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Abstract

This paper studies the dynamics of contagion across the banking, insurance and shadow
banking sectors of 16 advanced economies in the period 2006-2018. We construct Granger
causality-in-risk networks and introduce higher-order aggregate networks and temporal node
centralities in an economic setting to capture non-Markovian network features. Our ap-
proach uncovers the dynamics of financial contagion as it is transmitted across segments of
the financial system and jurisdictions. Temporal centralities identify countries in distress
as the nodes through which contagion propagates. Moreover, the banking system emerges
as the primary source and transmitter of stress while banks and shadow banks are highly
interconnected. The insurance sector is found to contribute less to stress transmission in all
periods, except during the global financial crisis. Our approach, as opposed to one that uses
memoryless measures of network centrality, is able to identify more clearly the nodes that
are critical for the transmission of financial contagion.

Keywords: Financial networks, Granger causality-in-tail, GARCH, non-Markovian, sys-
temic risk

JEL classification: C02, C22, G01, G2
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Non technical summary

The interconnectedness of the financial system does not only imply beneficial diversification but

could also operate as an amplification channel when the initial shock is sufficiently strong, with

severe consequences on the macroeconomy. This has been illustrated often during the financial

contagion episodes of the last decade, involving banks, shadow banks and insurance firms.

In this paper we empirically investigate the patterns of cross-sectoral contagion for the

period starting just before the global financial crisis, in 2006, and up to 2018. We study the

main segments of the financial system for 16 advanced economies, namely banks, insurance firms

and shadow banks. Our aim is to identify the role played by the various financial segments in

the crisis propagation, i.e. whether they act as sources, transmitters or receivers of financial

stress. We apply a methodology that captures the dynamic evolution of contagion across time

and multiple country-sector pairs, rather than focusing only on bilateral transmission.

We utilise recently introduced mathematical tools for the study of dynamic networks, i.e.

networks with time-varying topologies. Nodes in our networks represent country-sector pairs

(e.g. US banks) while links correspond to incremental predictive power concerning the realisa-

tion of tail risk within a time window, which is interpreted as direct transmission of risk. We

identify indirect contagion, i.e. stress transmission intermediated by other nodes in the system,

by considering time-respecting contagion paths that represent transmission chains across time.

A time scale parameter determines the range of transmission channels encompassed by our

methodology, e.g. to include also channels involving volume adjustment (e.g. credit crunches)

which are more slowly moving compared to price adjustments (e.g. yield increases).

Our analysis points to the tight interconnectedness of the banking and shadow banking

sectors during contagion episodes and the relatively lower systemic risk posed by the insurance

sector. Overall, the average crisis event starts either from the banking or the shadow banking

sector, while insurers are sometimes affected at a later stage. Banking sectors seem to play the

most crucial role in the amplification of financial contagion, compared to both insurance firms

and shadow banks. The insurance sector acts as a receiver of stress during the early and the

later phase of the global financial crisis.
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1 Introduction

The global financial crisis of 2007-2009 and its subsequent transformation into a European crisis

represents a stark example of how financial contagion can be transmitted within the interna-

tional financial system. The cross-border and cross-sectoral dimensions feature prominently in

the transmission of this financial crisis as well as other past ones. These transmission channels

illustrate vividly that interconnectedness does not only imply beneficial loss-absorbing diversi-

fication, but could also operate as an amplification channel when the initial shock is sufficiently

strong, with severe macroeconomic consequences (Acemoglu et al. (2015)).1

In this paper we empirically investigate the direction of cross-border, cross-sectoral financial

contagion for 16 advanced economies during the period 2006-2018. We study the main segments

of the financial systems, namely banks, insurance firms and shadow banks. Specifically, we aim

to answer the following questions. Which type of financial firms act as the main transmitters

of financial contagion, when also international spillovers are considered? Which of them are

more likely to be receivers of financial stress? Which patterns of financial contagion most often

appear, i.e. which type of financial entities are first impacted when risk materialises and which

ones follow? Do these patterns change over time? Do cross-border and cross-sectoral contagion

channels operate more strongly during crisis episodes?

The existing literature has adopted concepts from network theory to address such questions

on financial contagion. In these networks nodes represent banks, firms, financial instruments

or country-level aggregates, and links correspond to various types of connections, either direct

or indirect. However, the tools used so far to analyse these networks have limitations. Existing

studies typically calculate centrality metrics based on individual network topologies and infer

the dynamics of risk transmission at a second stage by analysing the evolution over time of these

1The timeline of events that have unfolded during more than a decade exemplifies the cross-border and
cross-sector character of financial contagion. After the liquidity crisis experienced by shadow banking entities
sponsored, among others, by the French bank BNP Paribas and the German bank IKB in August 2007, the UK
bank Northern Rock became the first high-profile default of the global financial crisis in September 2007 (Shin
(2009)). The subsequent collapse of the US-based shadow banking institution Lehman Brothers on 15 September
2008 spilled over to money market funds who held short-dated Lehman debt. Lehman’s default also triggered a
run on the US insurance company AIG, which was bailed out also because of potential spillovers to a number of
US and European banks (McDonald and Paulson (2015)).

Furthermore, the spillover of the crisis to Europe led to insolvencies and rescue packages to support banks
in distressed countries such as Greece, Ireland, Portugal, Cyprus, Spain. However, banks in other countries
without sovereign financing constraints also faced solvency problems, such as the Belgian-French bank Dexia in
2011 (de Groen (2011)) and a number of German institutions. Italian banks also came under pressure during
the subsequent years, mostly due to their large amounts of non-performing loans and political uncertainty, while
shadow banking entities, such as investment funds, faced valuation losses and were forced to suspend redemptions
(e.g. in Luxembourg, see Gorbanyov and Tressel (2016)). Overall, financial turbulence has often reappeared
during the last years in various countries and segments of the financial system.
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metrics. Another approach has been to aggregate network topologies across time and derive one

single topology that stacks all edges that have appeared within the considered time interval.

