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Abstract

This paper assesses the forecasting performance of various variable reduction and

variable selection methods. A small and a large set of wisely chosen variables are used in

forecasting the industrial production growth for four Euro Area economies. The results

indicate that the Automatic Leading Indicator (ALI) model performs well compared

to other variable reduction methods in small datasets. However, Partial Least Squares

and variable selection using heuristic optimisations of information criteria along with

the ALI could be used in model averaging methodologies.

JEL classification: C11, C32, C52.

Keywords: Bayesian Shrinkage Regression, Dynamic Factor Model, Euro Area, Fore-

casting, Kalman Filter, Partial Least Squares.
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Executive Summary

The issue of forecasting key macroeconomic variables has been constantly on the debate over

the past years. In general, methodologies can be divided in two broad categories charac-

terised by the size of the set of explanatory variables taken into consideration. On the one

hand, some researchers pursue an strategy where a small number of wisely selected predic-

tors is used (variable selection method). Then, under the assumption of non cross-correlated

errors the factor models are estimated by maximum likelihood using the Kalman filter. On

the other hand, others suggest forecasting using a large set of predictors where information is

summarised using principal components estimation (variable reduction method). The fore-

casting performance of other variable reduction methods, e.g. Bayesian shrinkage regression

or partial least squares (PLS), have also been recently studied.

A difficult issue in both the above categories is the choice of the set of predictors and

the actual variables. Recent research suggests that cross-correlation of regressors in large

datasets might result in inaccurate forecasts and hence a smaller set is more likely to provide a

smaller average forecast error. A key to this problem is the use of variable selection methods.

The purpose of this paper is to evaluate and compare the forecasting ability of (i) variable

reduction and (ii) variable selection methods using small and large datasets. We predict

the growth rate of the industrial production of the Euro Area (16), France, Germany and

Italy. The variable reduction methodologies include: the Bayesian shrinkage regression and

the partial least squares. The variable selection methodology employs the following heuris-

tic optimisations: the simulated annealing (SA), the genetic algorithm (GA) and the MC3

algorithm. Each of these optimisations is used to identify the combination of variables that

minimise an information criterion (e.g. BIC, HQ). The benchmark is the Automatic Lead-

ing Indicator (ALI) model in the spirit of earlier work by the authors which belongs to the

category of small scale dynamic factor models.

Our overall work indicates that among the variable reduction methods using a small set

of predictors, the ALI is more likely to provide better forecasts on average. However, the

ALI performs well only in the “medium-term” forecasts (4-6 steps ahead) using a large

dataset of predictors. The variable reduction methodologies, and especially the PLS model

with 1 and 3 factors, are more likely to result in forecasts with smaller errors in the first

and 8 to 12 steps ahead. Similarly, the variable selection methods can also be useful for

“short-run” (one step ahead) and “long-run” (10-12 steps ahead) predictions. Our results

suggest the use of SA and GA as the more robust optimisation methodologies and the BIC

as the objective function in the minimisation.
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To conclude with, our empirical approach suggests that the models described here should,

at least, be considered by researchers interested in model averaging methodologies for fore-

casting key European macroeconomic variables.
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1 Introduction

The issue of forecasting key macroeconomic variables has been constantly on the debate over

the past years. In general, methodologies can be divided in two broad categories characterised

by the size of the set of explanatory variables taken into consideration. Stock and Watson

(1991), Camba-Mendez et al. (2001), Aruoba et al.. (2009), Aruoba and Diebold (2010)

and Camacho and Perez-Quiros (2010) are some examples where a small number of wisely

selected predictors is used. Then, under the assumption of non cross-correlated errors the

factor models are estimated by maximum likelihood using the Kalman filter.

On the other hand, the seminal work by Stock and Watson (2002a) suggests forecasting

using a large set of predictors where information is summarised using principal components

estimation. The forecasting performance of other variable reduction methods have been

recently studied by Del Mol et al. (2006), Kapetanios, Marcellino and Papailias (2012a)

among others and include the Bayesian shrinkage regression, partial least squares and others.

A difficult issue in both the above categories is the choice of the set of predictors and

the actual variables. Boivin and Ng (2006) suggest that cross-correlation of regressors in

large datasets might result in inaccurate forecasts and hence a smaller set is more likely

to provide a smaller average forecast error. A key to this problem is the use of variable

selection methods. Kapetanios (2007) and Kapetanios, Marcellino and Papailias (2012a)

use non-standard optimisation of information criteria in order to identify the appropriate

instruments and they forecast EU macroeconomic variables with encouraging results. A

recent study by Alvarez et al. (2012) also addresses this issue and compares small and large

scale dynamic factor models in the Stock and Watson dataset for the US. However, their

approach is limited in that particular class of models.

The purpose of this paper is to evaluate and compare the forecasting ability of (i) variable

reduction and (ii) variable selection methods using small and large datasets. We predict the

growth rate of the industrial production of the Euro Area (16), France, Germany and Italy.

The variable reduction methodologies include: the Bayesian shrinkage regression and the

partial least squares. The variable selection methodology employs the following heuristic

optimisations: the simulated annealing (SA), the genetic algorithm (GA) and the MC3

algorithm. Each of these optimisations is used to identify the combination of variables

that minimise an information criterion (e.g. BIC, HQ). The benchmark is the Automatic

Leading Indicator (ALI) model in the spirit of Camba-Mendez et al. (2001) which belongs

to the category of small scale dynamic factor models.

The rest of the paper is organised as follows: Section 2 briefly describes the methodologies,

Section 3 is concerned with the forecasting algorithm, Section 4 discusses the results and

Section 5 summarises the conclusions.
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2 Methodologies

2.1 Variable Selection Methods

We consider the following regression model,

yt = α + β0′x0t + εt, t = 1, . . . , T, (1)

where x0t is a k-dimensional vector of stationary predetermined variables. The superscript
0 denotes the true regression model. Let the set of all available variables at time t be

represented by the N -dimensional vector xt = (x1,t, . . . xN,t)
′, where it is currently assumed

that the set of variables in x0t is also contained in xt. The aim of the analysis is to determine

x0t . Formally, let I = (I1, . . . ,IN)′ denote a vector of zeros and ones (which we will refer

to as string). Let I0 be the string for which I0
i = 1, if xi,t is an element of x0t and zero

otherwise. We wish to estimate I0. Note that in small samples I0 may not represent the

best fitting model for the data at hand.

To do this we consider the use of information criteria to select the variables that go in

(1). The generic form of such criteria is usually,

IC(I) = −2L(I) + CT (I), (2)

where L(I) is the log-likelihood of the model associated with string I and CT (I) is the

penalty term associated with the string I. The three most usual penalty terms are 2m̃(I),

ln(T )m̃(I) and 2ln(ln(T ))m̃(I) associated with the Akaike (AIC), Bayesian (Schwarz (1978))

(BIC) and Hannan-Quinn (Hanna and Quinn (1979)) (HQ) information criteria. m̃(I) is

the number of free parameters associated with the modelling of the dataset associated with

I. Note that, in this case, m̃(I) = I ′I. It is straightforward under relatively weak condi-

tions on xj,t and εj,t, and using the results of say, Sin (1996), to show that the string which

minimises IC(.) will converge to I0 with probability approaching one as T →∞ as long as

(i) CT (I)→∞ and (ii) CT (I)/T → 0.

More specifically, the assumptions needed for the results of Sin (1996) to hold are mild and

can be summarised as follows, assuming estimation of the models is undertaken in the context

of Gaussian or pseudo maximum likelihood (which in the simplest case, of spherical errors,

is equivalent to OLS): (i) Assumption A of Sin (1996) requires measurability, continuity and

twice differentiability of the log-likelihood function and a standard identifiability assumption;

(ii) A uniform weak law of large numbers for the log-likelihood of each observation and its

second derivative; (iii) A central limit theorem for the first derivative of the log-likelihood of

each observation. (ii) and (iii) above can be obtained by assuming, e.g., that xj,t are weakly

dependent, say, near epoch dependent, processes and εj,t are martingale difference processes.

