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Non-Technical Summary

The concept of Granger causality was introduced by Granger (1969) and is based on the idea

that variable x which causes another variable y should precede it. This idea has been formalized

such that x is said not to Granger-cause y if past and current information about x does not

improve the forecast of y in a mean square error sense; see also Sims (1972). Knowledge of

Granger causal relations may allow a researcher to formulate an appropriate model and obtain

a better forecast of variables of interest. Note that this concept refers to the forecasting of

variables, in contrast to, e.g., the causality concept attributed to Rubin (1974), based on ceteris

paribus effects.

Granger-causality has primarily been studied empirically in vector autoregressions (VARs)

with a focus on one-step-ahead forecasts; see, e.g., Lütkepohl (1993). In such a setting, x does

not Granger-cause y if the coefficients on lags of x in the equation for y are jointly zero. Other

parametric time series models have also been used to study Granger causality based on the one-

step-ahead forecasts, including vector autoregressive moving average (VARMA), logistic smooth

transition vector autoregressive (LST-VAR), and some models from the family of generalized

autoregressive conditional heteroskedasticity (GARCH) models.

Psaradakis, Ravn, and Sola (2005) use a Markov-switching (MS) VAR model to analyze

temporary Granger causality within the money-income system, i.e., causality which holds in

some periods (regimes) but not in others. This means that they condition the causality analysis

on realizations of the unobserved regime (hidden Markov) process and therefore focus only

on linear relations between variables. That is, x does not Granger cause y temporarily if the

coefficients on lags of x in the equation for y are zero in some of the regimes. Since all parameters

of an MS-VAR model may, in principle, vary with the unobserved regimes process, their analysis

neglects the possibility that x may be useful for predicting the regimes that affect the coefficients

in the y equation.

The approach to Granger causality that we consider in this paper takes into account the

two sources of predictive relations between the variables of interest: first, the linear relations

in the VAR model conditional on the states, and second, the fact that all of the variables are

used to forecast the future probabilities of the states. The analysis of Granger causality is

consequently not conditioned on the realizations of the unobserved regime process, but only

on observed variables. Both of these properties make it difficult to conduct classical inference,

where multiple sets of restrictions complicate the determination of the overall test level and

nonlinearities may affect the asymptotic properties of test statistics.

As a second contribution, we suggest an approach for performing Bayesian inference that

allows us to test all of the restrictions of Granger noncausality jointly. The proposed framework

consists of Bayesian estimation of the unrestricted model, allowing for Granger causality, and

of the restricted models representing hypotheses of noncausality. The hypotheses of Granger

causality and noncausality can thereafter be evaluated with standard Bayesian methods.
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The main advantage of our approach is that we can test a hypothesis represented by several

restricted models jointly. Another feature of the analysis is that all the hypotheses are treated

symmetrically. As a consequence, this method gives arguments in favor of a hypothesis.

In the empirical investigation we find that Granger noncausality from monthly US money to

income established for linear (single regime) VARs is contradicted by the evidence from nonlinear

models. The causality analysis of MS-VARs suggest that money is essential for the forecasting

of the probabilities of the states which influence the behavior of income. Although Granger

noncausality is given a non-zero posterior probability, the posterior probability of the Granger

causality hypothesis is several 1000s times larger for MS-VARs.

Since mixture VAR models are nested in MS-VAR models, our analytical results on Granger

noncausality can also be applied to such models. In the empirical example for US money and

income, we also find strong support in favor of the hypothesis that money Granger causes income

in a mixture VAR. Moreover, we find that MS-VARs dominate mixture VARs, while mixture

VARs strongly dominate the linear VAR specification.
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1. Introduction

The concept of Granger causality was introduced by Granger (1969) and is based on the idea

that variable x which causes another variable y should precede it. This idea has been formalized

such that x is said not to Granger-cause y if past and current information about x does not

improve the forecast of y in a mean square error sense; see also Sims (1972). Knowledge of

Granger causal relations may allow a researcher to formulate an appropriate model and obtain

a better forecast of variables of interest. Note that this concept refers to the forecasting of

variables, in contrast to, e.g., the causality concept attributed to Rubin (1974), based on ceteris

paribus effects (for the comparison of the two concepts used in econometrics, see e.g. Lechner,

2011). We also underline that in general Granger causality does not relate to any causal relation

implied by structural economic theories either. Such correspondence has only been shown for

linear Gaussian models by White and Lu (2010).

Granger-causality has primarily been studied empirically in vector autoregressions (VARs)

with a focus on one-step-ahead forecasts; see, e.g., Lütkepohl (1993). In such a setting, x

does not Granger-cause y if the coefficients on lags of x in the equation for y are jointly zero.

Among other parametric time series models that have been analyzed for Granger causality of

different types are: a family of vector autoregressive moving average (VARMA) models (see

Boudjellaba, Dufour, and Roy, 1994, and references therein), the logistic smooth transition

vector autoregressive (LST-VAR) model (Christopoulos and León-Ledesma, 2008), some models

from the family of Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models

(Comte and Lieberman, 2000; Woźniak, 2012b; Woźniak, 2012a), as well as dynamic discrete-

time bivariate probit model (Mosconi and Seri, 2006). Note that all these works analyze one-

step-ahead Granger noncausality (see Lütkepohl, 1993; Lütkepohl and Burda, 1997; Dufour,

Pelletier, and Renault, 2006, for analyses based on h-step-ahead forecasts in VAR models).

Psaradakis et al. (2005) use a Markov-switching (MS) VAR model to analyze temporary

Granger causality within the money-income system, i.e., causality which holds in some peri-

ods but not in others. Technically, this means that they condition the causality analysis on

realizations of the hidden Markov process and therefore focus only on linear relations between

variables. That is, x does not Granger cause y temporarily if the coefficients on lags of x in the

equation for y are zero in some of the states. Since all parameters of an MS-VAR model may,

in principle, vary with the hidden Markov process, their analysis neglects the possibility that x

may be useful for predicting the states that affect the coefficients in the y equation.

The approach to Granger causality that we consider in this paper takes into account the two

sources of predictive relations between the variables of interest: first, the linear relations in the

VAR model conditional on the states, and second, the fact that all of the variables are used to

forecast the future probabilities of the states. The analysis of Granger causality is consequently

not conditioned on the realizations of the hidden Markov process, but only on observed variables.

Both of these properties make it difficult to conduct classical inference, where multiple sets of
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restrictions complicates the determination of the overall test level and nonlinearities may affect

the asymptotic properties of test statistics.

As a second contribution, we suggest an approach for performing Bayesian inference that

allows us to test all of the restrictions of Granger noncausality jointly. The proposed framework

consists of Bayesian estimation of the unrestricted model, allowing for Granger causality, and

of the restricted models representing hypotheses of noncausality. For this purpose, we construct

a novel block Metropolis-Hastings sampling algorithm that allows for the estimation of the

restricted models. The hypotheses of Granger causality and noncausality can thereafter be

evaluated with standard Bayesian methods using posterior odds ratios and Bayes factors.

The main advantage of our approach is that we can test a hypothesis represented by several

restricted models jointly. Another feature of the posterior odds analysis is that all the hypothe-

ses are treated symmetrically. As a consequence, this method gives arguments in favor of a

hypothesis. Finally, since a mixture model is a special case of a Markov switching model, our

analytical results apply also to such models.

The remainder of the paper is organized as follows. In Section 2 we present the model and

the definitions for Granger noncausality and regime independence, while Section 3 provides the

restrictions for the considered relations between variables. Section 4 first discusses the use of

classical inference when testing for Granger noncausality in MS-VARs, before it considers the

pros and cons of instead using Bayesian inference. The block Metropolis-Hastings algorithm, re-

quired for estimating the models consistent with Granger noncausality, is described in Section 5.

Section 6 gives an empirical illustration of the methodology, using the bivariate money-income

system for monthly US data, while Section 7 concludes. All the proofs and technical details are

presented in the mathematical and statistical appendices.

2. Theoretical Framework for Granger Causality and Regime Inference

2.1. A Markov Switching VAR Model

Let yT = (y1−p, . . . , y0, y1, . . . , yT )′ denote a time series of T observations, where each yt is a N -

variate real-valued vector for t ∈ {1, . . . , T}, and where p is a nonnegative integer. We consider

a class of parametric Markov mixture distribution models in which the stochastic process Yt

depends on the realizations of a hidden discrete stochastic process st with finite state space

{1, . . . ,M}. Such a class of models has been introduced in time series analysis by Hamilton

(1989). Conditioned on the state, st, and time series up to time t − 1, yt−1, yt follows an

independent identical normal distribution. The conditional mean process is a VAR model in

which an intercept, µst, as well as lag polynomial matrices, A(i)
st , for i = 1, . . . , p, and covariance

matrices, Σst , depend on the state st = 1, . . . ,M :

yt = µst +A(1)
st
yt−1 + · · · +A(p)

st
yt−p + εt, (1)
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where

εt|st ∼ i.i.N (0,Σst), (2)

for t = 1, . . . , T . We set the vector of initial values y0 to the first p observations of the available

data.

The variable st is assumed to be an irreducible aperiodic Markov chain with Pr(s0 = i|P ) = πi,

where π = (π1, . . . , πM ) is the ergodic distribution of the Markov Switching (MS) process. The

properties of the Markov process are sufficiently described by the (M×M) transition probabilities

matrix:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 . . . p1M

p21 p22 . . . p2M

...
...

. . .
...

pM1 pM2 . . . pMM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

in which an element, pij, denotes the probability of transition from state i to state j, pij =

Pr(st+1 = j|st = i). The elements of each row of matrix P sum to one,
∑M

j=1 pij = 1. Equations

(1)–(3) represent a MS-VAR model with M states and p lags.

To establish notation, let θ ∈ Θ ⊂ R
k be a vector of size k, collecting parameters of the

transition probabilities matrix P and all the state-dependent parameters of the VAR process,

θst: µst, A
(i)
st , Σst, for st = 1, . . . ,M and i = 1, . . . , p.

2.2. Defining Granger Causality and Noncausality

Write yt = (y
′
1t, y

′
2t, y

′
3t, y

′
4t)

′ for t = 1, . . . , T , where yit is a Ni × 1 vector with N1, N4 =

1, N2, N3 ≥ 0 and
∑4

i=1Ni = N . The variables of interest are given by y1 and y4, between which

we want to study causal relations1. Vectors y2 and y3 (that for N2 = N3 = 0 are empty) may

contain auxiliary variables that are also used for forecasting and modeling purposes. Moreover,

define two vectors: the first is (N1 + N2)-dimensional, v1t = (y′1t, y
′
2t)

′, while the second is

(N3 +N4)-dimensional, v2t = (y′3t, y
′
4t)

′, such that:

yt =

⎡
⎢⎣v1t

v2t

⎤
⎥⎦ ,

with matrix vit collecting observations of vit up to period t for i = 1, 2.

Suppose that the conditional mean E[yt+1|yt; θ] is finite and that the conditional covari-

ance matrix E [(yt+1 − E[yt+1|yt; θ])(yt+1 −E[yt+1|yt; θ])′|yt; θ] is positive definite for all finite

t. Further, let ut+1 denote the one-step-ahead forecast error for y1.t+1, conditional on yt (and

the parameters) when the predictor is given by the conditional expectations, i.e.:

ut+1 = y1.t+1 − E[y1.t+1|yt; θ]. (4)

1 The proposed analysis holds for N1, N4 ≥ 1 with slight adjustments of the notation.
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By construction, ut+1 has conditional mean zero and positive-definite conditional covariance

matrix. And let ũt+1 = y1.t+1 − E[y1.t+1|v1t,y3t; θ] be the one-step-ahead forecast error for

y1.t+1, conditional on v1t and y3t with analogous properties.

We focus on the Granger-causal relations between variables y1 and y4. The definition of

Granger noncausality, originally given by Granger (1969), states simply that y4 is not causal for

y1 when the past and current information about y4 cannot improve mean square forecast error

of y1.t+1.

Definition 1: y4 does not Granger-cause y1, denoted by y4
G
� y1, if and only if:

E
[
u2

t+1; θ
]

= E
[
ũ2

t+1; θ
]
<∞ ∀t = 1, . . . , T. (5)

It is important to note that the definition involves conditioning on the parameters and under

a classical treatment the parameters would be set to their “true” values. For this reason, Granger

causality under a Bayesian approach concerns the validity of (5) for any θ ∈ Θ.

To model Granger noncausality, we make use of the decomposition of yt into yit for i = 1, . . . , 4.

The system in equation (1) is expressed as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1t

y2t

y3t

y4t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1.st

m2.st

m3.st

m4.st

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
p∑

k=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
(k)
11.st

a
(k)
12.st

a
(k)
13.st

a
(k)
14.st

a
(k)
21.st

a
(k)
22.st

a
(k)
23.st

a
(k)
24.st

a
(k)
31.st

a
(k)
32.st

a
(k)
33.st

a
(k)
34.st

a
(k)
41.st

a
(k)
42.st

a
(k)
43.st

a
(k)
44.st

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1t−i

y2t−i

y3t−i

y4t−i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1t

ε2t

ε3t

ε4t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

The covariance matrix of the residuals conditional on the regime is given by:

Σst = Var

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1t

ε2t

ε3t

ε4t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ω11.st Ω′
21.st

Ω′
31.st

Ω41.st

Ω21.st Ω22.st Ω′
32.st

Ω′
42.st

Ω31.st Ω32.st Ω33.st Ω′
43.st

Ω41.st Ω42.st Ω43.st Ω44.st

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

For expositional purposes, let us first assume that all regimes are known. Next period’s

prediction of y1 conditional on st+1 and yt is then:

E [y1.t+1|st+1,yt, θ] = y1.t+1 − ε1.t+1. (8)

Accordingly, the forecast error is given by ε1.t+1 and the conditional forecast error variance by

Ω11.st+1 . The necessary and sufficient condition for y4 not to Granger-cause y1 is that a(k)
14.st

in

equation (6) is equal to zero, for all k and t.

