0.969

QDA 35 0 235 21 1.00 0.63 0.92 1.00 0.93 0.00 0.38 0.10 63 % 0.977

LDA 71 101 143 15 0.41 0.83 0.91 0.59 0.65 0.41 0.17 0.05 34 % 0.870

Logit LASSO 66 98 146 20 0.40 0.77 0.88 0.60 0.64 0.40 0.23 0.04 27 % 0.858

Random forest 43 35 209 43 0.55 0.50 0.83 0.86 0.76 0.14 0.50 0.02 15 % 0.970

Naive Bayes 41 34 210 45 0.55 0.48 0.82 0.86 0.76 0.14 0.52 0.02 12 % 0.853

Logit 54 88 156 32 0.38 0.63 0.83 0.64 0.64 0.36 0.37 0.02 12 % 0.850

Classific. tree 23 12 232 63 0.66 0.27 0.79 0.95 0.77 0.05 0.73 -0.01 -8 % 0.417

Signal extract. 16 94 150 70 0.15 0.19 0.68 0.62 0.50 0.39 0.81 -0.08 -53 % 0.620

Notes: The table reports a ranking of recursive out-of-sample performance for all methods given optimal thresholds with preferences of 0.8 

and a forecast horizon of 5-12 quarters, for which a window has been dropped at each quarter. The table also reports in columns the following 

measures to assess the overall performance of the models: TP = True positives, FP = False positives, TN= True negatives, FN = False 

negatives, Precision positives = TP/(TP+FP), Recall positives = TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall negatives = 

TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), absolute and relative usefulness Ua and Ur (see formulae 1-3), and AUC = area under 

the ROC curve (TP rate to FP rate). See Section 2.2 for further details on the measures.

TP FP TN FN

Positives Negatives

Table A.4: Aggregated results of recursive estimations with dropped windows.

 

Method Estimation Precision Recall Precision Recall Accuracy FP rate FN rate U a (μ ) U r (μ ) AUC

Non-weighted Recursive 84 35 209 2 0.71 0.98 0.99 0.86 0.89 0.14 0.02 0.12 82 % 0.953

Weighted Recursive 83 38 206 3 0.69 0.97 0.99 0.84 0.88 0.16 0.04 0.12 80 % 0.970

Best-of Recursive 68 24 220 18 0.74 0.79 0.92 0.90 0.87 0.10 0.21 0.09 61 % 0.846

Voting Recursive 55 6 238 31 0.90 0.64 0.89 0.98 0.89 0.03 0.36 0.07 47 % 0.933

Notes: The table reports recursive out-of-sample performance for the aggregates given optimal thresholds with preferences of 0.8 and a 

forecast horizon of 5-12 quarters, for which a window has been dropped at each quarter. The first column resports its ranking vis-à-vis 

individual methods (Tables 4 and 5). The table also reports in columns the following measures to assess the overall performance of the 

models: TP = True positives, FP = False positives, TN= True negatives, FN = False negatives, Precision positives = TP/(TP+FP), Recall 

positives = TP/(TP+FN), Precision negatives = TN/(TN+FN), Recall negatives = TN/(TN+FP), Accuracy = (TP+TN)/(TP+TN+FP+FN), 

absolute and relative usefulness Ua and Ur (see formulae 1-3), and AUC = area under the ROC curve (TP rate to FP rate). See Section 2.2 for 

further details on the measures.

TP FP TN FN

Positives Negatives
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Table A.5: Significances of cross-validated Usefulness comparisons.

 

KNN SVM

Neural 

network ELM Weighted Voting Best-of

Non-

weighted

Random 

forest QDA

Classific. 

tree

Naive 

Bayes Logit

Logit 

LASSO LDA

Signal 

extract.