Hence, it is clear that consistency of model selection as long as the penalty related conditions
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hold is straightforwardly obtained. Note that unlike BIC and HQ which consistently estimate

the true model in the sense of Sin (1996), AIC is inconsistent, in this sense, since CT remains

bounded, as T →∞, contravening the first penalty related condition given in the preceding

paragraph. This is the reason why AIC is not included in our calculations. Also, the empirical

results in Kapetanios, Marcellino and Papailias (2012a) also suggest the use of BIC or HQ

as objective functions. Further, note that in most work dealing with variable selection and

information criteria, stationarity of x0t is usually assumed, as is in the preceding analysis,

although the analysis may be extended to nonstationary variables.

The problem is of course how to minimise the information criterion. For small dimensional

xt, evaluating the information criterion for all strings may be feasible, as, e.g., in lag order

selection. In the case of lag selection the problem is made easier by the fact that there exists

a natural ordering of the variables, although in many cases such an ordering may not be the

optimal basis for a search algorithm. In the general variable selection case, as soon as N

exceeds say 50 or 60 units, this strategy is bound to fail. Since I is a binary sequence there

exist 2N strings to be evaluated. For example, when N = 50 and optimistically assuming that

100000 strings can be evaluated per second, we still need about 357 years for an evaluation

of all strings. Clearly this is infeasible.

Although this is a minimisation problem, standard minimisation algorithms do not ap-

ply due to the discreteness of the domain over which the objective function (information

criterion) needs to be optimised. To overcome this difficulty we use the following heuristic

optimisation approaches that include: the simulated annealing, the genetic algorithm and

the MC3.

Since in our case N is very large, N=195 (see Table 1), we should normally compute

and compare 2195 IC according to eq.(2). This is clearly not feasible and the alternative

approaches analysed below could help the researcher to reduce the computational burden.

2.1.1 Simulated Annealing (SA)

This algorithm provides a local search for the minimum (or maximum) of a function, in our

case is eq.(2). The concept is originally based on the manner in which liquids freeze or metals

recrystalize in the process of annealing. In an annealing process a melt, initially at high

temperature and disordered, is slowly cooled so that the system at any time is approximately

in thermodynamic equilibrium. As cooling proceeds, the system becomes more ordered and

approaches a ‘frozen’ ground state. The analogy to an optimisation problem is as follows:

the current state of the thermodynamic system is analogous to the current solution to the

optimisation problem, the energy equation for the thermodynamic system is analogous to

the objective function, and the ground state is analogous to the global optimum. An early

application of simulated annealing in econometrics is the work of Goffe et al. (1994) who

suggested that simulated annealing could be used to optimise the objective function of various

econometric estimators.
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Below, we give a description of the algorithm together with the necessary arguments

that illustrate its validity in our context. We describe the operation of the algorithm

when the domain of the function (information criterion) is the set of binary strings i.e.

{I = (I1, . . . , IN)′| Ii ∈ {0, 1}}.
Each step of the algorithm works as follows starting from an initial string I0.

1. Using I i choose a neighboring string at random, denoted I∗i+1. We discuss the defini-

tion of a neighborhood below.

2. If IC(I i) > IC(I∗i+1), set I i+1 = I∗i+1. Else, set I i+1 = I∗i+1 with probability

e(IC(I∗i )−IC(Ii+1))/Ti or set I i+1 = I i with probability 1− e(IC(I∗i )−IC(Ii+1))/Ti .

Heuristically, the term Ti gets smaller making it more difficult, as the algorithm proceeds,

to choose a point that does not decrease IC(.). The issue of the neighborhood is extremely

relevant. What is the neighborhood? Intuitively, the neighborhood could be the set of

strings that differ from the current string by one element of the string. But this may be too

restrictive. We can allow the algorithm to choose at random, up to some maximum integer

(say h), the number of string elements at which the string at steps i and i+ 1 will differ. So

the neighborhood is all strings with up to h different bits from the current string. Another

issue is when to stop the algorithm. There are a number of alternatives in the literature.

We have chosen to stop the algorithm if it has not visited a string with lower IC(.) than

the current minimum for a prespecified number of steps (Bυ) (Steps which stay at the same

string do not count) or if the number of overall steps exceeds some other prespecified number

(Bs). All strings visited by the algorithm are stored and the best is chosen at the end rather

than the final one.

The simulated annealing algorithm has been proven by Hajek (1998) to converge asymp-

totically, i.e. as i→∞, to the maximum of the function as long as Ti = T0/ln(i+1) for some

T0 for sufficiently large T0. In particular, for almost sure convergence to the minimum it is

required that T0 > d∗. d∗ denotes the maximum depth of all local minima of the function

IC(.). Heuristically, the depth of a local minimum, I1, is defined as the smallest number

E > 0 such that the function exceeds IC(I1) +E during its trajectory from∗ this minimum

to any other local minimum, I2, for which IC(I1) > IC(I2).

This condition needs to be made specific for the problem at hand. We thus need to discuss

possible strategies for determining d∗ for model searches using information criteria. It is

reasonable to assume that the space of models searched via information criteria includes only

models with a prespecified maximum number of variables; otherwise problems caused by the

lack of degrees of freedom will arise. Then, a possible upper limit for d∗ is 2L(IB)− 2L(IA)

where L(IA) is the likelihood associated with a regression containing just a constant term

∗A trajectory from I1 to I2 is a set of strings, I11,I12, . . . ,I1p, such that (i) I11 ∈ N(I1), (ii)
I1p ∈ N(I2) and (iii) I1i+1 ∈ N(I1i) for all i = 1, . . . , p, where N(I) denotes the set of strings that
make up the neighborhood of I.
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and L(IB) is the likelihood associated with a regression containing the maximum allowable

number of variables. Of course, there are many possible sets of variables that contain the

maximum allowable number of variables. For this reason we remove the penalty terms and

focus on likelihoods. This makes it more likely that −2L(IB), for some random IB that

specifies use of the maximum allowable number of variables, is a lower bound for the optimum

value taken by the information criterion.

2.1.2 Genetic Algorithm (GA)

The motivating idea of genetic algorithms is to start with a population of binary strings

which then evolve and recombine to produce new populations with ‘better’ characteristics,

i.e. lower values for the information criterion. We start with an initial population represented

by a N × m matrix made up of 0’s and 1’s. Columns represent strings. m is the chosen

size of the population. The theory of genetic algorithms suggests that the composition of

the initial population does not matter. Hence, this is generated randomly. Denote this

population matrix by P0. The genetic algorithm involves defining a transition from Pi to

Pi+1. Following Kapetanios (2007), the algorithm could be described in the following steps:

1. For Pi create a m × 1 ‘fitness’ vector, pi, by calculating for each column of Pi its

‘fitness’. The choice of the ‘fitness’ function is completely open and depends on the

problem. For our purposes it is the opposite of the information criterion. Normalise pi,

such that its elements lie in (0, 1) and add up to 1. Denote this vector by p∗i . Treat p∗i

as a vector of probabilities and resample m times out of Pi with replacement, using the

vector p∗i as the probabilities with which each string will be sampled. So ‘fit’ strings

are more likely to be chosen. Denote the resampled population matrix by P1
i+1.

2. Perform “cross over” on P1
i+1. To “cross over” we do the following: Arrange all strings

in P1
i+1, in pairs (assume that m is even) where the pairings are randomly drawn.

Denote a generic pair by (aα1 , a
α
2 , . . . , a

α
N), (aβ1 , a

β
2 , . . . , a

β
N). Choose a random integer

between 2 and N − 1. Denote this by j. Replace the pair by the following pair:

(aα1 , a
α
2 , . . . , a

α
j , a

β
j+1, . . . , a

β
N), (aβ1 , a

β
2 , . . . , a

β
j , a

α
j+1, . . . , a

α
N). Perform cross over on each

pair with probability pc. Denote the new population by P2
i+1. Usually pc is set to some

number around 0.5-0.6.

3. Mutate on P2
i+1. This amounts to flipping the bits (0 or 1) of P2

i+1 with probability pm.

pm is usually set to a small number, say 0.01. After mutation the resulting population

is Pi+1.