Let us now drop the assumption that the regimes are known. While the regime variable st+1

conditional on st is independent of yt, it can be predicted using only past observations of y. Let

Pr[st+1|yt, θ] denote the probability of a particular state occurring at t + 1 conditional on the
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information available at t. The prediction of next period’s value of y1 is then given by:

E [y1.t+1|yt, θ] =
∑
st+1

E [y1.t+1|st+1,yt, θ] Pr [st+1|yt, θ] . (9)

The role for y4 is different in (9) relative to (8) in that the history of y4 can now predict y1 by

containing information which helps predict next period’s state.

Since st+1 conditional on st is independent of yt it follows that:

Pr [st+1|yt, θ] =
∑
st

Pr [st+1|st, θ] Pr [st|yt, θ] . (10)

From this relationship we may conjecture that there are only two instances when there is no

additional information in the history of y4 for predicting next period’s state. The first is when

Pr[st+1|st, θ] = Pr[st+1; θ], i.e. the Markov process is serially uncorrelated. The second case

occurs when Pr[st|yt, θ] = Pr[st|v1t,y3t, θ].

This discussion presumes that the coefficients in the equation for y1 vary freely with the regime.

It is possible, however, that these coefficients vary with the hidden Markov process s1.t+1 but

not with the process s2.t+1, where s1.t+1 and s2.t+1 form the joint process st+1. Similarly, there

may be information in y4t for predicting s2.t+1, but not for predicting s1.t+1. In such situations,

it may still be the case that the prediction of y1 in (9) does not depend on the history of y4.

The regime inference question is in fact better addressed in terms of the sub-vectors v1 and

v2. Apart from decomposing the observed variables into the vit sub-vectors, the parameter

vectors and matrices are decomposed analogously. Furthermore, the hidden Markov process is

decomposed into two sub-processes, st = (s1t, s2t), where sit has Mi states for i = 1, 2, such that

M = M1 ·M2. Such a decomposition can always be performed without imposing any restrictions

on the transitions matrix P . For example, we may let

st = s1t +M1 (s2t − 1) ,

determines st uniquely from s1t and s2t without imposing any constraints on how these Markov

processes evolve over time. In case M is a prime number it follows that M1 or M2 is always

equal to unity. For non-prime integer values of M it is possible to consider sub-processes sit

such that M1 and M2 are both greater than unity. In fact, for the purpose of hypotheses testing

one should consider all the possible combinations of M1 and M2 given M (see also Sections 4.2

and 6).

2.3. Predictive State Independence and Predictive Redundancy

The concepts of predictive state independence and predictive redundancy are now introduced to

aid the analysis of Granger causality in Markov swithing models:
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Definition 2: A system for yt+1 which depends on the regime process st+1 = (s1.t+1, s2.t+1) is

said to be predictively state independent when

Pr
[
(s1.t+1, s2.t+1) = (j1, j2)

∣∣yt, θ
]

= Pr
[
s1.t+1 = j1

∣∣yt, θ
] · Pr

[
s2.t+1 = j2

∣∣yt, θ
]
, (11)

for all θ ∈ Θ, j1 = 1, . . . ,M1, j2 = 1, . . . ,M2 and t = 1, . . . , T .

Definition 3: The vector v2t is said to be predictively redundant for s1.t+1 when

Pr
[
s1.t+1 = j1

∣∣yt, θ
]

= Pr
[
s1.t+1 = j1

∣∣v1t, θ
]
. (12)

for all θ ∈ Θ, j1 = 1, . . . ,M1, j2 = 1, . . . ,M2 and t = 1, . . . , T .

Predictive state independence therefore means that the regime predictions of s1.t+1 and s2.t+1

conditional of yt are independent. Predictive redundancy, on the other hand, concerns the

possibility that there is no unique information in v2t for predicting s1.t+1 beyond the information

contained in v1t. These aspects can be seen from the decomposition of the joint probability into

the product of the conditional probability and the marginal probability. That is,

Pr
[
(s1.t+1, s2.t+1) = (j1, j2)

∣∣yt, θ
]

= Pr
[
s1.t+1 = j1

∣∣yt, θ
] · Pr

[
s2.t+1 = j2

∣∣s1.t+1 = j1,yt, θ
]
.

Predictive redundancy can here be interpreted as a property of the first term on the right hand

side, i.e., of the marginal probability of s1.t+1, while predictive state independence is a feature

of the joint probability of (s1.t+1, s2.t+1) and can therefore be translated into the behavior of

the conditional probability of s2.t+1 in the second term on the right hand side. Predictive

redundancy does not imply predictive state independence or vice versa, and the two concepts

therefore concern different properties of a model subject to a hidden Markov process.

If a system for yt+1 satisfies the conditions for predictive state independence and v2t being

predictively redundant for s1.t+1, it follows that beyond the information in v1t there is no

additional information in v2t and s2.t+1 that can affect the probability of s1.t+1 = j1 for any j1.

This opens up for the possibility that v2 (y4) does not Granger cause v1 (y1) if the parameters

of the v1 sub-system only depend on s1. A restricted version of the system in equation (1) is

therefore given by:⎡
⎢⎣v1t

v2t

⎤
⎥⎦ =

⎡
⎢⎣µ1.s1t

µ2.s2t

⎤
⎥⎦+

p∑
k=1

⎡
⎢⎣A(k)

11.s1t
A

(k)
12.s1t

A
(k)
21.s2t

A
(k)
22.s2t

⎤
⎥⎦
⎡
⎢⎣v1t−i

v2t−i

⎤
⎥⎦+

⎡
⎢⎣ε1t

ε2t

⎤
⎥⎦ . (13)

where the following linear restrictions have been imposed:

µi.st = µi.sit , A
(k)
ij.st

= A
(k)
ij.sit

, i, j = 1, 2, and k = 1, . . . , p. (14)

If the εit residuals are independent of the regime, equation (14) states that vit is only directly

affected by sit. Indirectly, it may be affected by (lags of) the other regime process sjt through

lags of vjt (i �= j).
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In a restricted version, we may also consider the possibility that the marginal distribution of

the εit|st is subject to linear restrictions given by:

Σii.st = Σii.sit, i = 1, 2. (15)

The restrictions in (15) are necessary but not sufficient for p(εt|st) = p(ε1t|s1t)p(ε2t|s2t), i.e., for

ε1t|s1t and ε2t|s2t to be independent. The additional requirement is simply that Σ12.st = 0 for

all regimes such that the covariance matrix is block diagonal.

In the event that the restrictions in (14) and (15) are satisfied and the covariance matrix is

block diagonal for all regimes, then vit is only directly influenced by the sit regime process, i.e.,

through the regime dependent µi.sit and Aij.sit matrices. Nevertheless, vit may still be indirectly

influenced by lags of the sjt process through lags of vjt. In the next section we shall first consider

which restrictions are needed for the conditions in Definitions 2 and 3 to be satisfied by an MS-

VAR system. Second, we shall examine the situations when y4 does not Granger cause y1 in

this setup.

3. Regime Inference and Granger Causality Analysis

3.1. Regime Inference

The first result in this paper concerns the restrictions that the MS-VAR system needs to satisfy

to guarantee that we can make optimal inference from the v1t sub-system about the regimes

that affect these variables.

Proposition 1: The MS-VAR system for yt+1 in (1)–(3) with st+1 = (s1.t+1, s2.t+1) is predic-

tively state independent and v2t is predictively redundant for s1.t+1 if and only if either:

(A1): (i) P = (P (1) ⊗ P (2)),

(ii) equations (14) and (15) are satisfied,

(iii) Σ12.st = 0, and

(iv) A(k)
12.s1t

= 0,

for all k = 1, . . . , p and sit = 1, . . . ,Mi, and i, j = 1, 2; or:

(A2): P = (ıM1π
(1)′ ⊗ P (2)),

is satisfied for all θ ∈ Θ, where P (1) and P (2) are transition probabilities matrices associated

with the Markov processes s1t and s2t respectively (and of dimensions M1 ×M1 and M2 ×M2

respectively).

First, note that conditions (A1) and (A2) imply linear restrictions on parameters of the model.

Second, condition (A1)(i) is a result of forming the full transition probabilities matrix out of

the transition probabilities matrices of two independent hidden Markov processes (see Sims,

Waggoner, and Zha, 2008). Condition (A2) states that the first out of the two decomposed

hidden Markov processes is serially uncorrelated and the marginal distribution of ε1t is therefore

a mixed normal. As a consequence, the system for yt+1 is predictively state independent also
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under (A2). Predictive redundancy of v2t for s1.t+1 is obtained for the (A2) case since Pr[s1.t+1 =

j1|yt, θ] = π
(1)
j1

, while condition (A1), excluding the block diagonality restrictions in (iii), is also

sufficient for this property to hold.

The intuition behind condition (A1) is, in fact, straightforward. Suppose p = 1, N = M =

M1 = 2, while ε2t is i.i.d. The restrictions on Σst in (A1) are sufficient for the residual of the

equation for v2 to be i.i.d.. Now consider the experiment of drawing two v2t’s, one for each

regime, when v1t−1 and v2t−1 are fixed. The difference between these two draws is:

v2t|st=2 − v2t|st=1 = (µ2,2 − µ2,1) + (A21,2 −A21,1) v1t−1 + (A22,2 −A22,1) v2t−1. (16)

The right hand side of (16) is zero for all vectors (v1t−1, v2t−1) when the coefficients in the

v2 equation are constant across states. Accordingly, if these restrictions are satisfied, then

Pr[st|v1t,v2t] = Pr[st|v1t,v2t−1] and all information about st is found in the equation for v1.

If the coefficient on v2t−1 in that equation is zero for both states, then v2t−1 play no role for

predicting regime switches either.

To sum up, condition (A1) tells us exactly under which conditions we can disregard the

information in v2t when we are either only interested in the behavior of the variables in the v1t

vector or in the s1t regime process. Alternatively, if we are primarily interested in v2t (or in s2t)

and would like to treat v1t as being “exogenous”, then (A1) provides the set of restrictions that

we implicitly impose on the system describing both v2t and v1t.

3.2. Granger Noncausality Analysis

The restrictions for predictive state independence and predictive redundancy presented in Sec-

tion 2.3 are either sufficient for Granger noncausality (A1) or insufficient (A2), but the analysis

has nevertheless established that there is an interesting connection between these concepts and

Granger noncausality. Furthermore, the discussion reveals that Granger noncausality in the

MS-VAR setting does generally not give rise to a single set of parameter restrictions that the

system should satisfy. In this section we shall therefore focus on the necessary and sufficient

conditions for this type of noncausal relations.

Some additional notation is first required. Specifically, let:

m̄1t ≡ E
[
m1st+1|yt, θ

]
, (17a)

ā
(k)
1r.t ≡ E

[
a

(k)
1r.st+1

|yt; θ
]
, (17b)
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for all r ∈ {1, . . . , 4} and k ∈ {1, . . . , p}. The one-step-ahead forecast error for y1 is then given

by ut+1 = zt+1 + ε1.t+1, where:

zt+1 ≡ (m1st+1 − m̄1t

)
+

p∑
k=1

(
a

(k)
11.st+1

− ā
(k)
11.t

)
y1.t+1−k

+
p∑

k=1

(
a

(k)
12.st+1

− ā
(k)
12.t

)
y2.t+1−k +

p∑
k=1

(
a

(k)
13.st+1

− ā
(k)
13.t

)
y3.t+1−k

+
p∑

k=1

(
a

(k)
14.st+1

− ā
(k)
14.t

)
y4.t+1−k.

Conditional on yt, the terms zt+1 and ε1.t+1 are uncorrelated; see Krolzig (1997, Chapter 4).

For the remainder of this section, we shall assume that ut+1 is mean zero stationary such that

the forecast error variance exists and is constant over time.

This assumption brings us to the main result about Granger noncausality.

Proposition 2: y4 does not Granger-cause y1 if and only if either:

(A1) or

(A3): (i)
∑M

j=1m1.jpij = m̄1,

(ii)
∑M

j=1 a
(k)
1r.jpij = ā

(k)
1r ,

(iii) ā(k)
14 = 0,

for all i = 1, . . . ,M , r = 1, . . . , 4, and k = 1, . . . , p,

is satisfied for all θ ∈ Θ.

The nonlinear restrictions in condition (A3)(i) and (A3)(ii) state that the expected value of

each random coefficient in the equation for y1.t+1 is constant for all regimes st = i. Condition

(A3)(iii) sets each expected value of the coefficients on lags of y4 to zero.

Note that the restrictions of (A3) do not rely on a decomposition of the hidden Markov process.

This comes from the fact that these conditions refer solely to the expected value of the parameters

of the equation for y1. At the same time, they do not rule out that the transition matrix P has

reduced rank or that the Markov process can be decomposed into multiple processes. Hence, the

restrictions in (A3) are very general and it is not possible to determine the number of restrictions

without specifically referring to the properties of the transition matrix.

When the Markov processes s1.t+1 and s2.t+1 are independent the restrictions of Proposition

2 may be simplified.

Corollary 1: Suppose that condition (A2) is satisfied for all θ ∈ Θ, then condition (A3) is

equivalent to:

(A4): (i)
∑M1

j1=1m1.(j1,j2)π
(1)
j1

= m̄1,

(ii)
∑M1

j1=1 a
(k)
1r.(j1,j2)

π
(1)
j1

= ā
(k)
1r ,

(iii) ā(k)
14 = 0,

for all j2 = 1, . . . ,M2, r = 1, . . . , 4, and k = 1, . . . , p.
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Corollary 1 reintroduces the decomposition of the hidden Markov process. One benefit is that

the number of the restrictions to be imposed on the model is typically reduced.