KNN X X X X X X X X X X X X X

SVM X X X X X X X X X X

Neural network X X X X X X X X

ELM X X X X X X X X X

Weighted X X X X X X X X X

Voting X X X X X X X X X

Best-of X X X X X X X X

Non-weighted X X X X X X X X X X X X

Random forest X X X X X X X X

QDA X X X X X X X X X X X X

Classific. tree X X X X X X X X X X X X X X

Naive Bayes X X X X X X X X X X X X X X

Logit X X X X X X X X X X X X X X

Logit LASSO X X X X X X X X X X X X X X

LDA X X X X X X X X X X X X X X X

Signal extract. X X X X X X X X X X X X X X X

Notes: The table reports statistical significances for comparisons of relative Usefulness among methods. An 'X' mark represents statistically significant 

differences among methods and the methods are sorted by ascending relative Usefulness. The t-critical values are estimated from each methods own empirical 

resampling distribution.

Table A.6: Significances of recursive Usefulness comparisons.

 

Weighted

Non-

weighted Best-of

Neural 

network KNN QDA Voting

Logit 

LASSO

Classific. 

tree Logit

Random 

forest ELM SVM LDA

Naive 

Bayes

Signal 

extract.

Weighted X X X X X X X X X X X X

Non-weighted X X X X X X X X X X X X

Best-of X X X X X X X X

Neural network X

KNN X X X

QDA X X X

Voting X X X X

Logit LASSO X X X X

Classific. tree X X X

Logit X X X X

Random forest X X X

ELM X X X X

SVM X X X X

LDA X X X X

Naive Bayes X X X X

Signal extract. X X X X X X X X X X X X X X X

Notes: The table reports statistical significances for comparisons of relative Usefulness among methods. An 'X' mark represents statistically significant 

differences among methods and the methods are sorted by ascending relative Usefulness. The t-critical values are estimated from each methods own empirical 

resampling distribution.
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Table A.7: Significances of cross-validated AUC comparisons.

 

SVM

Random 

forest

Neural 

network Weighted Best-of

Non-

weighted ELM KNN QDA

Naive 

Bayes Voting

Logit 

LASSO Logit LDA

Classific. 

tree

Signal 

extract.

SVM X X X X X X X X X X X

Random forest X X X X X X X X X X

Neural network X X X X X X X X

Weighted X X X X X X X X X X X

Best-of  X X X X X X X X

Non-weighted X X X X X X X X X X X

ELM X X X X X X X

KNN X X X X X X X X X X

QDA X X X X X X X X X X X X X

Naive Bayes X X X X X X X X X X X X X X

Voting X X X X X X X X X X X X X

Logit LASSO X X X X X X X X X X X X X

Logit X X X X X X X X X X X X X

LDA X X X X X X X X X X X X X X

Classific. tree X X X X X X X X X X X X X X X

Signal extract. X X X X X X X X X X X X X X X

Notes: The table reports statistical significances for comparisons of AUC among methods. An 'X' mark represents statistically significant differences among 

methods and the methods are sorted by ascending AUC. The t-critical values are estimated from each methods own empirical resampling distribution.

Table A.8: Significances of recursive AUC comparisons.

 

Weighted

Non-

weighted KNN QDA

Neural 

network Best-of Logit

Naive 

Bayes Logit LASSO

Random 

forest LDA

Classific. 

tree Voting SVM ELM

Signal 

extract.

Weighted X X X X X X X X X X X X

Non-weighted X X X X X X X X X X X X

KNN X X X X X X X X

QDA X

Neural network X X X

Best-of X X X

Logit X X X X

Naive Bayes X X X X

Logit LASSO X X X

Random forest X X X X

LDA X X X

Classific. tree X X X X

Voting X X X X

SVM X X X X

ELM X X X X

Signal extract. X X X X X X X X X X X X X X X

Notes: The table reports statistical significances for comparisons of AUC among methods. An 'X' mark represents statistically significant differences among 

methods and the methods are sorted by ascending AUC. The t-critical values are estimated from each methods own empirical resampling distribution.
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Figure A.1: Plots of each indicator from t − 12 to t + 8 around crisis occurrences for each country. The average of all
entities is depicted as a bold line.
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Figure A.2: Cross-validated out-of-sample ROC curve plots for all methods and the aggregates
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Figure A.3: Recursive out-of-sample ROC curve plots for all methods and the aggregates
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