These steps are repeated a prespecified number of times (Bg). Each set of steps is referred

to as generation in the genetic literature. If a string is to be chosen, this is the one with

maximum fitness. For every generation we store the identity of the string with maximum
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‘fitness’. Further, this string is allowed to remain intact for that generation. So it gets chosen

with probability one in step 1 of the algorithm and does not undergo either cross-over or

mutation. At the end of the algorithm the string with the lowest information criterion value

over all members of the populations and all generations is chosen. One can think of the

transition from one string of maximum fitness to another as a Markov Chain. So this is a

Markov Chain algorithm. In fact, the Markov Chain defined over all possible strings is time

invariant but not irreducible, as at least the m− 1 least fit strings will never be picked. To

see this, note that in any population there will be a string with more fitness than that of the

m−1 worst strings. There has been considerable work on the theoretical properties of genetic

algorithms. Hartl and Belew (1990) have shown that with probability approaching one, the

population at the n-th generation will contain the global maximum as n → ∞. Perhaps

the most relevant result from that work is Theorem 4.1 of Hartl and Belew (1990). This

theorem states that as long as (i) the sequence of the maximum fitnesses in the population

across generations is monotonically increasing, and (ii) any point in the model space can be

reached from any other point by means of mutation and cross-over in a finite number of steps,

then the global maximum will be attained as n → ∞. Both these conditions hold for the

algorithm described above. The first condition holds by the requirement that the string with

the maximum fitness is always kept intact in the population. The second condition holds,

since any string of finite length can be obtained from another by cross-over and mutation

with non-zero probability in a finite number of steps. For more details on the theory of

genetic algorithms see also Morinaka et al. (2001).

2.1.3 MC3

This algorithm is constructed in a manner similar to simulated annealing. This similarity is,

in fact, the main reason why we consider Bayesian methods here. The MC3 algorithm defines

a search path in the model space just like the simulated annealing algorithm we considered

in the previous section. As a result we refer to the setup of the previous section to minimise

duplication of the exposition. The difference between SA and MC3 is the criterion used to

move from one string to the other at step i. Here, the Bayes factor for string (model) i+ 1

versus string (model) i is used. This is denoted by Bi+1,i. The chain moves to the i + 1

string with probability min(1, Bi+1,i). This is again a Metropolis-Hastings type algorithm.

The Bayes factor we use, following Fernandez et al. (2001), is given by,

Bi+1,i =

(
g0i+1

g0i+1 + 1

)ki+1/2(g0i + 1

g0i

)ki/2
(3)(

1
g0i+1

RSSi + g0i

g0i+1
TSS

1
g0i+1+1

RSSi+1 + g0i+1

g0i+1+1
TSS

)(T−1)/2

,
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where RSSi is the sum of squared residuals of the i-th model, TSS is the sum of the squared

deviations from the mean for the dependent variable, ki is the number of variables in model

i and g0i is a model specific constant relating to the prior relative precision. The results

of Fernandez et al. (2001) suggest that, for consistent model selection, g0i should be set to

1/T . This is associated with prior ‘a’ in the terminology of subsection 4.2 of Fernandez et

al. (2001). More details may be found in Fernandez et al. (2001). Our chosen model is

the model that minimises the information criterion among all models visited by the MC3

algorithm. Given the results of Appendix A.3 of Fernandez et al. (2001) concerning the

asymptotic equivalence between consistent information criteria and the Bayes factor in (3),

we find our approach justified.

2.2 Variable Reduction Methods

2.2.1 Partial Least Squares (PLS)

Partial least squares (PLS) is a relatively new method for estimating regression equations,

introduced in order to facilitate the estimation of multiple regressions when there is a large,

but finite, amount of regressors.† The basic idea is similar to principal component analysis in

that factors or components, which are linear combinations of the original regression variables,

are used, instead of the original variables, as regressors. A major difference between PC and

PLS is that, whereas in PC regressions the factors are constructed taking into account only

the values of the xt variables, in PLS, the relationship between yt and xt is considered as well

in constructing the factors. PLS regression does not seem to have been explicitly considered

for data sets with a very large number of series, i.e., when N is assumed in the limit to

converge to infinity.

There are a variety of definitions for PLS and accompanying specific PLS algorithms

that inevitably have much in common. A conceptually powerful way of defining PLS is to

note that the PLS factors are those linear combinations of xt, denoted by Υxt, that give

maximum covariance between yt and Υxt while being orthogonal to each other. Of course,

in analogy to PC factors, an identification assumption is needed, to construct PLS factors,

in the usual form of a normalization.

A simple algorithm to construct k PLS factors is discussed among others, in detail, in

Helland (1990). Assuming for simplicity that yt and xt have been normalized to have zero

mean and xt has been scaled to have unit variance, a simplified version of the algorithm is

given below:

1. Set ut = yt and vi,t = xi,t, i = 1, ...N . Set j = 1.

†Herman Wold and co-workers introduced PLS regression between 1975 and 1982, see, e.g., Wold (1982).
Since then it has received much attention in a variety of disciplines, especially in chemometrics, outside of
economics.
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2. Determine the N×1 vector of indicator variable weights or loadings wj = (w1j · · ·wNj)′

by computing individual covariances: wij = Cov(ut, vit), i = 1, ..., N . Construct the

j-th PLS factor by taking the linear combination given by w′jvt and denote this factor

by fj,t.

3. Regress ut and vi,t, i = 1, ..., N on fj,t. Denote the residuals of these regressions by ũt

and ṽi,t respectively.

4. If j = k stop, else set ut = ũt, vi,t = ṽi,t i = 1, .., N and j = j + 1 and go to step 2.

This algorithm makes clear that PLS is computationally tractable for very large data

sets. Once PLS factors are constructed yt can be modelled or forecasted by regressing yt

on fj,t j = 1, ..., k. Helland (1988) and Helland (1990) provide a general description of the

partial least squares (PLS) regression problem. Helland (1988) shows that the estimates

of the coefficients α in the regression of yt on xt, as in (1), obtained implicitly via PLS

Algorithm and a regression of yt on fj,t j = 1, ..., k, are mathematically equivalent to,

α̂PLS = Vk(V
′
kX
′XVk)

−1V ′kX
′y, (4)

with Vk1 = (X ′y X ′XX ′y · · · (X ′X)k−1X ′y), X = (x1 · · · xT )′ and y = (y1 · · · yT )′.

Thus, (4) suggests that the PLS factors that result from the PLS Algorithm span the Krylov

subspace generated by X ′X and X ′y, resulting in valid approximations of the covariance

between yt and xt.

2.2.2 Bayesian Shrinkage Regression (BR)

Bayesian regression is a standard tool for providing inference for α in (1) and there exists

a large variety of approaches for implementing Bayesian regression. We will provide a brief

exposition of this method. A starting point is the specification of a prior distribution for

α. Once this is in place standard Bayesian analysis proceeds by incorporating the likelihood

from the observed data to obtain a posterior distribution for α which can then be used for

a variety of inferential purposes, including, of course, forecasting.

A popular and simple implementation of Bayesian regression results in a shrinkage esti-

mator for α in (1) given by,

α̂BRR = (X ′X + vI)−1X ′y, (5)

where X = (x1, ..., xT )′, y = (y1, .., yT )′ and v is a shrinkage scalar parameter. The shrinkage

estimator (5) shrinks the OLS estimator, given by (X ′X)−1X ′y towards zero, thus enabling

a reduction in the variance of the resulting estimator. This is a major feature of Bayesian

regression that makes it useful in forecasting when large data sets are available. This partic-

ular implementation of Bayesian regression implies that elements of α are small but different

from zero ensuring that all variables in xt are used for forecasting. In this sense, Bayesian
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regression can be linked to other data-rich approaches. When a certain factor structure is

assumed in the data, Bayesian regression through (5) will forecast yt by projecting it on a

weighted sum of all N principal components of X, with decaying weights, instead of project-

ing it on a limited number of r principal components with equal weights as in PC regression;

see Del Mol et al. (2006).