This Corollary is of particular interest when M = 2. For such Markov processes, the rank of P

can be either one or two. If the rank of P is unity (M1 = 2,M2 = 1), then the two-state Markov

process is serially uncorrelated. For this case, (A4) reduces to A4(iii), where
∑2

j1=1 a
(k)
14,j1

π
(1)
j1

= 0

for all k, while (A4)(i)-(ii) are satisfied by construction. Notice that all restrictions are nonlinear

and that the total number of restrictions is equal to p + 1, corresponding to the p restrictions

on the lags and one restriction on the Markov transition matrix (p11 + p22 = 1).

On the other hand, if the rank of P is two (M1 = 1,M2 = 2), then the Markov process

is serially correlated with P = P (2). Now, condition (A4) states that all coefficients in the

equation for y1 are constant across the regimes, and the coefficients on lags of y4 are zero, i.e.,

all restrictions are linear. The total number of restrictions is now equal to p(3 +N2 +N3) + 1,

where there is one restriction on each lag of y1 (a(k)
11,1 = a

(k)
11,2), N2 and N3 restrictions on each

lag of y2 and y3, respectively, (a(k)
12,1 = a

(k)
12,2 and a(k)

13,1 = a
(k)
13,2), two restrictions on each lag of y4

(a(k)
14.1 = a

(k)
14.2 = 0), and one restriction on the constant term (m1.1 = m1.2).

Another case when Corollary 1 is of special interest is for the mixture VAR model, i.e., when

P = ıMπ′. For such models it is straightforward to show that y4 does not Granger cause y1 if

M∑
j=1

a
(k)
14,jπj = 0, (18)

for all k = 1, . . . , p. In fact, the Granger noncausality restrictions are unique for the mixture

VAR model and the reason is that (A2) with M2 = 1 holds by assumption and, as a consequence,

the restrictions in (A1) imply that (A4) is true but the reverse is not true, i.e., (A4) is minimal

in the sense of Gabriel (1969), while (A1) is not and can therefore be discarded.2 This result

is also quite intuitive since for mixture models the optimal prediction of the regime in the next

period is the ergodic probability (πj) for each regime j, with the implication that y4 can only

improve the one-step-ahead forecasts of y1 when the ergodic mean of the coefficient on y4 is

nonzero for some lag in the y1 equation.

4. Bayesian Testing

Restrictions (A1)–(A4) can be tested using either classical or Bayesian inference. Below, we

briefly discuss classical tests and point out some important obstacles in the current setting and

then present the Bayesian testing procedure.

2 A hypothesis is said to be minimal if it does not imply the truth of any other hypothesis in a set containing
multiple hypotheses.
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4.1. Classical Inference

Apart from more general problems related to classical inference, such as those related to size

and power, two specific obstacles that we need to take into account when attempting to draw

inferences from classical tests in an MS-VAR setting are:

• Granger noncausality results in multiple sets of restrictions on the parameters. Conse-

quently, one hypothesis may be represented by several restricted models;

• Some of the restrictions are in the form of nonlinear functions of the parameters.

These problems may potentially be difficult to handle in a classical setting, especially when taken

together. Issues related to multiple testing—a subfield of multiple inference or simultaneous

inference—are well-known in statistics; see, e.g., Schaffer (1995) for a review on this topic, and

Holm (1979) for details on the so called Holm-Bonferroni method which may be applied to the

Granger noncausality restrictions in Proposition 2. The particular procedure suggested by Holm

may be used as long as the asymptotic distribution of each individual test statistic is known, and

improves upon the so called Bonferroni correction (at least in large samples), but nevertheless

remains conservative.

Standard classical tests of nonlinear restrictions on parameters typically rely on computing

the matrix of partial derivatives of the restrictions with respect to the parameters. If this matrix

has rank less than the number of restrictions, the asymptotic distribution of the test statistic

is generally not known, but depends on the rank of this matrix. If this is the case, then the

Holm-Bonferroni method cannot be applied as it relies on the distribution of the tests for each

individual hypothesis being known.

However, this problem does not plague the nonlinear Granger noncausality restrictions in

(A3) or (A4). The intuitive reason for this result is that the VAR parameters themselves never

appear nonlinearly, but only as products with the Markov transition probabilities. As a result,

the transition probabilities appear in the matrix with partial derivatives individually and not

multiplied by any VAR parameter.

To see why this observation is important, let us consider the Granger noncausality restrictions

for the mixture VAR model in equation (18) and assume for simplicity that p = 2. The matrix

with partial derivatives of the two restrictions with respect to only the parameters involved in

the restrictions is then

∂f
(
θ(r)
)

∂θ′(r)
=

⎡
⎢⎣a(1)

14,1 · · · a
(1)
14,M π1 · · · πM 0 · · · 0

a
(2)
14,1 · · · a

(2)
14,M 0 · · · 0 π1 · · · πM

⎤
⎥⎦ ,

where

θ(r) =
[
π1 · · · πM a

(1)
14,1 · · · a

(1)
14,M a

(2)
14,1 · · · a

(2)
14,M

]′
.

The rank of the matrix of partial derivatives of the restrictions is always two since the πj

probabilities are positive.
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It should be emphasized that for each possible rank of P , the exact form of the Granger

noncausality restrictions in MS-VARs is affected, also in terms of the number of restrictions,

and the restrictions become linear when P has full rank M . For each possible rank of P , the

matrix of partial derivatives of the restrictions in (A3) or (A4) has full row rank, due to the

assumptions on the behavior of the transition probabilities pij. However, this also suggests that

for nonlinear restrictions where the VAR parameters appear in terms of, say, products or have

exponents different from one, then the matrix with partial derivatives can have reduced row

rank.3

4.2. Bayesian Inference

In this study we make use of Bayesian inference when testing the parameter restrictions. The

approach we suggest can deal with both multiple sets of restrictions and nonlinearities; see also

Woźniak (2012b, 2012a), where Granger noncausality is studied within the Extended CCC-

GARCH model of Jeantheau (1998).4

Suppose that a hypothesis is represented by several models. Let Hi denote the set of indicators

of the models that represent this hypothesis, Hi = {j : Mj represents ith hypothesis}. The

models that are included in this set are assumed to be minimal. Furthermore, suppose that

we are interested in comparing the posterior probability of this hypothesis to hypothesis H0,

represented by the unrestricted model M0. The credibility of the hypothesis Hi compared to

the hypothesis H0 may then be assessed with the posterior odds ratio given by:

POR =
Pr
(Hi

∣∣yT

)
Pr
(H0

∣∣yT

) =

∑
j∈Hi

Pr
(Mj

∣∣yT

)
Pr
(M0

∣∣yT

) =
Pr
(Hi

)
Pr
(H0

) · p
(
yT

∣∣Hi

)
p
(
yT

∣∣H0

) . (19)

If we set equal prior probabilities for all the hypotheses, then the posterior odds ratio is equal to

the Bayes factor and is given by the ratio of marginal data densities (MDDs) when conditioning

on Hi and H0, respectively.

The MDD is typically calculated for a given model Mj rather than for a hypothesis Hi. To

determine the MDD for the hypothesis Hi using the MDDs for the models that are consistent

with it, we can utilize the following:

p
(
yT

∣∣Hi

)
=
∑
j∈Hi

p
(
yT

∣∣Mj

)
Pr
(Mj

∣∣Hi

)
.

If we assume that all models Mj are equally likely a priori given that the hypothesis Hi is true,

then the MDD given the hypothesis is equal to the average of the MDDs for the models.

3 One such case is if we are interested in restrictions on the conditional prediction variances of the MS-VAR
model; see, e.g., Warne (2000) for Granger noncausality in mean-variance. Another case is if we are concerned
with restrictions on the h-step-ahead forecasts for h ≥ 2.
4 Two other works use the Bayesian approach to make inference about concepts somehow related to Granger
noncausality. Jarociński and Maćkowiak (2013) sample from the space of models in order to determine Granger-
causal-priority in the VAR model, while Pajor (2011) uses Bayes factors to assess conditional exogeneity conditions
for models with latent variables, and in particular in multivariate stochastic volatility models.
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The restrictions in (A1) and (A3) depend on auxiliary values and can therefore result in mul-

tiple models that are consistent with each one of these two conditions, respectively. Condition

(A1) depends on the number of states of the hidden Markov process, M , through the decom-

position of process st into (s1t, s2t) such that M1 ·M2 = M . In our empirical example we find

support for M = 3 in the bivariate money-income model for monthly US data. For this case,

two decompositions are possible: M1 = 1 and M3 = 3, or M1 = 3 and M3 = 1. In order to

compute the MDD of condition (A1) we integrate out the possible decompositions by applying:

p
(
yT

∣∣(A1)
)

= p
(
yT

∣∣(A1) ∧M1 = 1,M2 = 3
)
Pr
(
M1 = 1,M2 = 3

∣∣(A1)
)
+

+ p
(
yT

∣∣(A1) ∧M1 = 3,M2 = 1
)
Pr
(
M1 = 3,M2 = 1

∣∣(A1)
)
, (20)

where p(yT |(A1) ∧M1 = 1,M2 = 3) and p(yT |(A1) ∧M1 = 3,M2 = 1) are estimated by an

available MDD estimator (see below), and the conditional prior probabilities may be selected as

Pr(M1 = 1,M2 = 3|(A1)) = Pr(M1 = 3,M2 = 1|(A1)) = 1/2.

Similarly, condition (A3) depends on the rank of P and this value is not of interest from the

point of view of the Granger causality testing, but nevertheless affects the restrictions. In this

case, we can integrate out the rank of P from the testing problem by computing:

p
(
yT

∣∣(A3)
)

=
M∑
i=1

p
(
yT

∣∣(A3) ∧ rank(P ) = i
)
Pr
(
rank(P ) = i

∣∣(A3)
)
, (21)

where p(yT |(A3) ∧ rank(P ) = i) are estimated by a MDD estimator, whereas Pr(rank(P ) =

i|(A3)) = 1/M , for i = 1, . . . ,M , is a possible choice for the conditional prior probabilities.

4.3. Testing Noncausality Restrictions in MS-VARs

The crucial element of using the posterior odds ratio in (19) to assess the hypotheses of interest is

the computation of MDDs, p(yT |Mj), for the unrestricted and the restricted models. There are

several available methods of computing this value. In this paper we use the modified harmonic

mean (MHM) method of Geweke (1999, 2005). Amongst other methods of computing the MDD

is the one suggested by Sims et al. (2008) based on an elliptical truncation rather than a normal,

and which also belongs to a class of the modified harmonic mean estimators. The difficulty

in employing other estimators, such as the bridge sampling estimator by Frühwirth-Schnatter

(2004) or the one by Chib and Jeliazkov (2001) would require further studies and adjustments

and is left for future research.5

5 Frühwirth-Schnatter (2004) raises the problem that the MDD estimator can be biased due to the invariance of
the likelihood function and the prior distribution of the parameters, with respect to permutations of the regimes’
labels. The identification of the model can be insured by ordering restrictions on parameters, and can also be
implemented within the Gibbs sampler. In essence, it is sufficient that the values taken by one of the parameters
of the model in different regimes can be ordered, and that the ordering holds for all the draws from the Gibbs
algorithm to assure global identification (see Frühwirth-Schnatter, 2004). The MS-VAR models considered for
causality inference below are globally identified via the ordering imposed on one of the state-specific parameters.
In our empirical example we did not encounter any difficulties in finding such restrictions that would effectively
not constrain posterior distributions.
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Using the posterior odds ratio when testing a noncausality hypothesis represented by a couple

of restricted models makes the testing possible. Moreover, as emphasized in Hoogerheide, van

Dijk, and van Oest (2009), the Bayesian posterior odds ratio procedure gives arguments in

favor of hypotheses. Therefore, the procedure gives positive arguments supporting particular

solutions.

However, the approach also has its costs. First of all, in order to specify the complete model

and thereby avoid Bartlett’s paradox, prior distributions for the parameters of the model and the

prior probabilities of models need to be specified.6 Moreover, the time required for simulating

all the models can be costly, first in the model selection procedure, and second in testing the

restrictions of the parameters.

5. Block Metropolis-Hastings Sampler for MS-VAR Models

This section describes the likelihood function, prior distributions and the algorithm for the

estimation of the unrestricted and restricted models; the details of the algorithm are given

in the Statistical Appendix. Our parameterization allows for the estimation of the restricted

models, where the restrictions on the parameters are given by the regime inference restrictions

in Proposition 1 or Granger noncausality restrictions in Proposition 2.

The complete-data likelihood function is equal to the joint sampling distribution p(ST ,yT |θ)
for the complete data (ST ,yT ) given θ = (θ1, . . . , θM , P ), where ST = (s0, s1, . . . , sT )′; see,

e.g., Frühwirth-Schnatter (2006). This distribution is further decomposed into a product of a

conditional distribution of yT given ST and θ, and a conditional distribution of ST given θ, and

by taking into account a convenient partitioning of the vector of parameters into state-specific

vectors of the VAR, θi, and the matrix with transition probabilities, P :

p
(
ST ,yT

∣∣θ) = p
(
yT

∣∣ST , θ
)
Pr
(
ST

∣∣P ). (22)

The two components on the right hand side of equation (22) are the same as in Frühwirth-

Schnatter (2006, Section 11.3.1).

We assume that the prior distribution of the state-specific parameters for each state and the

transition probabilities matrix are independent:

p
(
θ
)

=
M∏
i=1

p
(
θi

)
p
(
P
)
. (23)

This introduces the possibility to incorporate prior knowledge of the researcher about the state-

specific parameters of the model, θst , separately for each state.

For the unrestricted MS-VAR model, we assume the following prior specification. Each row

of the transition probabilities matrix, P , a priori follows an M variate Dirichlet distribution,

with parameters set to 1 for all the transition probabilities except the diagonal elements pii, for

6 See, e.g., Strachan and Van Dijk (2014) for analyses about using improper priors without being exposed to
Bartlett’s paradox.
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i = 1, . . . ,M , for which it is set to the hyper-parameter λP . If λP > 1, the regimes are persistent

over time (see e.g. Kim and Nelson, 1999).