2.2.3 Automatic Leading Indicator (ALI)

The last methodology is the automatic leading indicator (ALI) model as introduced by

Camba-Mendez et al. (2001). This is a small scale dynamic factor model and includes a

two-step procedure where in the first step the factors are extracted and in the second stage

a VAR model is estimated and used for forecasting. Consider the following model for the N

vector of exogenous variables X,

Xt = Bst + ut,

C (L) st = ηt, (6)

where B is an (n,k) matrix of unknown parameters, st is a k vector of factors that follows

a stationary AR(p) process with disturbances η and ut is an N vector of disturbances. The

estimation of the unknown parameters in (6) and the extraction of factors may be combined

in the following step-wise fashion. Given knowledge of B, C(L) and the variance matrices

of ut and ηt, (6) can be written in state space form with the Kalman filter used to extract

st from observation on xt. Secondly, given the factors st, the parameter matrices B, C(L)

and the variance matrices of ut and ηt may be estimated by quasi-maximum likelihood. This

step-wise procedure may be iterated until convergence; see Harvey (1993) for further details.

The factors st obtained above are then incorporated into a VAR model to forecast yt as

follows,

Ay(L)yt = As(L)st + εt, (7)

where εt is a zero-mean conditionally homoskedastic and serially uncorrelated error pro-

cess with positive definite variance matrix uncorrelated with the error processes ut and ηt.

Then given the estimated factors and parameters the model in (7) is estimated via OLS (or

maximum likelihood) and the parameter estimates are used in the forecasting exercise as

described in the next section. The lags in the AR and VAR model and the choice of factors

are determined by a series of tests that include serial correlation and Granger causality; see

Camba-Mendez et al. (2001) for more details. It is important to notice here that the ALI is

always used with the small set of predictors (see Table 3) as in Camba-Mendez et al. (2001).
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2.3 Parameters Setup and Normalisation

For the simulated annealing and genetic algorithms we use the same (default) values as in

Kapetanios (2007), i.e. in the simulated annealing h = 1, Bυ = 500, Bs = 5000, T0 = 10, in

the genetic algorithm m = 200, Bg = 200, pc = 0.6 and pm = 0.1. We allow a maximum of

five hundred iterations. The objective functions to be minimised are the Bayesian and HQ

information criteria. In PLS we examine cases with one and three factors and in BR we use

v = 0.5N and v = 2N as shrinkages. In ALI we use 1 factor and the initial values are fixed

to the unconditional moments.

In all heuristics we have used the data as is, however in ALI, PLS and BR we have

normalised the regressors to zero mean and unit variance series.

3 Forecasting and Data Description

We perform a forecasting exercise using the projection method as described in Stock and

Watson (2002a). This method, also known as direct approach, is more robust in the presence

of possible model mis-specification. The forecasts are given by,

ŷft+h/T = β̂h′zt/T , (8)

where β̂h is obtained by regressing yt on zt−h and h denotes the forecast horizon. zt is a k-

dimensional vector of variables and can be equal to xt or to k-factors series depending on the

choice of the estimation method. In the case of the ALI zt might include the autoregressive

components of yt as well.

At first, we set the max steps ahead, h. Then, we specify the evaluation period, Eval,

and we omit h observations completely out of the sample. This allows us to end up with

a number of Eval forecasts for any given step h. A summary of the pseudo out-of-sample

forecasting algorithm follows.

1. Use an initial sample of T1 observations (T1 = T − Eval − h),

2. With any method described in this section obtain x′t, t = 1, 2, ..., T1,

3. For j = 1, 2, ..., h steps regress yt on z
′

t−h and obtain β̂h =
(
β̂1, ..., β̂h

)′
,

4. Calculate the forecasts of ŷft+h using z′t and β̂h, hence ŷf =
(
ŷf1 , ..., ŷ

f
h

)′
,

5. We repeat the whole procedure increasing the initial sample T1 to Tl = Tl−1 + 1 until

Tl = T − h.

At the end of this process we have gathered a number of Eval forecast values for any

step h. We consider two looping procedures: (i) a recursive looping where the initial sample
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T1 is augmented by one observation at each time and (ii) a rolling approach where a fixed

sample of T1 length moves across time.

The forecast error is then calculated as,

êft+h = yt+h − ŷft+h, (9)

and the statistics of interest can be computed. We are particularly interested in the Mean

Absolute Error defined as,

MAE =
1

Eval

Eval∑
1

∣∣ef ∣∣ . (10)

All results are presented with the corresponding Diebold and Mariano (1995) test of predic-

tive accuracy where *, ** and *** star signs are used to indicate the predictive accuracy of

the alternative model over the benchmark at 10%, 5% and 1% significance levels respectively.

The small dataset of predictors is described in Table 3 and consists of various government

bond spreads, the real effective exchange rate, house lending rates, stock market return,

money supply and the survey-based economic sentiment indicator for each economy. The

dependent variable subject to forecasting is the growth rate of the industrial production of

the Euro Area (16), France, Germany and Italy. The data was collected using Macrobond

Financial and the dates span from Jan. 1996 to Jan. 2009.

The large dataset of predictors consists of 195 monthly variables (source: Eurostat,

PEEIs, the Eurostat labels can be found in the Table 1) spanning from Jan. 1996 to Jan.

2009. The dataset is the same used in Foroni and Marcellino (2011) and it contains a large

universe of variables that are potentially useful instruments in forecasting key macroeconomic

variables in the Euro Area. Furthermore, in the spirit of Stock and Watson (2002a) we have

transformed the series for stationarity using first differences or log differences appropriately

(although notice in Table 2 some of the variables remained unchanged). Hence, the resulting

data used in the forecast exercise contains growth rates from Feb. 1996 to Jan. 2009

(inclusive).

It is important to notice here that both small and large datasets of predictors are correctly

date-aligned and the forecasting exercise uses the same time period in all experiments. The

cross-validation (forecasting evaluation) period is set to 84 months, starts in Feb. 2002 and

ends in Jan. 2009. The forecast horizon is set to h = 12 months.
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4 Discussion of Results‡

4.1 A Small Dataset of Predictors

Tables 4-7 present the MAE of the benchmark ALI model that uses the small set of predictors

and the relative MAE of PLS and BR models using the same dataset.

In Table 4 we present the forecasting exercise for the growth rate of the industrial produc-

tion for the Euro Area economy. We see that the average MAE of the ALI model across all

forecast horizons is equal to 0.007. We see that none of the alternative models outperforms

the ALI benchmark. PLS with three factors is slightly better with a relative MAE equal to

0.998 and the Bayesian regression with shrinkage parameter v = 0.5N presents the highest

forecast error with relative MAE equal to 1.041. The same can be said for all subsequent

steps up to h = 12 where the ALI benchmark is should be preferred.

The forecasting results for the growth rate of the industrial production for France can

be found in Table 5. As in the EA case, the ALI should be chosen compared to the other

variable reduction models using a small dataset. In steps h = {1...3, 10} ALI is always

better as the relative MAE is constantly above unity. For h = 4 to h = 8 we see that PLS(1)

forecasts are slightly better compared to the benchmark’s but not statistically significant.

In steps 11 and 12 both BR models are slightly better.

Table 6 describes the forecasting results for Germany’s industrial production growth rate.

In steps h = {1, 3} PLS(3) performs better with a MAE of 0.959 and 0.973 relative to the

ALI benchmark. In steps h = {2, 4...6} ALI outperforms all other models with an actual

MAE of 0.010 across all steps. However in steps h = {8, 9, 11, 12} other methods provide

slightly better forecasts but not statistically significant. In step h = 12 the PLS(3) has a

relative MAE of 0.987.

The last case is that of Italy in Table 7. This is another example where ALI is shown

to outperform all other methods when a small set of predictors is used. We see that only

in step 3 the alternative models, BR(0.5N) and BR(2N) give a relative MAE of 0.981 and

0.973 respectively which, however, is not statistically significant.

4.2 A Large Dataset of Predictors

We continue our study using the variable selection and variable reduction methods as de-

scribed in Section 2 of the paper with a large dataset of predictors. The benchmark model

is still the ALI when using the small dataset.

For the case of the EA we see in Table 8 that in the first step PLS(1)and PLS(3) provide

forecasts that are statistically more accurate at 5% and 10% level respectively. In particular,

‡A cross-comparison of all models is available on request. The qualitative result does not change and
hence the results are omitted.
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the actual MAE of the ALI is 0.007 and the relative MAE of the above models is 0.940 and

0.884 respectively. For 2, 4, 6, 7 and 8 steps ahead the ALI outperforms all other competing

methods with an average MAE of 0.006. PLS(1) and PLS(3) seem to be the most robust

alternatives to the benchmark as they are characterised with relative MAE smaller than

unity in most of the forecast horizons. This result is statistically significant at least at 10%.