Furthermore, the state-dependent parameters of the VAR process are collected in vectors:

βst =
(
µ′st

, vec
(
A(1)

st

)′
, . . . , vec

(
A(p)

st

)′)′
,

for st = 1, . . . ,M . These parameters follow a (N +pN2)-variate normal distribution, with mean

equal to a vector of zeros and a diagonal covariance matrix, Vβ . Note that the means of the

prior distribution for the off-diagonal elements of matrices Ast are set to zero. In more general

terms, the means of the prior distributions assumed in this work imply Granger noncausality.

Our prior distribution nests many popular in empirical macroeconomics research prior spec-

ifications, including the class of shrinkage prior specifications, and can be easily extended to

hierarchical prior structures. Therefore, prior distributions proposed e.g. by Doan, Litterman,

and Sims (1983), Ni and Sun (2003) or Bańbura, Giannone, and Reichlin (2010) could also be

used. Furthermore, the mean vector of the normal prior distribution of parameters βst is set to

a vector of zeros, since in the empirical example in Section 6 we use logarithmic rates of returns

of the original variables. If logarithms of the levels of the variables are modeled, then the mean

vector of this prior distribution could be set such that it contained ones for the diagonal elements

of matrices A(1)
st , for st ∈ {1, . . . ,M} (see Doan et al., 1983).

We model the state-dependent covariance matrices of the error term, decomposing each one

to a N × 1 vector of standard deviations, σst , and a N ×N correlation matrix, Rst, according

to the decomposition:

Σst = diag
(
σst

)
Rstdiag

(
σst

)
. (24)

Modeling covariance matrices using a decomposition into standard deviations and a correlation

matrix, as in equation (24), was proposed in Bayesian inference by Barnard, McCulloch, and

Meng (2000). We adapt this approach to Markov-switching models, since the algorithm easily

enables the imposing of restrictions on the covariance matrix. We model the unrestricted model

in the same manner, because we want to keep the prior distributions for the unrestricted and

the restricted models comparable. Thus, each standard deviation σst.j for st = 1, . . . ,M and

j = 1, . . . , N , follows a log-normal distribution, with a mean parameter equal to 0 and the

standard deviation parameter set to λσ > 0. Finally, we assume that the prior distribution for

each of the element of the correlation matrix Rst is a uniform distribution on the interval (a, b).

For each of the correlation parameter, the values of a and b depend on all the remaining elements

of the correlation matrix. a and b are chosen such that while a single correlation parameter

is sampled the resulting correlation matrix is positive-definite.7 We collect all the standard

deviations in one vector, σ = (σ′1, . . . , σ′M )′, and all the unknown correlation coefficients into a

7 Barnard et al. (2000) discusses the implications of such a prior specification and the algorithm of choosing a
and b. In addition, this paper mentions alternative prior distributions that could be used as well.
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vector, R = (vecl(R1)′, . . . , vecl(RM )′)′, where the operator, vecl, stacks all the lower-diagonal

elements of the correlation matrix into a vector.

To summarize, the prior specification (23) now takes the detailed form of:

p(θ) =
M∏
i=1

p(Pi)p(βi)p(Ri)

⎛
⎝ N∏

j=1

p(σi.j)

⎞
⎠ , (25)

where each of the prior distributions is as assumed:

Pi· ∼ DM (ı′M + (λp − 1)IM.i·)

βi ∼ N (0, Vβ)

σi.j ∼ logN (0, λσ)

Ri.jk ∼ U(a, b)

for i = 1, . . . ,M and j, k = 1, . . . , N , and j �= k, where ıM is a M × 1 vector of ones and IM.i· is

ith row of an identity matrix IM , while a and b are as in Algorithm 3 in the Statistical Appendix.

In the block Metropolis-Hastings algorithm, parameters of the model are split into sub-vectors,

the full conditional densities of which are of convenient form. Symbols, l and l− 1, refer to the

iteration of the MCMC sampler. For the first iteration of a MCMC sampler, l = 1, initial

parameter values come from an EM algorithm, and are denoted by θ(0).

(1) Draw a vector of the states of the economy, ST . Using the filter and smoother (see, e.g.,

Frühwirth-Schnatter, 2006, and references therein), we obtain the probabilities Pr(st =

i|yT , θ
(l−1)), for t = 1, . . . , T and i = 1, . . . ,M , and then draw S(l)

T , for lth iteration of

the algorithm.

(2) Draw from the posterior distribution of the transition probabilities matrix conditioning

on the states drawn in the previous step of the current iteration, P (l) ∼ p(P |S(l)
T ).

Assuming the Dirichlet prior distribution and that the hidden Markov process starts

from its ergodic distribution, π, makes the posterior distribution not of standard form. In

this step of the MCMC sampler, we use the Metropolis-Hastings algorithm as described

in the Statistical Appendix.

(3) Draw from the full conditional posterior densities of the standard deviations and the cor-

relations, denoted by p(σ|yT ,S
(l)
T , P (l), β(l−1), R(l−1)) and p(R|yT ,S

(l)
T , P (l), β(l−1), σ(l)),

respectively, with the Griddy-Gibbs sampling algorithm of Ritter and Tanner (1992),

and described by Barnard et al. (2000).

(4) Draw the state-dependent parameters of the VAR process collected in one vector, β =

(β′1, . . . , β
′
M )′. Due to the form of the likelihood function and normal prior distribution,

the full conditional posterior distribution is also normal f(β|yT ,S
(l)
T , P (l), σ(l), R(l)) =

N (β̄∗, V̄β∗
)
, from which we draw β(l). β̄∗ and V̄β∗ are the parameters of the full condi-

tional posterior distribution specified in the Statistical Appendix.
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6. Granger Noncausality Analysis of US Money and Income

In the studies on Granger causality using MS-VAR models, Warne (2000) and Psaradakis et al.

(2005),8 the focus is the causality relationship between U.S. money and income. At the heart

of this issue is the empirical analysis conducted in Friedman and Schwartz (1971) asserting that

money changes lead income changes. The methodology was rejected by Tobin (1970) as a post

hoc ergo propter hoc fallacy, arguing that the timing implications from money to income could be

generated not only by monetarists’ macroeconomic models but also by Keynesian models. Sims

(1972) initiated the econometric analysis of the causal relationship from the Granger causality

perspective. While a Granger causality study concentrates on forecasting outcomes, macroeco-

nomic theoretical modeling tries to remove the question mark over the neutrality of monetary

policy for the business cycle. The causal relationship between money and income is, however, of

particular interest to the debate, since economists have not reached a consensus on this topic.

This historical debate is well narrated by Psaradakis et al. (2005), and the interested reader

is advised to consult this paper for a depiction of events. Without detailing the references of the

aforementioned paper, there is a problem in the instability of the empirical results found for the

causality between money and output. Depending on the samples considered, the existence and

intensity of the causal effect of money on output are subject to different conclusions. Hence,

the strategy of Psaradakis et al. (2005): to set up a Markov-switching VAR model that assumes

four states of the economy: 1. both variables cause each other; 2. money does not cause output;

3. output does not cause money; 4. none of the variables causes another.

As outlined in the introduction, with the approach of Warne (2000) which we follow, the

MS-VAR models are ’standard‘ – unrestricted – ones, and we perform Bayesian model selection

through the comparison of their marginal densities of data to determine the number of states

as well as the number of autoregressive lags. Moreover, we perform an analysis with precisely

stated definitions of Granger causality for Markov-switching models. In this section, we use the

Bayesian testing apparatus to investigate this relationship once again.

6.1. Data

The data are similar to those estimated by Christiano and Ljungqvist (1988) and Warne (2000),

but the sample is longer and spans a period of 53 years. Two monthly series are included, the M1

money stock and the industrial production index for the US, both containing 646 observations

covering the period from 1959:1 to 2012:11 and taken from the Citibase database. The data are

seasonally adjusted, transformed into log-returns, and multiplied by 1200.

Figure 1 plots the transformed series. Observation indicates that at least some heteroskedas-

ticity is present, as can be seen with the money series, where a period of higher volatility starts

around 1980. The period of the global financial crisis is also characterized by increased volatility

8 Warne (2000) uses monthly industrial production data as a proxy for income, whereas Psaradakis et al. (2005)
use quarterly real GDP data.
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in both series, especially after August 2008. Summary statistics and series observations all seem

to indicate the possibility of different states in the series, in which case MS-VAR models can

provide a useful framework for analysis. We, however, start our analysis with Granger causality

testing in the context of linear VAR models.

The summary statistics of both series are presented in Table 1. Income grows yearly by around

2.7% on average, with a standard deviation of approximately 10%. Money has a stronger growth

rate of nearly 5.3% on average, with a slightly lower standard deviation than income, around

8.3%.

6.2. Granger Noncausality Analysis with VAR Models

To study if a nonlinear approach brings added value to the Granger causality analysis we begin

by examining a standard VAR model, i.e., the case of M = 1. The block Metropolis-Hastings

sampler of Section 5 can be simplified to the single regime case and, thus, be used for standard

Bayesian VAR models. This makes it possible to compare the VAR models to more complex

MS-VAR ones with MDDs and also to examine if the Granger causal analysis suggests similar

conclusions in VARs and MS-VARs.

The prior distributions are as follow:

β ∼ N (0, λβIN+pN2)

σj ∼ logN (0, 2)

Rjk ∼ U(a, b)

for j, k = 1, . . . , N and a and b as in Algorithm 3. The value of hyper-parameter λβ has been

determined by a grid search and is set to 0.3.

To estimate VAR models for different lag lengths (p = 0, . . . , 17) using the Metropolis-Hastings

algorithm the parameters are initialized by the OLS estimates of the VAR coefficients. Then

follows a 10,000-iteration burn-in and, after convergence of the sampler, 50,000 final draws from

the posterior.

Table 2 displays the MDDs for each model, computed with the modified harmonic mean

(MHM) estimator by Geweke (1999, 2005). As in Christiano and Ljungqvist (1988) and Warne

(2000), models with long lags are preferred, and the VAR(14) model yields the highest MDD,

denoted by ln p̂(yT |p), and equal to -4544.68, and is therefore the model we choose for the

Granger causality analysis.

Table 3 summarizes the results for the unrestricted and restricted VAR(14) models. Estima-

tion of the restricted VAR model, where the coefficients on lags of money in the income equation

are equal to zero, yields an MDD of -4518.43. Expressed in logarithms of base 10 rather than

natural logarithms, the posterior odds ratio of the null hypothesis of Granger noncausality from

money to income is therefore equal to 11.4. Hence, Bayesian testing provides strong evidence in
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favor of the hypothesis that money does not Granger cause income within the VAR framework

for log-differences.9

6.3. Granger Noncausality Analysis with MS-VAR Models

To estimate the number of regimes, M , and the number of lags, p, we consider MS-VAR models

with a maximum of four regimes and seven lags. The prior distributions are as defined in Section

5 with a diagonal prior covariance matrix of βi given by Vβ = λβIN+pN2 , with λβ = 0.3 as in

the VAR model analysed before, and λσ = 2. The value of the hyper-parameter λP = 10 implies

that the states are persistent over time. The expected duration of the states implied by such

prior assumptions depends on the number of states, M . For instance, for the models with two

states, M = 2, the prior distribution implies a duration of the states of around eleven periods,

whereas for the model with three states, M = 3, the duration of the states is around six periods.

The block Metropolis-Hastings algorithm for each model is initialized with the estimates from

the EM algorithm of the corresponding model. Then follows a 10,000-iteration burn-in period

and, after convergence of the sampler, we sample 100,000 final draws from the posteriors10.

Table 4 reports the estimated MDDs for the MS-VAR models with 2 and 3 regimes. The case

of M = 4 is not provided since the computations suggest that MS-VAR models with more than

3 regimes are not supported by the data.11 The number of lags for the autoregressive coefficients

is limited to 7—less than the 17 lags for VAR models—also due to insufficient state occurrences

when the number of lags increases. The model preferred by the data is the MS-VAR with 3

regimes and a lag order equal to 3.

Figure 2 plots the regime probabilities from the selected model. State 1 has the highest

probabilities of occurrence in the period before 1978, and is characterized by moderate average

growth (represented by the µ parameter) and volatility (represented by σ) of the series; see

Table 5 for the posterior estimates for the unrestricted MS-VAR model with 3 states and 3

lags. The second state has the highest probabilities of occurrence in the period starting from

1984, and this state is the one with the highest average growth of industrial production and its

lowest standard deviation. The second state is also a state of the highest average growth rate

of M1 with a moderate level of volatility. The third state has probabilities close to one for the

9 This result is in line with Christiano and Ljungqvist (1988), where Granger noncausality from money to output
is established for the VAR model with log-differences with US data. Christiano and Ljungqvist (1988), however,
contest this result and argue for a specification error for models with first differences. Warne (2000) also finds
that money does not Granger cause income in the bivariate VAR model for log-differences, but that it does in
the log-levels specification.
10 The number of Gibbs algorithm iterations is increased for models that require the simulation of the latent
Markov process due to a slightly lower efficiency of simulations for these models.
11 The computations encountered difficulties for MS-VAR models with 4 regimes that are due to insufficient
occurrence of one regime. We assume that the hidden Markov process is stationary which implies nonzero
ergodic state probabilities. A situation in which at some Gibbs iteration one of the states has zero occurrences
violates this assumption and is not allowed in our algorithms. This restriction made sampling from the posterior
distribution of parameters of many of the considered models with 4 states practically impossible. This indicates
that the data does not support MS-VAR models with 4 or more regimes, and explains why we only present results
with at most 3 regimes.
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whole year starting in August 2008. This state is also highly likely after July 2011, as well as

in the early 1980’s and in year 1959. This state has the largest standard deviations, 2.5 times

higher than in any other state for income, and 3 times higher than in any other state for money.

Moreover, this is the only state in which the average growth of income is negative as measured

by the posterior mean of the intercept term of the VAR equation.

Note that comparing the best unrestricted MS-VAR model from Table 4 to the best VAR

model of Table 3 (that is to the restricted model) yields a logarithm of base 10 of the posterior

odds ratio of over 69 in favor of the MS-VAR model when the models are given equal prior

probability, thereby strongly supporting the specification of the model where parameters change

over time based on a hidden Markov process.

We proceed with the analysis of Granger noncausality for the selected MS(3)-VAR(3) model.

The Bayesian testing strategy we employ renders the process straightforward: each type of

causality implies different restrictions on the model parameters; we impose them, estimate the

models and compute all marginal densities of data. Table 6 gives the restrictions in (A1)–(A3)

for MS-VAR models with three regimes and provides an accounting of the number of restrictions

imposed on the parameters.

It can be seen from Table 6 that condition (A1) imposes the largest number of restrictions,

and condition (A2) the smallest. The (A1) condition is divided into two models, M1 and M2,

where the former model mainly covers restrictions on the parameters of the income equation,

and the latter mainly on the money equation. The fact that the number of restrictions is greater

for M2 than for M1 is explained by the fact that the former models also include zero restrictions

on parameters in the income equation. The restrictions satisfied by these two models allow the

regime process to be serially correlated, while condition (A2) with model M3 implies that it is

not. As can be seen from the Table, these three models are minimal and from Proposition 1 it

follows that if one of them is true, then there is not any information in the history of money for

improving the predictions of next period’s state of the parameters which can affect income.12

Models M4–M6 jointly imply that condition (A3) holds and are based on the different values

for the rank of the matrix with Markov transition probabilities. The first two of these (A3)

models have nonlinear restrictions, while the last model has only linear restrictions. It is inter-

esting to note that the number of restrictions for these models is increasing with the rank of the

P matrix.

Table 7 reports natural logarithms of the MDDs given the model and logarithms of the Bayes

factors, log10 Bj0 for j = 0, . . . , 6. A positive logarithm of the Bayes factor is to be interpreted as

evidence in favor of the restricted model. In a symmetric way, negative logarithm of the Bayes

factor indicates that the unrestricted model is preferred by the data.

12 Model M1 is trivial in the sense that the regime process s1t, which is allowed to affect the parameters in the
income equation, has a unit dimension and is therefore observed. Consequently, the history of money cannot
improve the predictions of s1.t+1.
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The results in Table 7 show that model M6 has the highest MDD among the six restricted

models and is comparable to the MDD of the unrestricted model, M0. The other models (M1–

M5), however, are much less probable than the unrestricted model, as represented by the large

negative values of the logarithms of the Bayes factors. Moreover, the MDDs and Bayes factors

of conditions (A1)–(A3) are reported. Due to the inclusion of model M6, only condition (A3)

is given some posterior support.

Table 8 presents a summary of the assessment of the considered hypotheses. The hypothesis

that the history of money does not improve the forecast of the regime in the next period (see

Proposition 1) is covered by the three minimal individual hypotheses represented by models M1–

M3. The logarithm of the Bayes factor is here close to -17 when compared with the unrestricted

MS-VAR model and, hence, the empirical evidence for US money and income is strongly in favor

of the model where the history of money is useful to improving the predictions of the regimes

of the parameters which can affect income.

Turning to the Granger noncausality hypothesis, it should be noted that we here represent it

by the four models M2,M4,M5,M6. Model M1 also implies that money is Granger noncausal

for income, but has been excluded from the joint hypothesis. The reason is that M1 is not

minimal since, when true, it implies that the hypothesis M6 is also true. Classical inference on

a multiple hypothesis using, e.g., the Holm-Bonferroni method (see, e.g., Holm, 1979), is based

on the condition that all of the individual hypotheses in a multiple hypothesis are minimal. For

this reason we also opt to exclude M1 from the multiple hypothesis H2 when using Bayesian

inference. Since the MDD of M1 is low compared with some of the models included in H2, the

results in Table 8 are barely affected by this requirement.

From Table 8 it can be seen that the MDD of the joint noncausality hypothesis is lower

than the MDD of the unrestricted model by roughly 8.7 natural logarithm units. Translated to

logarithms of the base 10 scale, this yields a Bayes factor of roughly -3.8, suggesting that the

empirical evidence of Granger noncausality from money to income on monthly US data is, at

best, very weak when we condition on MS-VAR models. In other words, the Bayes factor of

these two hypotheses is equal to 103.8 in favor of Granger causality from money to income.

A byproduct of the analysis for Markov-switching model is Granger noncausality for mixture

VARs. As already discussed in Section 3, the mixture-VARs are nested within the MS-VARs by

setting the rank of the transition probabilities matrix, P , to unity. Table 9 reports the results of

testing for Granger noncausality in mixture VARs with the number of mixture components set

to 3 and the number of lags of VAR equal to 3.13 The results are qualitatively similar to those

for MS-VARs, with a Bayes factor equal to 103.6 in favor of Granger causality over noncausality.

13 Notice that three regimes and three lags may not be the preferred choice of these parameters if we were to
allow only for mixture VARs when estimating them.
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7. Conclusions

In this paper we derive sets of restrictions on the parameters of MS-VAR models that can be used

to test for Granger noncausality and for examining which observed variables have information

relevant for improving the predictions of the underlying and unobserved Markov process that

determines the regimes.

It is shown that both the Granger noncausality and the regime inference hypotheses imply

multiple sets of restrictions on the parameters of the MS-VAR. The number of such sets depends

not only on the lag order of the VAR but also on the dimension of the observable variable vector

and on the number of regimes. Granger noncausality results in some of the sets containing

nonlinear restrictions, with the nonlinearity being dependent on the rank of the matrix with

Markov transition probabilities. Moreover, the number of restrictions actually being tested

depends on the rank of this matrix.

In this paper we have proposed a method of testing the restrictions for the hypotheses of

Granger noncausality and for conducting regime inference. The employed Bayes factors and

posterior odds ratios overcome the limitations of the classical approach to multiple testing. It

requires, however, an algorithm for the estimation of the unrestricted model and of the restricted

models, representing the hypotheses of interest. The algorithm we have suggested allows for

restrictions on all groups of parameters of the model, i.e., parameters on the constant term,

lagged variables, variances and covariances of the innovations, and the transition probabilities

of the hidden Markov process. It combines several existing algorithms in order to maintain the

desired properties of the model and the efficiency of estimation.

In the empirical investigation we found that Granger noncausality from monthly US money to

income established for linear (single regime) VARs is contradicted by the evidence from nonlinear

models. The causality analysis of MS-VARs suggest that money is essential for the forecasting

of the probabilities of the states which influence the behavior of income. Although Granger

noncausality is given a non-zero posterior probability, the posterior probability of the Granger

causality hypothesis is several 1000s times larger for MS-VARs.

Since mixture VAR models are nested in MS-VAR models, our analytical results on Granger

noncausality can also be applied to such models. In the empirical example for US money and

income, we also find strong support in favor of the hypothesis that money Granger causes income

in a mixture VAR. Moreover, we find that MS-VARs dominate mixture VARs, with a Bayes

factor of about 1016.4, while mixture VARs strongly dominate the linear VAR specification, with

a Bayes factor of about 1041.8.

One limitation of the analysis on Granger causality in MS-VAR models is that we only con-

sider one-step-ahead forecasts. The conditions for Granger noncausality using multi-steps-ahead

forecast could be further explored. It is notable that the conditions we have provided on regime

inference applies to multi-steps-ahead forecast of the regime process and can therefore be made
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use of for such noncausality analysis. Still, establishing conditions for the noncausality h-steps-

ahead for the autoregressive parameters, including covariances, would potentially require tedious

algebra.

The Granger noncausality analysis that we have presented in this paper focuses on the proper-

ties of the mean squared errors of the forecasts. It is possible that, e.g., money does not Granger

cause income from this perspective, but may nevertheless incorporate important information

which is valuable for determining higher moments than the mean of the predictive distribution

of income. Warne (2000) provides additional noncausality concepts, namely the second order

Granger causality and the Granger causality in distribution. These two forms being more re-

strictive than the one we consider, a refined analysis on the causal nature between economic

variables could be proposed.
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Mathematical Appendix: Proofs

Proof of Proposition 1

It is straightforward to show that (A2) implies that there is no information in v2t for predicting

s1,t+1 since it implies that Pr[s1,t+1|yt] = Pr[s1,t+1]. Let us therefore focus on the only remaining

possibility, i.e. that Pr[s1,t|yt] = Pr[s1,t|v1,t]. To prove that condition (A1) is necessary and

sufficient for this to hold, we shall proceed in two steps. The first step involves finding a general

condition for predictions of s1,t (and s2,t) to be invariant with respect to alternative information

sets. In the second step we show that when εt|st is Gaussian, then the parameter restrictions

in (A1) are necessary and sufficient for the invariance condition in the first step to be satisfied

under the two information sets of interest.

Let ξt|τ (j) = Pr[st = j|yτ ,Wτ ], for j = 1, . . . ,M , where yt is a vector of variables and Wτ

is the history of an observable vector wt up to and including period τ . The vector wt can, for

example, be defined such that it contains yt−1 and various exogenous variables observable at

time t. Furthermore, let ηt(j) = fyj(yt|st = j,Wt) be the density function for yt conditional

on the state and the history of wt. We stack these functions into M × 1 vectors ξt|τ and ηt,

respectively. From e.g. Hamilton (1994) we have that ξt|t, ξt|t−1, and ηt are related according to:

ξt|t =

(
ξt|t−1 � ηt

)
ı′q
(
ξt|t−1 � ηt

) , t = 1, 2, . . . , (A.1)

while

ξt|t−1 = P ′ξt−1|t−1, t = 2, 3, . . . , (A.2)

and ξ1|0 = ρ, a M × 1 vector of positive constants summing to unity. Here, � denotes the

Hadamard (element-by-element) product and ıM the M × 1 unit vector.

Let st be represented by two Markov processes, s1,t and s2,t, which are not necessarily inde-

pendent. Define j such that j ≡ j2 +M2(j1 − 1) when (s1,t, s2,t) = (j1, j2), for j1 = 1, . . . ,M1

and j2 = 1, . . . ,M2, where M1,M2 ≥ 1 and M = M1M2 ≥ 2. Then ξt|τ (j) = ξt|τ (j1, j2) =

Pr[s1,t = j1, s2,t = j2|yτ ,Wτ ], while ξ(1)t|τ (j1) =
∑M2

j2=1 ξt|τ (j1, j2) and similarly for ξ(2)t|τ (j2). More

compactly, this means that ξ(1)t|τ = [IM1 ⊗ ı′M2
]ξt|τ and ξ(2)t|τ = [ı′M1

⊗ IM2]ξt|τ . The following result

about Hadamard and Kronecker products will prove useful below:

Lemma 1: If and only if ηt = (η(1)
t ⊗ η

(2)
t ) with η(l)

t being Ml × 1 for l = 1, 2, then(
IM1 ⊗ ı′M2

)(
ξt|t−1 � ηt

)
=
([
IM1 ⊗ η

(2)′
t

]
ξt|t−1

)
� η

(1)
t , (A.3)

while (
ı′M1

⊗ IM2

)(
ξt|t−1 � ηt

)
=
([
η

(1)′
t ⊗ IM2

]
ξt|t−1

)
� η

(2)
t . (A.4)
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Proof: The j:th element of (ξt|t−1�ηt) is given by ξt|t−1(j1, j2)η
(1)
t (j1)η

(2)
t (j2). Premultiplying

this M × 1 vector by [IM1 ⊗ ı′M2
] we obtain a M1 × 1 vector whose j1:th element is

η
(1)
t (j1)

M2∑
j2=1

ξt|t−1(j1, j2)η
(2)
t (j2).

Now define

γt|t−1(j1) ≡

⎡
⎢⎢⎢⎢⎣
ξt|t−1(j1, 1)

...

ξt|t−1(j1,M2)

⎤
⎥⎥⎥⎥⎦ , j1 = 1, . . . ,M1. (A.5)

Then

γt|t−1(j1)
′η(2)

t =
M2∑

j2=1

ξt|t−1(j1, j2)η
(2)
t (j2).

Collecting these results we find that

[
IM1 ⊗ ı′M2

][
ξt|t−1 �

(
η

(1)
t ⊗ η

(2)
t

)]
=

⎡
⎢⎢⎢⎢⎣
γt|t−1(1)′η

(2)
t

...

γt|t−1(M1)′η
(2)
t

⎤
⎥⎥⎥⎥⎦� η

(1)
t . (A.6)

Define the M2×M1 matrix γt|t−1 according to γt|t−1 ≡ [γt|t−1(1) · · · γt|t−1(M1)]. It then follows

that

γ′t|t−1η
(2)
t =

⎡
⎢⎢⎢⎢⎣
γt|t−1(1)′η

(2)
t

...

γt|t−1(M1)′η
(2)
t

⎤
⎥⎥⎥⎥⎦ . (A.7)

Moreover, ξt|t−1 = vec(γt|t−1), with vec being the column stacking operator. Next,

γ′t|t−1η
(2)
t =

[
η

(2)′
t ⊗ IM1

]
vec
(
γ′t|t−1

)
=
[
η

(2)′
t ⊗ IM1

]
KM2,M1vec

(
γt|t−1

)
= KM1,1

[
IM1 ⊗ η

(2)′
t

]
ξt|t−1

=
[
IM1 ⊗ η

(2)′
t

]
ξt|t−1,

(A.8)

where Km,n is the mn×mn commutation matrix, Km,1 = Im, and the third equality follows by

Theorem 3.9 in Magnus and Neudecker (1988). Collecting these last results we have established

(A.3). The result (A.4) follows by similar arguments. �

If s1,t and s2,t are independent, it follows that

ξ
(1)
t|t−1 =

[
IM1 ⊗ ı′M2

][
P (1)′ ⊗ P (2)′

]
ξt−1|t−1

= P (1)′ξ(1)t−1|t−1,

(A.9)
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since P (2)ıM2 = ıM2 . Similarly, ξ(2)t|t−1 = P (2)′ξ(2)t−1|t−1. However, this does not mean that ξ(1)t|t−1

and ξ(2)t|t−1 are independent since ξ(1)t−1|t−1 and ξ(2)t−1|t−1 need not be independent.