ALI loses its forecasting power as we move further ahead. For step h = 12 ALI has an actual

MAE of 0.08 and PLS(3) has a relative MAE of 0.924.

In Table 9 we see the results for France. Here, the variable reductions methods (using

the large dataset) constantly outperform the ALI across all horizons. Better forecasts are

provided by SABIC andGABIC however they are not statistically significant. PLS(1), PLS(3)

and BR(2N) return an average relative MAE of 0.970, 0.965 and 0.983 respectively across

all forecast horizons.

Table 10 presents the forecasting exercise for the growth rate of the industrial production

for Germany. The evidence here is in favour of the ALI as none of the competing models

provides forecasts that are statistically more accurate. If we look at the table we can find

cases where GABIC , PLS(1), PLS(2) and BR(2N) are slightly better however the Diebold

and Mariano (1995) test does not indicate any statistical significance.

Moving to last set of empirical results for the case of the industrial production growth

for Italy we see again that the variable selection methods can provide better forecasts in

some horizons, however these results are not statistically significant. However, the variable

reduction methods and, PLS(1), PLS(2) and BR(2N) in particular, return more accurate

forecasts at 5% and 1% levels. PLS(1) and PLS(3) provide an average relative MAE of 0.987

and 0.986 respectively.

5 Concluding Remarks

In this paper we approach the issue of forecasting macroeconomic variables using indicators

from small and large datasets. The methods we employ include variable reduction and vari-

able selection models. The variables in the latter are selected according to the minimisation

of information criteria using some not so standard optimisation techniques that aim to re-

duce the computational burden. The benchmark model is the Automatic Leading Indicator

model of Camba-Mendez et al. (2001) which belongs to the class of the small scale dynamic

factor models.

Our overall work indicates that among the variable reduction methods using a small set

of predictors, the ALI is more likely to provide better forecasts on average. However, the ALI

performs well only in the “medium-term” forecasts (4-6 steps ahead) using a large dataset

of predictors. The variable reduction methodologies, and especially the PLS model with 1

and 3 factors, are more likely to result in forecasts with smaller errors in the first and 8 to
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12 steps ahead. Similarly, the variable selection methods can also be useful for “short-run”

(one step ahead) and “long-run” (10-12 steps ahead) predictions. Our results suggest the use

of SA and GA as the more robust optimisation methodologies and the BIC as the objective

function in the minimisation.

To conclude with, our empirical approach suggests that the models described here should,

at least, be considered by researchers interested in model averaging methodologies for fore-

casting key European macroeconomic variables.
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Labels
# Label # Label # Label # Label # Label # Label # Label
1 CP −HI00XEFU 31 MIG− COG− IS − PPI 61 BS − FS −NY 91 BS − CSMCI −B 121 B − IS − EPI 151 MIG−DCOG− IS − ITND 181 EMECB5Y
2 CP −HI00XEF 32 MIG−DCOG− IS − PPI 62 BS −GES − LY 92 BS − ESI − I 122 B − TO − E36− IS − EPI 152 MIG−DCOG− IS − ITT 182 EMECB7Y
3 CP −HI00XES 33 MIG− ING− IS − PPI 63 BS −GES −NY 93 BS − ICI −BAL 123 C − IS − EPI 153 MIG− ING− IS − ITD 183 EMGBOND
4 CP −HI00XE 34 MIG−NDCOG− IS − PPI 64 BS −MP −NY 94 BS −RCI −BAL 124 D35− E36− IS − EPI 154 MIG− ING− IS − ITND 184 FIBOR1Y
5 CP −HI00XTB 35 MIG−NRG− IS − PPI 65 BS −MP − PR 95 BS − SCI −BAL 125 D − IS − EPI 155 MIG− ING− IS − ITT 185 FIBOR3M
6 CP −HI00 36 D35− E36− IS − IMPR 66 BS − PT − LY 96 RT − LM − UN − T −GT25 126 E36− IS − EPI 156 MIG−NDCOG− IS − ITD 186 FIBOR6M
7 CP −HI01 37 IS −WSI − F 67 BS − PT −NY 97 RT − LM − UN − T − LE25 127 E − IS − EPI 157 MIG−NDCOG− IS − ITT 187 BDWU1032R
8 CP −HI02 38 B −D − IS −WSI 68 BS − SFSH 98 RT − LM − UN − T − TOT 128 MIG− CAG− IS − EPI 158 IS − PEI − F − CC11−X − CC113 188 BDWU0022R
9 CP −HI03 39 B − E36− IS −WSI 69 BS − SV −NY 99 1000− PERS − LM − UN − T −GT25 129 MIG− COG− IS − EPI 159 IS − IPI − F − CC11−X − CC113 189 BDEBDBSIA

10 CP −HI04 40 B − C −D − IS −WSI 70 BS − SV − PR 100 1000− PERS − LM − UN − T − LE25 130 MIG−DCOG− IS − EPI 160 IS −HWI − F 190 BDECBXDGA
11 CP −HI05 41 B − IS −WSI 71 BS − UE −NY 101 1000− PERS − LM − UN − T − TOT 131 MIG− ING− IS − EPI 161 C −ORD − IS − IO 191 BDECBXDMA
12 CP −HI06 42 B − TO − E36− IS −WSI 72 BS − ICI 102 IS − IP 132 MIG−NDCOG− IS − EPI 162 C −ORD −X − C30− IS − IO 192 BDECBXNGA
13 CP −HI07 43 C − IS −WSI 73 BS − IEME 103 IS − IP − F − CC1 133 MIG−NRG− IS − EPI 163 IS − CAR 193 BDECBXNOA
14 CP −HI08 44 D35− E36− IS −WSI 74 BS − IEOB 104 IS − IP − F − CC2 134 G45− IS − EPI 164 FOOD − IS −DIT 194 BDECBXOLA
15 CP −HI09 45 D − IS −WSI 75 BS − IOB 105 IS − IP − F 135 B − C − IS − ITD 165 IS −DIT 195 BDECBXLIA
16 CP −HI10 46 E36− IS −WSI 76 BS − IPE 106 B −D − IS − IP 136 B − C − IS − ITND 166 NFOOD − IS −DIT
17 CP −HI11 47 MIG− CAG− IS −WSI 77 BS − IPT 107 B − C − IS − IP 137 B − C − IS − ITT 167 NFOOD −X −G473− IS −DIT
18 CP −HI12 48 MIG− COG− IS −WSI 78 BS − ISFP 108 B − IS − IP 138 C − IS − ITD 168 X −G473− IS −DIT
19 CP −HIE 49 MIG−DCOG− IS −WSI 79 BS − ISPE 109 C − IS − IP 139 C − IS − ITND 169 M1
20 CP −HIF 50 MIG− ING− IS −WSI 80 BS −RAS 110 C −ORD − IS − IP 140 C − IS − ITT 170 M2
21 B −D − IS − PPI 51 MIG−NDCOG− IS −WSI 81 BS −RCI 111 D − IS − IP 141 C −ORD − IS − ITD 171 M3
22 B − E36− IS − PPI 52 MIG−NRG− IS −WSI 82 BS −REBS 112 MIG− CAG− IS − IP 142 C −ORD − IS − ITND 172 3MI −RT
23 B − C −D − IS − PPI 53 BS − CCI −BAL 83 BS −REM 113 MIG− COG− IS − IP 143 C −ORD − IS − ITT 173 LTGBY −RT
24 B − IS − PPI 54 BS − CEME −BAL 84 BS −ROP 114 MIG−DCOG− IS − IP 144 MIG− CAG− IS − ITD 174 EXA−RT − USD
25 B − TO − E36− IS − PPI 55 BS − COB −BAL 85 BS −RPBS 115 MIG− ING− IS − IP 145 MIG− CAG− IS − ITND 175 EXA−RT − JPY
26 C − IS − PPI 56 BS − CPE −BAL 86 BS − SABC 116 MIG−NDCOG− IS − IP 146 MIG− CAG− IS − ITT 176 EXA−RT −GBP
27 C −ORD − IS − PPI 57 BS − CTA−BAL 87 BS − SAEM 117 IS − EPI − F 147 MIG− COG− IS − ITD 177 BDSHRPRCF
28 D − IS − PPI 58 BS −BCI 88 BS − SARM 118 B −D − IS − EPI 148 MIG− COG− IS − ITND 178 DJES50I
29 E36− IS − PPI 59 BS − CSMCI 89 BS − SCI 119 B − E36− IS − EPI 149 MIG− COG− IS − ITT 179 EMECB2Y
30 MIG− CAG− IS − PPI 60 BS − FS − LY 90 BS − SERM 120 B − C − IS − EPI 150 MIG−DCOG− IS − ITD 180 EMECB3Y