Lemma 2: If and only if (i) ηt = ϕt(η
(1)
t ⊗ η

(2)
t ) where ϕt is a scalar and η

(l)
t a Ml × 1 vector,

(ii) η(1)
t and η(2)

t are vectors of density functions for independent random variables, and (iii) s1,t

and s2,t are independent, then for all t = 1, . . . , T

ξ
(l)
t|t =

(
ξ
(l)
t|t−1 � η

(l)
t

)
ı′Ml

(
ξ
(l)
t|t−1 � η

(l)
t

) , l = 1, 2, (A.10)

with ξt|τ = (ξ(1)t|τ ⊗ ξ
(2)
t|τ ), where ξ(1)t|τ and ξ(2)t|τ are independent for τ = t, t− 1.

Proof: Note first that ı′M = ı′M1
(IM1 ⊗ ı′M2

) = ı′M2
(ı′M1

⊗ IM2). For l = 1 we know that

ξ
(1)
t|t = [IM1 ⊗ ı′M2

]ξt|t. From equation (A.1) we thus have that

ξ
(1)
t|t =

[
IM1 ⊗ ı′M2

][
ξt|t−1 � ηt

][
ı′M1

(
IM1 ⊗ ı′M2

)(
ξt|t−1 � ηt

)]−1

=
[([

IM1 ⊗ η
(2)′
t

]
ξt|t−1

)
� η

(1)
t

][
ı′M1

([(
IM1 ⊗ η

(2)′
t

)
ξt|t−1

]
� η

(1)
t

)]−1

,

(A.11)

by Lemma 1 and since the scalar ϕt cancels. A similar expression is obtained for ξ(2)t|t . Let

ρ = (ρ(1) ⊗ ρ(2)) where the elements of ρ(l) are positive and sum to unity. Then

ξ
(1)
1|1 =

[(
ρ(1) ⊗ η

(2)′
1 ρ(2)

)
� η

(1)
1

][
ı′M1

([
ρ(1) ⊗ η

(2)′
1 ρ(2)

]
� η

(1)
1

)]−1

=
[
ρ(1) � η

(1)
1

][
ı′M1

(
ρ(1) � η

(1)
1

)]−1

,

(A.12)

and similarly for ξ(2)1|1 . By (ii) it follows that ξ(1)1|1 and ξ
(2)
1|1 are independent. Thus, ξ1|1 =

(ξ(1)1|1 ⊗ ξ
(2)
1|1). Moreover, by (iii) we have that ξ(l)2|1 = P (l)′ξ(l)1|1, which are also independent for

l = 1, 2. Thus, ξ2|1 = (ξ(1)
2|1 ⊗ ξ

(2)
2|1) and so on for t = 2, 3, . . . , T , thereby establishing sufficiency.

To prove necessity, suppose (i) is not true, i.e., Mi ≥ 2 for i = 1, 2. Let ηt = (η(1)
t ⊗ η(2)

t )�ψt,

where ψt �= (ψ(1)
t ⊗ ψ

(2)
t ) for Ml × 1 vectors ψ(l)

t . Then, for example

ξ
(1)
t|t =

[(
IM1 ⊗ η

(2)′
t

)(
ξt|t−1 � ψt

)
� η

(1)
t

][
ı′M1

([
IM1 ⊗ η

(2)′
t

][
ξt|t−1 � ψt

]
� η

(1)
t

)]−1

�=
[([

IM1 ⊗ η
(2)′
t

]
ξt|t−1

)
� η

(1)
t

][
ı′M1

([(
IM1 ⊗ η

(2)′
t

)
ξt|t−1

]
� η

(1)
t

)]−1

.

(A.13)

The only case when the inequality can be replaced with an equality is if ψt = (ψ(1)
t ⊗ ψ

(2)
t ).

Next, if (ii) does not hold, then for instance ξ(1)1|1 and ξ(2)1|1 cannot be independent. Finally, if (iii)

does not hold, then ξ
(1)
t|t−1 �= P (1)′ξ(1)t−1|t−1 and depends on ξ

(2)
t−1|t−1 as well. Thus, ξ(1)2|1 and ξ

(2)
2|1

cannot be independent even if ξ(1)1|1 and ξ(2)1|1 are. �
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Assumptions (i) and (ii) in Lemma 2 are useful for the above proof, but can in practice

be more conveniently expressed as restrictions on marginal and conditional densities via the

decomposition yt = (v1t, v2t). For all j = 1, . . . ,M we may express the joint density for yt as

ηt(j) = fyj

(
yt|st = j,Wt

)
= fv1j

(
v1t|st = j, v2t,Wt

)
fv2j

(
v2t|st = j,Wt

)
.

This standard decomposition ensures that the densities of interest concern independent random

variables and may therefore be taken as an interpretation of what assumption (ii) in Lemma 2

is once the conditions that we consider next are met.

To deal with assumption (i) we first of all require that the marginal density for v2t depends

only on s2t. That is, for all j = 1, . . . ,M :

fv2j

(
v2t|st = j,Wt

)
= fv2j2

(
v2t|s2t = j2,Wt

)
, j2 = 1, . . . ,M2. (A.14)

Concerning the conditional density for v1t the restrictions can be written as:

fv1j

(
v1t|st = j, v2t,Wt

)
=

⎧⎪⎪⎨
⎪⎪⎩
fv1j1

(
v1t|s1t = j1,Wt

)
if M2 > 1,

fv1j1

(
v1t|s1t = j1, v2t,Wt

)
otherwise

(A.15)

for all j1 = 1, . . . ,M1 and j = 1, . . . ,M . In other words, the conditional density for v1t must

be such that it does not depend on s2t. If M2 > 1, then v2t varies with s2t and, hence, the

density of v1t must be invariant with respect to v2t. On the other hand, when M2 = 1, then by

(A.14) we have that v2t is invariant with respect to st and is therefore not otherwise required

to be subject to a constraint. The restrictions in (A.14) and (A.15) are more convenient than

assumptions (i) and (ii) when we attempt to determine the restrictions that a specific density

function for yt must satisfy.14

In fact, the conditions in Lemma 2 have even further implications:

Lemma 3: If and only if the conditions in Lemma 2 are satisfied, then

ξt|τ =
(
ξ
(1)
t|τ ⊗ ξ

(2)
t|τ
)
, (A.16)

for all t, τ = 1, . . . , T , with ξ(1)t|τ and ξ(2)t|τ being independent.

Proof: Let us first prove this for all τ < t. We have already established in Lemma 2 that

ξ
(1)
τ |τ and ξ(2)τ |τ are independent for all τ . By equation (22.3.13) in Hamilton (1994) we have that

ξt|τ = (P ′)t−τ ξτ |τ for τ = 1, . . . , t − 1. By independence of s1,t and s2,t and of ξ(1)τ |τ and ξ
(2)
τ |τ we

obtain ξt|τ = [(P (1)′)t−τξ
(1)
τ |τ ⊗ (P (2)′)t−τ ξ

(2)
τ |τ ] = (ξ(1)t|τ ⊗ ξ

(2)
t|τ ), which are thus independent.

To show (A.16) for τ > t it is sufficient to consider τ = T since the algorithm for computing

smooth probabilities is valid for any τ > t. From Kim (1994) (see also Lindgren, 1978; Hamilton,

1994) we get

ξt|T = ξt|t �
[
P
(
ξt+1|T � ξt+1|t

)]
, t = 1, . . . , T − 1, (A.17)

14 An alternative way of saying this is that “assumption (ii)” is an implication of assumption (i).
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where � denotes element-by-element division. To show that ξt|T = (ξ(1)t|T ⊗ ξ
(2)
t|T ), with ξ

(l)
t|T

independent for l = 1, 2, we begin with t = T −1. By Lemma 2 we have that ξT |τ = (ξ(1)T |τ ⊗ξ
(2)
T |τ )

for τ = T, T − 1. Accordingly,[
ξT |T � ξT |T−1

]
=
[(
ξ
(1)
T |T � ξ

(1)
T |T−1

)
⊗
(
ξ
(2)
T |T � ξ

(2)
T |T−1

)]
. (A.18)

Let ψ(l)
T ≡ P (l)(ξ(l)T |T � ξ

(l)
T |T−1) for l = 1, 2. We then obtain

P
[
ξT |T � ξT |T−1

]
=
[
ψ

(1)
T ⊗ ψ

(2)
T

]
≡ ψT . (A.19)

Hence, ξT−1|T = (ξT−1|T−1 � ψT ). With ξ
(1)
t|T = [IM1 ⊗ ı′M2

]ξt|T it follows by Lemma 1 and

Lemma 2 that

ξ
(1)
T−1|T =

[(
IM1 ⊗ ψ

(2)′
T

)
ξT−1|T−1

]
� ψ

(1)
T

= ψ
(2)′
T ξ

(2)
T−1|T−1

(
ξ
(1)
T−1|T−1 � ψ

(1)
T

)
,

(A.20)

since ξT−1|T−1 = (ξ(1)T−1|T−1 ⊗ ξ
(2)
T−1|T−1). From the definition of ψ(2)

T we find that

ψ
(2)′
T ξ

(2)
T−1|T−1 =

(
ξ
(2)
T |T � ξ

(2)
T |T−1

)′
P (2)′ξ(2)T−1|T−1

=
(
ξ
(2)
T |T � ξ

(2)
T |T−1

)′
ξ
(2)
T |T−1

=
M2∑

j2=1

ξ
(2)
T |T (j2).

(A.21)

This is equal to unity and we thus get

ξ
(1)
T−1|T = ξ

(1)
T−1|T−1 �

[
P (1)

(
ξ
(1)
T |T � ξ

(1)
T |T−1

)]
. (A.22)

Proceeding with ξ(2)T−1|T , the above arguments imply that

ξ
(2)
T−1|T = ξ

(2)
T−1|T−1 �

[
P (2)

(
ξ
(2)
T |T � ξ

(2)
T |T−1

)]
, (A.23)

and, hence, by Lemma 2, ξ(l)T−1|T are independent for l = 1, 2 and ξT−1|T = (ξ(1)T−1|T ⊗ξ
(2)
T−1|T ). For

the remaining t, backwards recursions, using the above arguments, implies the result. Necessity

follows by the arguments in Lemma 2. �

Notice that condition (i) of Lemma 2 is only sufficient in forecast situations. If st is serially

uncorrelated, then P ′ = πı′M , with π being the vector of ergodic probabilities. Accordingly, for

all τ < t, ξt|τ = (P ′)t−τξτ |τ = π since ı′Mπ = ı′qξτ |τ = 1. Hence, if s1,t and s2,t are independent

and serially uncorrelated, then ξt|τ = (ξ(1)t|τ ⊗ ξ
(2)
t|τ ) = (π(1) ⊗ π(2)) for all τ < t.

This completes step one in the proof of Proposition 1. We have established necessary and

sufficient conditions for how the information used to predict st can be split into information

valuable for predicting s1,t but not s2,t, and vice versa, and when information can be “thrown

away” without affecting the regime predictions. Note that the conditions in Lemma 2 are very

ECB Working Paper 1794, May 2015 34



general in the sense that they apply to any vector of density functions ηt. For example, the

functional form can vary over t as well as over states. The crucial underlying assumption is that

st conditional on st−1 is independent of information available at time t− 1. If this assumption

is violated, then the algorithms for computing regime predictions are no longer valid.

The assumption that s1,t and s2,t are independent, in fact, increases the level of generality of

the results. For example, it allows M2 = 1 in which case ηt = ϕtη
(1)
t (with the scalar ϕt being

a marginal density which is invariant with respect to st) is necessary and sufficient for regime

predictions based on the vector densities ηt and η(1)
t to be equivalent.

When M1,M2 ≥ 2 we allow for the possibility that two subsystems of the model can contain

information for predicting one independent regime process each but not the other regime pro-

cess, while a third subsystem is completely non-informative about regimes. By considering r

independent Markov chains, these results can be generalized further. For our purposes, however,

the above results are sufficient.

Now let us return to the MS-VAR with conditionally Gaussian residuals. Here we find that

for each j ∈ {1, . . . ,M} the joint log density is

ln
(
ηt(j)

)
= −N

2
ln(2π) − 1

2
ln
(
det
[
Σj

])− 1
2
ε′t|jΣ

−1
j εt|j , (A.24)

where εt|j = yt − µj −
∑p

k=1A
(k)
j yt−k. Let n1 and n2 be the number of v1,t and v2,t variables,

respectively, with n1 +n2 = N . The marginal density for v2,t, conditional on st = j and yt−1, is

ln
(
η

(2)
t (j)

)
= −n2

2
ln(2π) − 1

2
ln
(
det
[
Σ22,j

])− 1
2
ε′2,t|jΣ

−1
22,jε2,t|j . (A.25)

If this density is invariant with respect to s1,t, then (a) Σ22,(j1,j2) = Σ22,j2 , µ2,(j1,j2) = µ2,j2 , and

A
(k)
2r,(j1,j2)

= A
(k)
2r,j2

for all j1 ∈ {1, . . . ,M1}, j2 ∈ {1, . . . ,M2}, r ∈ {1, 2}, and k ∈ {1, . . . , p}. For

M2 = 1 these restrictions imply that the parameters in the marginal density for v2,t are constant

across states.

Under the restrictions in (a), the density for v1,t, conditional on st = j = j2 + M2(j1 − 1),

v2,t, and yt−1, is

ln
(
η

(1)
t (j)

)
= −n1

2
ln(2π) − 1

2
ln
(
det
[
Σ̃11,j

])
+ ε′2,t|j2Σ

−1
22,j2

Σ′
12,jΣ̃

−1
11,jε1,t|j

− 1
2
ε′1,t|jΣ̃

−1
11,jε1,t|j −

1
2
ε′2,t|j2Σ

−1
22,j2

Σ′
12,jΣ̃

−1
11,jΣ12,jΣ−1

22,j2
ε2,t|j2,

(A.26)

where Σ̃11,j ≡ Σ11,j − Σ12,jΣ−1
22,j2

Σ′
12,j. If this density function is invariant with respect to

s2,t for M2 ≥ 2, then (b) Σ11,(j1,j2) = Σ11,j1 , µ1,(j1,j2) = µ1,j1 , and A
(k)
1r,(j1,j2)

= A
(k)
1r,j1

for all

j1 ∈ {1, . . . ,M1}, j2 ∈ {1, . . . ,M2}, r ∈ {1, 2}, and k ∈ {1, . . . , p}; and (c) Σ12,j = 0 for all

j ∈ {1, . . . ,M}. Under (i) to (iii) we find that ηt = (η(1)
t ⊗ η

(2)
t ) for all t, with η

(l)
t being the

marginal density of vl,t conditional on sl,t and yt−1. If these linear restrictions are not satisfied,

then ηt cannot be decomposed into the (Kronecker) product between a M1 and a M2 vector

density. If M2 = 1, then condition (c) can, for now, be dispensed with.

ECB Working Paper 1794, May 2015 35



To satisfy the remaining condition in Lemma 2 we need to let s1,t and s2,t be independent.

For M2 ≥ 2 we have that η(1)
t and η(2)

t are vectors of densities for independent random variables

(ε1,t|s1,t and ε2,t|s2,t) from, in particular, restrictions (c), and for M2 = 1 this is not needed since

ϕt is just a scalar which cancels in (A.1). By Lemma 2 it then follows that

Pr
[
st = j|yt; θ

]
= Pr

[
s1,t = j1

∣∣v1,t,v2,t;ϑ1, P
(1)
]
Pr
[
s2,t = j2

∣∣v1,t−1,v2,t;ϑ2, P
(2)
]
,

where θ = (ϑ1, ϑ2, P ) and ϑi = {µi.sit , Aij.sit,Σii,sit} for i = 1, 2 are the parameters for the

density of εit|sit. When M2 ≥ 2 it also follows that Pr[s1,t = j1|v1,t,v2,t;ϑ1] = Pr[s1,t =

j1|v1,t,v2,t−1;ϑ1].

The final stage is now straightforward. v2,t is assumed to be predictively redundant for s1,t+1

and this regime process is not serially uncorrelated when (A2) has already been covered, it

follows that v2,t must not contain any information in addition to v1,t for predicting s1,t. This

means that the restrictions (c) must also hold for M2 = 1. Furthermore, we may also infer that:

(d) A(k)
12,j1

= 0 for all j1 ∈ {1, . . . ,M1} and k ∈ {1, . . . , p} and for M2 ≥ 1. Hence, we have

shown that

Pr
[
(s1,t, s2,t) = (j1, j2)

∣∣yt; θ
]

= Pr
[
s1,t = j1

∣∣v1,t;ϑ1

]
Pr
[
s2,t = j2

∣∣yt;ϑ2

]
,

implies that (A1) is satisfied. To prove the reverse is straightforward. Q.E.D.

Proof of Proposition 2

Given that ut+1 is mean zero stationary we know that E[u2
t+1; θ] ≤ E[ũ2

t+1; θ] since (v1t,y3t) ⊂ yt

for all t. In particular,

E
[
ũ2

t+1; θ
]

= E
[
u2

t+1; θ
]

+ E
[(
E
[
y1,t+1

∣∣yt; θ
]− E

[
y1,t+1

∣∣v1t,y3t; θ
])2; θ]. (A.27)

Accordingly, the variances of ut+1 and ũt+1 are equal if and only if E[y1,t+1|yt; θ] is equal to

E[y1,t+1|v1t,y3t; θ] for all t.

The prediction of y1,t+1 conditional on yt is given by

E
[
y1,t+1|yt; θ

]
= m̄1,t +

p∑
k=1

(
ā

(k)
11,ty1,t+1−k + ā

(k)
12,ty2,t+1−k

+ ā
(k)
13,ty3,t+1−k + ā

(k)
14,ty4,t+1−k

)
.

(A.28)

The necessary and sufficient conditions for this expression to be invariant with respect to y4t

are, for all t, given by

(i) m̄1,t = E
[
m1,st+1

∣∣∣v1t,y3t; θ
]
,

(ii) ā
(k)
1r,t = E

[
a

(k)
1r,st+1

∣∣∣v1t,y3t; θ
]
, r ∈ {1, . . . , 4} and k ∈ {1, . . . , p},

(iii) ā
(k)
14,t = 0, k ∈ {1, . . . , p}.
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To prove the claim in Proposition 2 we therefore have to show that (i)–(iii) are equivalent to

[(A1) or (A3)].

Granger Noncausality ⇒ [
(A1) or (A3)

]
From the definitions of m̄1,t and ā

(k)
1r,t in both of the equations (17) we find that these random

matrices can be expressed as

m̄1,t =
M∑
i=1

M∑
j=1

m1,jpij Pr
[
st = i

∣∣yt; θ
]
, (A.29)

and

ā
(k)
1r,t =

M∑
i=1

M∑
j=1

a
(k)
1r,jpij Pr

[
st = i

∣∣yt; θ
]
. (A.30)

From these two equations it can be seen that m̄1,t and ā
(k)
1r,t depend on t, and thus potentially

on y4t, only via the filter probabilities Pr[st = i|yt; θ].

Suppose first that (m̄1,t, ā
(k)
1r,t) indeed varies with t. It now follows that Granger noncausality

implies that

Pr
[
(s1,t, s2,t) = (i1, i2)

∣∣yt; θ
]

= Pr
[
s1,t = i1

∣∣v1,t; θ
]
Pr
[
s2,t = i2

∣∣yt; θ
]
, (A.31)

must hold for all i1, i2, and t, while (m1,(j1,j2), a
(k)
1r,(j1j2)

) only depends on j2. By Lemma 3 and

the proof of Proposition 1 (see also Warne, 2000, Corollary 2) we know that equation (A.31)

can only be satisfied under (A1). The remaining parameter restrictions, pij = p
(1)
i1j1

p
(2)
i2j2

, are also

satisfied under (A1).

Notice that the formulation in (A.31) covers the case when n2 = 1, i.e. when y3t is empty and

all auxiliary variables are located in y2t, as well as the cases when n2 ≥ 2. It is therefore more

general than one where Pr[s1,t = i1|v1,t; θ] is replaced with Pr[s1,t = i1|v1t,y3t; θ].

It remains to examine the case when (m̄1,t, ā
(k)
1r,t) is invariant with respect to t. From equations

(A.29)–(A.30) we now have that
∑M

j=1m1,jpij = m̄1,
∑M

j=1 a
(k)
1r,jpij = ā

(k)
1r , with ā

(k)
14 = 0 for all

i, r, and k. Hence, condition (A3) is satisfied.

[
(A1) or (A3)

] ⇒ Granger Noncausality

Evaluating equation (A.28) under (A1) and (A3), respectively, gives the result. Q.E.D.
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Statistical Appendix: Block Metropolis-Hastings Algorithm for MS-VARs

with Restrictions

This section describes all the constituting blocks that form the MCMC sampler.

B.1. Simulating Hidden Markov Process

The first drawn parameter is the vector representing the states of the economy, ST . Being a

latent variable, there are no prior distributions nor restrictions specified for ST . We first use

a BLHK filter and smoother (see Section 11.2 of Frühwirth-Schnatter, 2006, and references

therein) and obtain the probabilities Pr(st = i|yT , θ
(l−1)), for t = 1, . . . , T and i = 1, . . . ,M ,

and then draw S(l)
T , for lth iteration of the algorithm. For the full description of the algorithm

used in this work the reader is referred to Droumaguet and Woźniak (2012).

B.2. Sampling Transition Probabilities

In this step of the MCMC sampler, we draw from the posterior distribution of the transition

probabilities matrix, conditioning on the states drawn in the previous step of the current iter-

ation, P (l) ∼ p(P |S(l)
T ). For the purpose of testing restriction (A2), we impose restrictions of

identical rows of P . Sims et al. (2008) provide a flexible analytical framework for working with

restricted transition probabilities, and the reader is invited to consult Section 3 of their paper

for an exhaustive description of the possibilities provided by the framework. We however limit

the latitude given by the reparameterization in order to ensure the stationarity of Markov chain

ST .

Reparameterization

The transition probabilities matrix P is modeled with Q vectors wj, j = 1, · · · , Q and each of

size dj ≤ M . Let all the elements of wj belong to the (0, 1) interval and sum up to one, and

stack all of them into the column vector w = (w
′
1, . . . , w

′
Q)

′ of dimension d =
∑Q

j=1 dj . Writing

p = vec(P ′) as a M2 dimensional column vector, and introducing the (M2 × d) matrix K, the

transition matrix is decomposed as:

p = Kw, (B.1)

where the K matrix is composed of the Kij sub-matrices of dimension (M × dj), where i =

1, . . . ,M , and j = 1, . . . , Q:

K =

⎡
⎢⎢⎢⎢⎣
K11 . . . K1Q

...
. . .

KM1 KMQ

⎤
⎥⎥⎥⎥⎦ ,

where each Kij satisfies the following conditions:

(1) For each (i, j), all elements of Kij are non-negative.

(2) ı′MKij = Λijı
′
dj

, where Λij is the sum of the elements in any column of Kij .
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(3) Each row of K has, at most, one non-zero element.

(4) K is such that P is irreducible: for all j, dj ≥ 2.

The first three conditions are inherited from Sims et al. (2008), whereas the last condition

assures that P is irreducible, forbidding the presence of an absorbing state that would render

the Markov chain ST non-stationary. The lack of independence of the rows of P is described in

Frühwirth-Schnatter (2006, Section 11.5.5). Once the initial state s0 is drawn from the ergodic

distribution π of P , direct MCMC sampling from the conditional posterior distribution becomes

impossible. However, a Metropolis-Hastings step can be set up to circumvent this issue, since

a kernel of the joint posterior density of all rows is known: p(P |ST ) ∝ ∏Q
j=1 Ddj

(wj)π. Hence,

the proposal for transition probabilities is obtained by sampling each wj from the convenient

Dirichlet distribution. The priors for wj follow a Dirichlet distribution, wj ∼ Ddj
(b1,j , . . . , bdj ,j).

We then transform the column vector w into our candidate matrix of transitions probabilities

using equation (B.1). Finally, we compute the acceptance rate before retaining or discarding

the draw.

Algorithm 1: Metropolis-Hastings step for the restricted transition matrix.

(1) s0 ∼ π. The initial state is drawn from the ergodic distribution of P .

(2) wj ∼ Ddj
(n1,j +b1,j, . . . , ndj ,j +bdj ,j) for j = 1, . . . , Q. ni,j corresponds to the number of

transitions from state i to state j, counted from ST . The candidate transition probabil-

ities matrix – in the transformed notation – are sampled from a Dirichlet distribution.

(3) pnew = Kw. The proposal for the transitions probabilities matrix is reconstructed.

(4) Accept pnew if u ≤ (πnew/πl−1), where u ∼ U [0, 1]. πnew and πl−1 are the ergodic

probabilities of s(l)0 that are computed from Pnew (determined from pnew) and P l−1

respectively.

B.3. Sampling Second and Independent Hidden Markov Process

Regime inference from proposition (A1) involves two independent Markov processes. Equation

(13) decomposes the vector of observations into two sub-vectors. Equations contained within

each sub-vector are subject to switches from a different and independent Markov process. Sims

et al. (2008, section 3.3.3) cover a similar decomposition.

Adding a Markov process is trivial in the sense it involves repeating the steps of Section B.1

and Algorithm 1 subsequently for a second process, yielding two distinct transition probabilities

matrices P (1) and P (2). The transition probabilities matrix for the whole system is formed

out of the transition probabilities matrices of two independent hidden Markov processes, P =

(P (1) ⊗ P (2)).

B.4. Sampling Correlation Coefficients and Standard Deviations

Adapting the approach proposed by Barnard et al. (2000) to Markov-switching models, we sam-

ple from the full conditional distribution of unrestricted and restricted covariance matrices. We
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thus decompose each covariance matrix of the MS-VAR process into a vector of standard devia-

tions (σst) and a correlation matrix (Rst) as in equation (24).This decomposition – statistically

motivated – enables the partition of the covariance matrix parameters into two categories that

are well suited for the restrictions we want to impose on the matrices. In a standard covariance

matrix, restricting a variance parameter to some value has some impact on the depending covari-

ances, whereas here variances and covariances (correlations) are treated as separate entities. The

second and not the least advantage of the approach of Barnard et al. (2000) lies in the employed

estimation procedure, the griddy-Gibbs sampler. The method introduced in Ritter and Tanner

(1992) is well suited for sampling from an unknown univariate density p(Xi|Xj , i �= j). This

is done by approximating the inverse conditional density function, which is done by evaluating

p(Xi|Xj , i �= j) thanks to a grid of points. Imposing the desired restrictions on the parameters,

and afterwards iterating a sampler for every standard deviation σi.st and every correlation Rj.st,

we are able to simulate desired posteriors of the covariance matrices. While adding to the over-

all computational burden, the griddy-Gibbs sampler gives us full latitude to estimate restricted

covariance matrices of the desired form.