Table 1: Large dataset of predictors: Labels
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Transformations
# Label # Label # Label # Label # Label # Label # Label
1 FirstDiff., Logs 31 FirstDiff., Logs 61 NoChange 91 NoChange 121 FirstDiff., Logs 151 FirstDiff., Logs 181 FirstDiff.
2 FirstDiff., Logs 32 FirstDiff., Logs 62 NoChange 92 NoChange 122 FirstDiff., Logs 152 FirstDiff., Logs 182 FirstDiff.
3 FirstDiff., Logs 33 FirstDiff., Logs 63 NoChange 93 NoChange 123 FirstDiff., Logs 153 FirstDiff., Logs 183 FirstDiff.
4 FirstDiff., Logs 34 FirstDiff., Logs 64 NoChange 94 NoChange 124 FirstDiff., Logs 154 FirstDiff., Logs 184 FirstDiff.
5 FirstDiff., Logs 35 FirstDiff., Logs 65 NoChange 95 NoChange 125 FirstDiff., Logs 155 FirstDiff., Logs 185 FirstDiff.
6 FirstDiff., Logs 36 FirstDiff., Logs 66 NoChange 96 FirstDiff. 126 FirstDiff., Logs 156 FirstDiff., Logs 186 FirstDiff.
7 FirstDiff., Logs 37 FirstDiff., Logs 67 NoChange 97 FirstDiff. 127 FirstDiff., Logs 157 FirstDiff., Logs 187 FirstDiff.
8 FirstDiff., Logs 38 FirstDiff., Logs 68 NoChange 98 FirstDiff. 128 FirstDiff., Logs 158 FirstDiff., Logs 188 FirstDiff.
9 FirstDiff., Logs 39 FirstDiff., Logs 69 NoChange 99 NoChange 129 FirstDiff., Logs 159 FirstDiff., Logs 189 FirstDiff., Logs

10 FirstDiff., Logs 40 FirstDiff., Logs 70 NoChange 100 NoChange 130 FirstDiff., Logs 160 FirstDiff., Logs 190 FirstDiff., Logs
11 FirstDiff., Logs 41 FirstDiff., Logs 71 NoChange 101 NoChange 131 FirstDiff., Logs 161 FirstDiff., Logs 191 FirstDiff., Logs
12 FirstDiff., Logs 42 FirstDiff., Logs 72 NoChange 102 FirstDiff., Logs 132 FirstDiff., Logs 162 FirstDiff., Logs 192 FirstDiff., Logs
13 FirstDiff., Logs 43 FirstDiff., Logs 73 NoChange 103 FirstDiff., Logs 133 FirstDiff., Logs 163 FirstDiff., Logs 193 FirstDiff., Logs
14 FirstDiff., Logs 44 FirstDiff., Logs 74 NoChange 104 FirstDiff., Logs 134 FirstDiff., Logs 164 FirstDiff., Logs 194 FirstDiff., Logs
15 FirstDiff., Logs 45 FirstDiff., Logs 75 NoChange 105 FirstDiff., Logs 135 FirstDiff., Logs 165 FirstDiff., Logs 195 FirstDiff., Logs
16 FirstDiff., Logs 46 FirstDiff., Logs 76 NoChange 106 FirstDiff., Logs 136 FirstDiff., Logs 166 FirstDiff., Logs
17 FirstDiff., Logs 47 FirstDiff., Logs 77 NoChange 107 FirstDiff., Logs 137 FirstDiff., Logs 167 FirstDiff., Logs
18 FirstDiff., Logs 48 FirstDiff., Logs 78 NoChange 108 FirstDiff., Logs 138 FirstDiff., Logs 168 FirstDiff., Logs
19 FirstDiff., Logs 49 FirstDiff., Logs 79 NoChange 109 FirstDiff., Logs 139 FirstDiff., Logs 169 FirstDiff., Logs
20 FirstDiff., Logs 50 FirstDiff., Logs 80 NoChange 110 FirstDiff., Logs 140 FirstDiff., Logs 170 FirstDiff., Logs
21 FirstDiff., Logs 51 FirstDiff., Logs 81 NoChange 111 FirstDiff., Logs 141 FirstDiff., Logs 171 FirstDiff., Logs
22 FirstDiff., Logs 52 FirstDiff., Logs 82 NoChange 112 FirstDiff., Logs 142 FirstDiff., Logs 172 FirstDiff.
23 FirstDiff., Logs 53 NoChange 83 NoChange 113 FirstDiff., Logs 143 FirstDiff., Logs 173 FirstDiff.
24 FirstDiff., Logs 54 NoChange 84 NoChange 114 FirstDiff., Logs 144 FirstDiff., Logs 174 FirstDiff.
25 FirstDiff., Logs 55 NoChange 85 NoChange 115 FirstDiff., Logs 145 FirstDiff., Logs 175 FirstDiff.
26 FirstDiff., Logs 56 NoChange 86 NoChange 116 FirstDiff., Logs 146 FirstDiff., Logs 176 FirstDiff.
27 FirstDiff., Logs 57 NoChange 87 NoChange 117 FirstDiff., Logs 147 FirstDiff., Logs 177 FirstDiff., Logs
28 FirstDiff., Logs 58 NoChange 88 NoChange 118 FirstDiff., Logs 148 FirstDiff., Logs 178 FirstDiff., Logs
29 FirstDiff., Logs 59 NoChange 89 NoChange 119 FirstDiff., Logs 149 FirstDiff., Logs 179 FirstDiff.
30 FirstDiff., Logs 60 NoChange 90 NoChange 120 FirstDiff., Logs 150 FirstDiff., Logs 180 FirstDiff.

Table 2: Large dataset of predictors: Transformations
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Small Dataset of Predictors

Variable Description Transformation
Rates

1 10yr Government Benchmark Bond Yield Government Benchmarks Level
2 10yr Govt Bond/3m US Govt Bond Spread Government Benchmarks Level
3 10yr Govt Bond/10yr US Govt Bond Spread Government Benchmarks Level
4 2yr Govt Bond/2yr US Govt Bond Spread Government Benchmarks Level
5 Corporate Bonds Yield Corporate Benchmarks Level
6 Real Effective Exchange Rate FX Indices, BIS Level
7 House Lending Lending for House Purchase Level
8 Local Equity Index Return Equity Indices Growth
9 Local Volatility Index Return Volatility Indices Growth
10 Money Supply: M3 Monetary Aggregates Growth
11 Economic Sentiment Indicator Economic Sentiment Surveys Level

Dependent Variable

1 Industrial Production (SA) Growth Industrial Production Index Growth

Table 3: Small dataset of predictors
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EA Industrial Production Growth Rate
Forecast Horizon

h 1 2 3 4 5 6 7 8 9 10 11 12
MAE

ALI 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
MAE (Relative to ALI)

PLS(1) 1.020 1.031 1.018 1.050 1.031 1.025 1.029 1.025 1.055 1.046 1.006 1.009
PLS(3) 0.998 1.024 1.051 1.087 1.027 1.052 1.056 0.992 1.080 1.051 1.022 1.063

BR(0.5N) 1.041 1.061 1.019 1.094 1.057 1.046 1.070 1.018 1.057 1.082 1.040 1.031
BR(2N) 1.028 1.049 1.007 1.057 1.026 1.031 1.035 0.977 1.034 1.035 1.016 1.010

Cross-validation: 84 periods

Table 4: Forecasting the industrial production growth rate of the EA using a small set of predictors
Notes: ALI denotes the Automatic Leading Indicator model with 1 factor, PLS(1) denotes the Partial Least Squares with 1 factor, PLS(3) denotes the Partial Least Squares with 3 factors, BR(0.5N)) denotes the

Bayesian Shrinkage regression with shrinkage parameter v = 0.5N , BR(2N)) denotes the Bayesian Shrinkage regression with shrinkage parameter v = 2N . * indicates the 10% significance of Diebold and Mariano

(1995) test. ** indicates the 5% significance of Diebold and Mariano (1995) test. *** indicates the 1% significance of Diebold and Mariano (1995) test.
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France Industrial Production Growth Rate
Forecast Horizon

h 1 2 3 4 5 6 7 8 9 10 11 12
MAE

ALI 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011
MAE (Relative to ALI)

PLS(1) 1.005 1.027 1.020 0.998 0.987 0.988 0.996 0.997 0.999 1.021 1.004 0.990
PLS(3) 1.006 1.028 1.030 0.999 1.019 0.990 1.014 0.986 1.006 1.069 1.022 0.993

BR(0.5N) 1.039 1.040 1.020 1.041 1.039 1.009 1.038 0.985 1.057 1.012 0.995 0.998
BR(2N) 1.021 1.030 1.010 1.022 1.010 0.992 1.012 0.978 1.019 1.003 0.993 0.993

Cross-validation: 84 periods

Table 5: Forecasting the industrial production growth rate of France using a small set of predictors
Notes: ALI denotes the Automatic Leading Indicator model with 1 factor, PLS(1) denotes the Partial Least Squares with 1 factor, PLS(3) denotes the Partial Least Squares with 3 factors, BR(0.5N)) denotes the

Bayesian Shrinkage regression with shrinkage parameter v = 0.5N , BR(2N)) denotes the Bayesian Shrinkage regression with shrinkage parameter v = 2N . * indicates the 10% significance of Diebold and Mariano

(1995) test. ** indicates the 5% significance of Diebold and Mariano (1995) test. *** indicates the 1% significance of Diebold and Mariano (1995) test.
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Germany Industrial Production Growth Rate
Forecast Horizon

h 1 2 3 4 5 6 7 8 9 10 11 12
MAE

ALI 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.011
MAE (Relative to ALI)

PLS(1) 1.002 1.007 0.979 1.014 1.005 1.000 1.004 0.998 0.997 1.029 0.990 0.988
PLS(3) 0.959 1.009 0.973 1.029 1.067 1.052 1.047 0.987 1.041 1.042 1.027 0.987

BR(0.5N) 1.047 1.043 1.029 1.007 1.062 1.102 1.000 1.023 1.077 1.062 1.046 1.005
BR(2N) 1.023 1.027 1.011 1.003 1.039 1.045 0.980 1.000 1.053 1.021 1.010 0.990

Cross-validation: 84 periods

Table 6: Forecasting the industrial production growth rate of Germany using a small set of predictors
Notes: ALI denotes the Automatic Leading Indicator model with 1 factor, PLS(1) denotes the Partial Least Squares with 1 factor, PLS(3) denotes the Partial Least Squares with 3 factors, BR(0.5N)) denotes the

Bayesian Shrinkage regression with shrinkage parameter v = 0.5N , BR(2N)) denotes the Bayesian Shrinkage regression with shrinkage parameter v = 2N . * indicates the 10% significance of Diebold and Mariano

(1995) test. ** indicates the 5% significance of Diebold and Mariano (1995) test. *** indicates the 1% significance of Diebold and Mariano (1995) test.
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Italy Industrial Production Growth Rate
Forecast Horizon

h 1 2 3 4 5 6 7 8 9 10 11 12
MAE

ALI 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.013
MAE (Relative to ALI)

PLS(1) 1.001 1.000 0.999 1.002 1.002 1.002 1.004 1.001 1.004 1.004 0.992 1.001
PLS(3) 1.015 1.006 0.994 1.011 1.026 1.004 1.026 1.003 1.002 1.016 1.012 1.016

BR(0.5N) 1.009 0.998 0.981 1.013 1.031 1.012 1.033 0.999 1.002 1.024 1.030 1.014
BR(2N) 1.004 1.000 0.973 1.007 1.022 1.008 1.027 1.002 1.003 1.019 1.021 1.014

Cross-validation: 84 periods

Table 7: Forecasting the industrial production growth rate of Italy using a small set of predictors
Notes: ALI denotes the Automatic Leading Indicator model with 1 factor, PLS(1) denotes the Partial Least Squares with 1 factor, PLS(3) denotes the Partial Least Squares with 3 factors, BR(0.5N)) denotes the

Bayesian Shrinkage regression with shrinkage parameter v = 0.5N , BR(2N)) denotes the Bayesian Shrinkage regression with shrinkage parameter v = 2N . * indicates the 10% significance of Diebold and Mariano

(1995) test. ** indicates the 5% significance of Diebold and Mariano (1995) test. *** indicates the 1% significance of Diebold and Mariano (1995) test.
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EA Industrial Production Growth Rate
Forecast Horizon

h 1 2 3 4 5 6 7 8 9 10 11 12
MAE

ALI 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.007 0.007 0.007 0.008
MAE (Relative to ALI)

SABIC 0.972 1.132 1.131 1.269 1.222 1.205 1.203 1.091 1.117 1.299 1.218 1.088
GABIC 1.029 1.136 1.051 1.227 1.250 1.184 1.242 1.131 1.188 1.313 1.275 1.185
MC3

BIC 0.975 1.057 1.054 1.261 1.253 1.087 1.104 1.148 1.115 1.027 1.101 1.122
SAHQ 1.238 1.484 1.533 1.770 1.595 1.975 1.634 1.790 1.835 2.070 2.024 1.829
GAHQ 1.142 1.198 1.270 1.471 1.288 1.409 1.284 1.330 1.305 1.436 1.431 1.240
MC3

HQ 0.995 1.106 1.151 1.168 1.229 1.198 1.204 1.177 1.220 1.210 1.229 1.198
PLS(1) 0.940** 1.005 0.937** 1.001 0.978** 1.032 1.007 1.004 0.984** 1.002 0.931** 0.939**
PLS(3) 0.884* 1.006 0.940* 1.009 0.981* 1.036 1.009 0.997 0.978* 0.985* 0.929* 0.924*

BR(0.5N) 1.022 1.136 1.124 1.258 1.206 1.384 1.240 1.243 1.188 1.249 1.168 1.068
BR(2N) 0.934 1.033 0.982 1.095 1.060 1.139 1.080 1.098 1.033 1.060 0.977 0.965

Cross-validation: 84 periods

Table 8: Forecasting the industrial production growth rate of the EA using a large set of predictors
Notes: ALI denotes the Automatic Leading Indicator model with 1 factor, SABIC denotes the Simmulated Annealing algorithm that optimises the BIC, GABIC denotes the Genetic algorithm that optimises the BIC,

MC3
BIC denotes the MC3 algorithm that optimises the BIC, SAHQ denotes the Simmulated Annealing algorithm that optimises the HQ criterion, GAHQ denotes the Genetic algorithm that optimises the HQ

criterion, MC3
HQ denotes the MC3 algorithm that optimises the HQ criterion, PLS(1) denotes the Partial Least Squares with 1 factor, PLS(3) denotes the Partial Least Squares with 3 factors, BR(0.5N)) denotes

the Bayesian Shrinkage regression with shrinkage parameter v = 0.5N , BR(2N)) denotes the Bayesian Shrinkage regression with shrinkage parameter v = 2N . * indicates the 10% significance of Diebold and Mariano

(1995) test. ** indicates the 5% significance of Diebold and Mariano (1995) test. *** indicates the 1% significance of Diebold and Mariano (1995) test.
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France Industrial Production Growth Rate
Forecast Horizon

h 1 2 3 4 5 6 7 8 9 10 11 12
MAE

ALI 0.010 0.010 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012
MAE (Relative to ALI)