Algorithm 2: Griddy-Gibbs for the standard deviations. The algorithm iterates on all the

standard deviation parameters σi.st for i = 1, . . . , N and st = 1, . . . ,M . Similarly to Barnard

et al. (2000) we assume log-normal priors, log(σi.st) ∼ N (0, 2). The grid is centered on the

residuals’ sample standard deviation σ̂i.st and divides the interval (σ̂i.st − 3σ̂σ̂i.st
, σ̂i.st + 3σ̂σ̂i.st

)

into G grid points. σ̂σ̂i.st
is an estimator of the standard error of the estimator of the sample

standard deviation.

(1) Regime-invariant standard deviations: Draw from the unknown univariate density

p
(
σi

∣∣yT ,ST , P, β, σ−i, R
)
.

This is done by evaluating a kernel on a grid of points, using the proportionality relation,

with the likelihood function times the prior: σi|yT ,ST , P, β, σ−i, R ∝ p(yT |ST , θ) · p(σi).

Reconstruct the c.d.f. from the grid through deterministic integration and sample from

it.

(2) Regime-varying standard deviations: For all regimes st = 1, . . . ,M , draw from the

univariate density

p
(
σi.st

∣∣yT ,ST , P, β, σ−i.st , R
)
,

evaluating a kernel thanks to the proportionality relation, with the likelihood function

times the prior: σi.st |yT ,ST , P, β, σ−i.st , R ∝ p(yT |ST , θ) · p(σi.st).

Algorithm 3: Griddy-Gibbs for the correlations The algorithm iterates on all the correlation

parameters Ri.st for i = 1, . . . , (N − 1)N/2 and st = 1, . . . ,M . Similarly to Barnard et al.

(2000), we assume uniform distribution on the feasible set of correlations, Ri.st ∼ U(a, b), with

a and b being the bounds that keep the implied covariance matrix positive definite; see the
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aforementioned reference for details of setting a and b. The grid divides interval (a, b) into G

grid points.

(1) Depending on the restriction scheme, set correlation parameters to 0.

(2) Regime-invariant correlations: Draw from the univariate density

p
(
Ri

∣∣yT ,ST , P, β, σ,R−i

)
,

evaluating a kernel thanks to the proportionality relation, with the likelihood function

times the prior: Ri|yT ,ST , P, β, σ,R−i ∝ p(yT |ST , θ) · p(Ri).

(3) Regime-varying correlations: For all regimes st = 1, . . . ,M , draw from the univariate

density

p
(
Ri.st

∣∣yT ,ST , P, β, σ,R−i.st

)
,

evaluating a kernel thanks to the proportionality relation, with the likelihood function

times the prior: Ri.st |yT ,ST , P, β, σ,R−Ri.st
∝ p(yT |ST , θ) · p(Ri.st).

B.5. Sampling VAR Parameters

Finally, we draw the state-dependent autoregressive parameters, βst for st = 1, . . . ,M . The

Bayesian parameter estimation of finite mixtures of regression models when the realizations of

states is known has been precisely covered in Frühwirth-Schnatter (2006, Section 8.4.3). The

procedure consists of estimating all the regression coefficients simultaneously by stacking them

into β = (β0, β1, . . . , βM ), where β0 is a common regression parameter for each regime, and hence

is useful for the imposing of restrictions of state invariance for the autoregressive parameters.

The regression model becomes:

yt = Ztβ0 + ZtDi.1β1 + · · · + ZtDi.MβM + εt, (B.2)

εt ∼ i.i.N (0,Σst). (B.3)

We have here introduced the Di.st, which are M dummies taking the value 1 when the regime

occurs and set to 0 otherwise. A transformation of the regressors ZT also has to be performed

in order to allow for different coefficients on the dependent variables, for instance to impose zero

restrictions on parameters. In the context of VARs, Koop and Korobilis (2010, Section 2.2.3)

detail a convenient notation that stacks all the regression coefficients on a diagonal matrix for

every equation. We adapt this notation by stacking all the regression coefficients for all the states

on diagonal matrix. If zn.st.t corresponds to the row vector of 1 +Np independent variables for

equation n, state st (starting at 0 for regime-invariant parameters), and at time t, the stacked

regressor Zt will be of the following form:

Zt = diag
(
z1.0.t, . . . , zN.0.t, z1.1.t, . . . , zN.1.t, . . . , z1.M.t, . . . , zN.M.t

)
.

This notation enables the restriction of each parameter, by simply setting zn.st.t to 0 where

desired.
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Algorithm 4: Sampling the autoregressive parameters. We assume normal prior for β, i.e.

β ∼ N (0, Vβ).

(1) For all Zts, impose restrictions by setting zn,st,t to zero accordingly.

(2) β|yT ,ST , P, σ,R ∼ N (β, Vβ). Sample β from the conditional normal posterior distribu-

tion, with the following parameters:

Vβ =

(
V −1

β +
T∑

t=1

Z
′
tΣ

−1
st
Zt

)−1

and

β = Vβ

(
T∑

t=1

Z
′
tΣ

−1
st
yt

)
.

B.6. Simulating Restrictions in the Form of Functions of the Parameters

Some of the restrictions for Granger noncausality presented in Section 3 will be in the form of

complicated functions of parameters. Suppose some restriction is in the form:

θi = g
(
θ−i

)
,

where g(·) is a scalar function of all the parameters of the model but θi. The restricted parameter,

θi, in this study may be one of the parameters from the autoregressive parameters, β. In such

a case, β|yT ,ST , P,R, σ is no longer independent and need to be simulated with a Metropolis-

Hastings algorithm.

Restriction on the VAR Parameters β

In this case, the deterministic function restricting parameter βi will be of the following form:

βi = g(β−i, σ,R, P ).

We draw from the full conditional distribution of the VAR parameters, p(β|yT ,ST , P, σ,R),

using the Metropolis-Hastings algorithm:

Algorithm 5: Metropolis-Hastings for the restricted VAR parameters β.

(1) Form a candidate draw, βnew, using Algorithm 6.

(2) Compute the probability of acceptance of a draw:

α(βl−1, βnew) = min
[
p(yT |ST , P, β

new, σ,R)p(βnew)
p(yT |ST , P, βl−1, σ,R)p(βl−1)

, 1
]
. (B.4)

(3) Accept βnew if u ≤ α(βl−1, βnew), where u ∼ U [0, 1].

The algorithm has its justification in the block Metropolis-Hastings algorithm of Greenberg

and Chib (1995). The formula for computing the acceptance probability from equation (B.4) is

a consequence of the choice of the candidate generating distributions. For the parameters β−i,

it is a symmetric normal distribution, as in step 2 of Algorithm 4, whereas βi is determined by

a deterministic function.
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Algorithm 6: Generating a candidate draw β.

(1) Restrict parameter βi to zero. Draw all the parameters (β1, . . . , βi−1, 0, βi+1, . . . , βk)′

according to the algorithms described in Section B.5.

(2) Compute βi = g(β−i, σ,R, P ).

(3) Return the vector (β1, . . . , βi−1, g(β−i, σ,R, P ), βi+1, . . . , βk)′.
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Figures

Figure 1: Log-differenced monthly data on US money (M1) and income (indus-
trial production) over the sample period 1959:1–2012:11.
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Figure 2: Estimated marginal posterior probabilities of regimes, Pr[st|yT ], for
the unrestricted MS-VAR model with 3 states and 3 lags over the
sample period 1959:4–2012:11.
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Tables

Table 1: Summary statistics of the data for the sample period 1959:1–2012:11.

Variable Mean Median Standard Deviation Minimum Maximum

∆y 2.771 3.312 9.984 -50.553 71.977

∆m 5.29 4.764 8.279 -38.886 71.788

Note: The data source is Citibase. ∆y is the US industrial production index
and ∆m is the US M1 money stock. Both series are seasonally adjusted,
transformed into log-returns and multiplied by 1200.

Table 2: Model selection for VAR(p) models over the sample period 1959:1–2012:11.

Lags (p) 0 1 2 3 4 5 6 7 8

ln p̂ (yT |p) -4739.81 -4654.11 -4642.09 -4613.66 -4616.61 -4609.95 -4592.88 -4585.46 -4582.27

Lags (p) 9 10 11 12 13 14 15 16 17

ln p̂ (yT |p) -4581.74 -4584.36 -4556.16 -4553.18 -4551.15 -4544.68 -4546.68 -4549.14 -4546.53

Note: ln p̂ (yT |p) denotes the marginal data density using the modified harmonic mean estimator suggested
by Geweke (1999, 2005) and computed for VAR models with different lag order, p.

Table 3: Bayesian Granger Noncausality Tests for VAR models with 14 lags
over the sample 1959:1–2012:11.

Mj ln p̂(yT |Mj) log10 Bj0

H0: Unrestricted VAR(14) model

M0 -4544.68 0

H1: Granger Noncausality from Money to Income

M1 -4518.43 11.4

Note: ln p̂(yT |Mj) denotes the marginal data density
using the modified harmonic mean estimator suggested
by Geweke (1999, 2005) and computed for the jth model,
Mj , and log10 Bj0 denotes a logarithm of base 10 of the
Bayes factor of the jth model to model M0. Model M1

is the restricted VAR(14) model with the restrictions for
Granger noncausality hypothesis.
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Table 4: Model selection for MS-VAR models with M states and p lags over
the sample 1959:1–2012:11.

Models with number of states M = 2

Lags (p) 0 1 2 3 4 5 6 7

ln p̂ (yT |p, M) -4578.72 -4456.06 -4440.07 -4412.75 -4418.02 -4420.24 -4411.57 -4411.62

Models with number of states M = 3

Lags (p) 0 1 2 3 4 5 6 7

ln p̂ (yT |p, M) -4567.22 -4415.06 -4402.98 -4384.28 -4390.89 -4392.09 -4387.6 -4390.79

Note: ln p̂ (yT |p, M) denotes the marginal data density using the modified harmonic mean estimator
suggested by Geweke (1999, 2005) and computed for MS-VAR models with different number of states,
M , and lag order, p.
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Table 6: Summary of regime inference and Granger noncausality restrictions
on the parameters of MS-VAR models with M = 3.

Condition (A1) #restrictions

M1 : µ1.st = µ1, A
(l)
11.st

= A
(l)
11 , A

(l)
12.st

= 0, for l = 1, . . . , p, and Σ11.st = Σ11, Σ12.st = 0 5p + 7

M2 : µ2.st = µ2, A
(l)
21.st

= A
(l)
21 , A

(l)
22.st

= A
(l)
22 , A

(l)
12.st

= 0, for l = 1, . . . , p,

and Σ22.st = Σ22, Σ12.st = 0 7p + 7

Condition (A2)

M3 : P = ı3π
′

4

Condition (A3)

M4 : P = ı3π
′
, and

∑3
j=1 A

(l)
12.jπj = 0, for l = 1, . . . , p p + 4

M5 : P =

⎡
⎢⎢⎢⎣
1 0

0 1

c 1 − c

⎤
⎥⎥⎥⎦
⎡
⎣p1·

p2·

⎤
⎦,
∑3

j=1 µ1.j

(
p1j − p2j

)
= 0,

∑3
j=1 A

(l)
11.j

(
p1j − p2j

)
= 0,

∑3
j=1 A

(l)
12.jpij = 0 for i = 1, 2 and l = 1, . . . , p 3p + 2

M6 : and µ1.st = µ1, A
(l)
11.st

= A
(l)
11 , and A

(l)
12.st

= 0, for l = 1, . . . , p 5p + 2

Note: The parameters are as defined in the note of Table 5. Additionally, ın is a n-dimensional vector of ones,
pi· is the ith row of P , π is a vector of ergodic state probabilities, c is a parameter estimated by maximizing
the value of the full conditional posterior density of P .
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Table 7: Noncausality and regime inference testing in a MS-VAR models for
US monthly data on money and income, 1959:1–2012:11.

Mj Restrictions ln p̂ (yT|Mj) log10 Bj0

H0: Unrestricted model

M0 MS(3)-VAR(3) -4384.28 0

H1: History of money has no effect on the regime forecast

M1 (A1) with M1 = 1, M2 = 3 -4441.32 -24.77

M2 (A1) with M1 = 3, M2 = 1 -4556.22 -74.68

(A1) -4442.01 -25.07

M3 (A2) -4422.07 -16.41

H2: Granger noncausality

M2 (A1) and M1 = 3, M2 = 1 -4556.22 -74.68

M4 (A3) and rank(P ) = 1 -4430.35 -20.01

M5 (A3) and rank(P ) = 2 -4488.47 -45.25

M6 (A3) and rank(P ) = 3 -4391.57 -3.17

(A3) -4392.67 -3.64

Note: For the definition of ln p̂ (yT|Mj) and log10 Bj0 see the note to
Table 3. For the exact restrictions on parameters for the restricted
models see Table 6.

Table 8: Summary of Bayesian hypotheses testing on regime inference and
Granger noncausality for US monthly data on money and income,
1959:1–2012:11.

Hi Hypothesis Represented by models ln p̂ (yT |Hi) log10 Bj0

H0 Unrestricted model M0 -4384.28 0

H1 History of money does not impact
on the regime forecast of income

M1, M2, M3 -4423.17 -16.89

H2 Granger noncausality M2, M4, M5, M6 -4392.96 -3.77

Note: For the definition of ln p̂ (yT|Mj) and log10 Bj0 see the note to Table 3.
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Table 9: Bayesian hypothesis testing of Granger noncausality in mixture VAR
models for US monthly data on money and income, 1959:1–2012:11.

Mj Restrictions ln p̂(yT |Mj) log10 Bj0

H0: Unrestricted model

M3 mix(3)-VAR(3) -4422.07 0

H1: Granger noncausality from money to income

M4 (A3) rank(P ) = 1 -4430.35 -3.60

Note: For the definition of ln p̂ (yT|Mj) and log10 Bj0

see the note to Table 3. For the exact restrictions on
parameters for the restricted models see Table 6.
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