SABIC 0.935 1.020 1.093 1.079 1.073 1.088 1.081 1.031 1.005 0.998 1.006 1.015
GABIC 0.984 0.996 1.048 0.979 1.019 1.025 1.070 1.035 0.980 0.949 1.007 1.044
MC3

BIC 0.940 1.011 1.092 1.060 1.023 1.020 1.054 1.030 0.990 0.970 0.983 1.031
SAHQ 1.184 1.230 1.380 1.535 1.348 1.318 1.252 1.190 1.113 1.355 1.537 1.696
GAHQ 1.098 1.236 1.230 1.310 1.136 1.163 1.373 1.079 1.507 1.623 2.463 2.281
MC3

HQ 0.959 1.089 1.210 1.171 1.063 1.121 1.164 1.092 1.038 1.016 1.002 1.151
PLS(1) 0.957*** 1.003 0.974*** 0.970*** 0.932*** 1.003 0.978*** 0.973*** 0.970*** 0.961*** 0.955*** 0.967***
PLS(3) 0.913*** 1.004 0.978*** 0.971*** 0.938*** 1.000 0.990 0.980*** 0.946*** 0.943*** 0.952*** 0.960***

BR(0.5N) 0.953*** 1.013 1.092 1.155 0.994*** 1.124 1.070 1.046 1.072 1.047 1.034 0.945***
BR(2N) 0.928*** 0.974*** 1.005 1.040 0.942*** 1.023 1.000 1.012 0.988** 0.980** 0.981** 0.929***

Cross-validation: 84 periods

Table 9: Forecasting the industrial production growth rate of France using a large set of predictors
Notes: ALI denotes the Automatic Leading Indicator model with 1 factor, SABIC denotes the Simmulated Annealing algorithm that optimises the BIC, GABIC denotes the Genetic algorithm that optimises the BIC,

MC3
BIC denotes the MC3 algorithm that optimises the BIC, SAHQ denotes the Simmulated Annealing algorithm that optimises the HQ criterion, GAHQ denotes the Genetic algorithm that optimises the HQ

criterion, MC3
HQ denotes the MC3 algorithm that optimises the HQ criterion, PLS(1) denotes the Partial Least Squares with 1 factor, PLS(3) denotes the Partial Least Squares with 3 factors, BR(0.5N)) denotes

the Bayesian Shrinkage regression with shrinkage parameter v = 0.5N , BR(2N)) denotes the Bayesian Shrinkage regression with shrinkage parameter v = 2N . * indicates the 10% significance of Diebold and Mariano

(1995) test. ** indicates the 5% significance of Diebold and Mariano (1995) test. *** indicates the 1% significance of Diebold and Mariano (1995) test.
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Germany Industrial Production Growth Rate
Forecast Horizon

h 1 2 3 4 5 6 7 8 9 10 11 12
MAE

ALI 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.011
MAE (Relative to ALI)

SABIC 1.016 1.092 0.948 1.020 1.127 1.005 1.036 1.036 0.984 0.993 0.993 1.014
GABIC 1.004 1.080 0.956 1.115 1.103 0.973 1.067 1.045 1.044 1.044 0.997 1.058
MC3

BIC 1.010 1.063 0.924 1.064 1.125 0.965 1.036 1.028 1.018 1.137 1.075 0.989
SAHQ 1.625 3.160 1.487 1.625 1.619 1.586 1.564 1.756 1.961 1.657 1.619 2.008
GAHQ 1.246 1.236 1.019 1.123 1.360 1.315 1.124 1.195 1.291 1.249 1.182 1.280
MC3

HQ 1.057 1.132 0.996 1.094 1.227 1.064 1.099 1.198 1.044 1.160 1.078 1.052
PLS(1) 1.005 1.005 0.938 0.998 1.008 0.979 1.010 1.011 1.006 0.996 1.007 1.013
PLS(3) 0.945 1.008 0.946 1.004 1.017 0.997 1.017 1.021 1.022 1.000 1.037 0.995

BR(0.5N) 1.114 1.153 0.971 1.155 1.081 1.208 1.108 1.085 1.161 1.154 1.091 1.026
BR(2N) 1.008 1.053 0.939 1.047 1.011 1.046 1.020 1.016 1.064 1.059 1.004 0.988

Cross-validation: 84 periods

Table 10: Forecasting the industrial production growth rate of Germany using a large set of predictors
Notes: ALI denotes the Automatic Leading Indicator model with 1 factor, SABIC denotes the Simmulated Annealing algorithm that optimises the BIC, GABIC denotes the Genetic algorithm that optimises the BIC,

MC3
BIC denotes the MC3 algorithm that optimises the BIC, SAHQ denotes the Simmulated Annealing algorithm that optimises the HQ criterion, GAHQ denotes the Genetic algorithm that optimises the HQ

criterion, MC3
HQ denotes the MC3 algorithm that optimises the HQ criterion, PLS(1) denotes the Partial Least Squares with 1 factor, PLS(3) denotes the Partial Least Squares with 3 factors, BR(0.5N)) denotes

the Bayesian Shrinkage regression with shrinkage parameter v = 0.5N , BR(2N)) denotes the Bayesian Shrinkage regression with shrinkage parameter v = 2N . * indicates the 10% significance of Diebold and Mariano

(1995) test. ** indicates the 5% significance of Diebold and Mariano (1995) test. *** indicates the 1% significance of Diebold and Mariano (1995) test.
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Italy Industrial Production Growth Rate
Forecast Horizon

h 1 2 3 4 5 6 7 8 9 10 11 12
MAE

ALI 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.012 0.012 0.012 0.012 0.013
MAE (Relative to ALI)

SABIC 1.008 1.048 1.046 1.040 1.044 0.985 1.037 1.102 1.035 0.990 1.107 1.011
GABIC 1.002 1.064 1.046 1.032 1.020 0.972 1.020 1.064 1.034 0.988 1.070 0.985
MC3

BIC 0.970 1.032 1.024 1.054 1.009 1.001 1.026 1.078 1.049 1.008 1.026 0.998
SAHQ 1.067 1.136 1.178 1.186 1.090 1.050 1.171 1.319 1.103 1.172 1.053 1.180
GAHQ 1.097 1.069 1.103 1.060 1.038 1.064 1.214 1.066 1.167 1.092 1.068 1.063
MC3

HQ 1.029 1.055 1.030 0.997 1.086 1.014 1.078 1.073 1.042 1.010 1.052 0.962
PLS(1) 0.959*** 1.006 0.984*** 1.001 0.983*** 1.006 0.994 0.976*** 1.024 0.984*** 0.967*** 0.964***
PLS(3) 0.928*** 1.010 0.984*** 1.012 0.984*** 1.003 0.997 0.984** 1.025 0.988*** 0.984*** 0.936***

BR(0.5N) 1.003 1.068 1.141 1.138 1.055 1.064 1.033 1.092 1.070 1.029 1.018 0.978**
BR(2N) 0.951*** 1.014 1.034 1.050 1.006 1.008 1.004 1.032 1.020 0.977*** 0.976*** 0.962***

Cross-validation: 84 periods

Table 11: Forecasting the industrial production growth rate of Italy using a large set of predictors
Notes: ALI denotes the Automatic Leading Indicator model with 1 factor, SABIC denotes the Simmulated Annealing algorithm that optimises the BIC, GABIC denotes the Genetic algorithm that optimises the BIC,

MC3
BIC denotes the MC3 algorithm that optimises the BIC, SAHQ denotes the Simmulated Annealing algorithm that optimises the HQ criterion, GAHQ denotes the Genetic algorithm that optimises the HQ

criterion, MC3
HQ denotes the MC3 algorithm that optimises the HQ criterion, PLS(1) denotes the Partial Least Squares with 1 factor, PLS(3) denotes the Partial Least Squares with 3 factors, BR(0.5N)) denotes

the Bayesian Shrinkage regression with shrinkage parameter v = 0.5N , BR(2N)) denotes the Bayesian Shrinkage regression with shrinkage parameter v = 2N . * indicates the 10% significance of Diebold and Mariano

(1995) test. ** indicates the 5% significance of Diebold and Mariano (1995) test. *** indicates the 1% significance of Diebold and Mariano (1995) test.
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