This aggregated network is then analysed to identify the nodes that have played the most critical

role. Both these approaches, however, fail to highlight the role played by the network nodes

within a time series of interrelated topologies; as a result, the approaches described above may

miss critical information contained in these time series.

Figure 1 illustrates this missing information. First, case 1 shows that when each network

snapshot is analysed separately, a node that acts as a transmitter may erroneously appear to be

either a source or an end-receiver of risk. Case 2 shows that when the aggregate network is anal-

ysed (by summing all existing edges that have occurred at some point in time, possibly weighted

by their relative number of occurrences), a source node can erroneously be mis-characterised as

a transmitter. In that case, the green node was first hit by a shock due to its connection with

the blue node on its left and consequently propagated this effect to the blue node on its right.

According to the aggregated network, the orange node appears to have had a very similar role,

however, this is misleading in that in reality, the only similarity was that the orange node was

hit by a shock at time t from the blue node on the left, however it did not subsequently transmit

the shock further. In addition, at some point later, at t+ T , i.e. much later than the previous

episode, the orange node acted as a source of a new shock that was transmitted to the subse-

quent blue node. Therefore, the orange node should be characterised either as an end-receiver

in the first episode and as a source in the second episode. Such mis-characterisations can lead

to misguided policies, founded on misinterpreted sources of financial contagion, as exemplified

in case 2.

To address these limitations, we present a methodology that explicitly considers the time

series of network topologies, aiming to uncover the dynamics of risk transmission and the con-

tagion paths operating during crisis episodes. Our approach identifies the sequence of contagion

events, distinguishing each country-sector pair, i.e. each node of the network, as either a source,

a transmitter or receiver, and incorporates this information into node centrality metrics. For

this purpose we utilise for the first time in the financial contagion literature some recently intro-

duced mathematical tools for the study of dynamic networks, i.e. networks with time-varying

topology (e.g. Scholtes et al. (2016)). Specifically, we employ higher-order aggregated network

representations which are based on the underlying notion of time-respecting paths within a

dynamic network topology. Generalised centrality metrics are computed in these higher-order
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(a) Case 1: Contagion analysis using network snap-
shots: mis-characterisation of a transmitter node.

(b) Case 2: Contagion analysis using the aggregate network: missing the source of a financial shock.

Figure 1: Limitations of current network analysis approaches.

aggregated networks, encompassing information about time-varying topologies and reconstruct-

ing how financial contagion unfolds across sectors, countries and time. Therefore, our analysis

moves beyond memoryless centrality metrics, derived either from static snapshots or averages

across snapshots, and accommodates non-Markovian network features (Rosvall et al. (2014)),

in which financial stress flows may depend on where stress originates from.

Our paper is related to a number of existing literature strands. The first of these strands

investigates spillovers and shock amplification across segments of the financial system. For

example, Gertler et al. (2016) present a canonical model with a retail and a shadow banking

sector, modelled as wholesale funded entities, and show that shocks may spill from retail banks

to shadow banks. In the stylised model of Meeks et al. (2017) banks and shadow banks are

linked via securitised exposures and their balance sheets are again mutually affected by macroe-

conomic shocks. Allen and Carletti (2006) show how credit derivatives and other forms of

credit transfer can lead to both contagion during crises and beneficial diversification. Empirical

studies have utilised network metrics to investigate spillovers, e.g. Billio et al. (2012) find that

causality links of the residual returns from banks, insurers and shadow banks started to in-

crease just before and during the financial crisis (2006-2008). Specifically, the authors find that

hedge funds unilaterally affected the banks, with no contagion transmission occurring in the

opposite direction. In general, the authors conclude that banks and insurers represent sources

or contagion more than shadow banks. However, this result does not hold when they employ

a nonlinear Granger causality test. Chen et al. (2014) provide evidence that contagion mainly

takes place from banks to insurers for a sample of US banks and insurers spanning the period
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2002-2008. Wang et al. (2017) also identify banks as the main transmitters of systemic risk for

a set of 84 S&P institutions during the period 2006-2015.

Another related strand of a growing empirical literature investigates spillovers across coun-

tries, mainly in the context of the European sovereign debt crisis. De Santis and Zimic (2017)

find that connectedness across bond markets was on a downward path until 2012 when this path

reversed, pointing to the fragmentation of the sovereign bond market. Blasques et al. (2016)

examine the sovereign CDS of eight euro area countries and find that contagion within the euro

area subsided after 2013. This is interpreted as the result of the policy measures undertaken

during that period, namely the TLTRO and OMT programs of the ECB and the setting-up of

the ESM. Spillovers across countries are examined also by Clayes and Vasicek (2014), Lee and

Yang (2014), Fernandez-Rodriguez et al. (2016), Schwaab et al. (2017).

On the methodological level, our paper contributes to the growing empirical literature that

studies financial contagion by adopting a network perspective. Studies that investigate networks

based on direct exposures, either stocks or flows, proceed by either calculating centrality metrics

or employing econometric methods to analyse the propagation of contagion (see e.g. Chinazzi

et al. (2013), Langfield et al. (2014), Tonzer (2015), Brownlees et al. (2021), among others).

Other studies employ Granger causality tests in means to construct causality networks among

stock indices (Lee and Yang (2014), Billio et al. (2016)), sovereign bond yields (Caporin et al.

(2018)) or multi-partite networks, e.g. combining stocks and sovereign bond yields (Corsi et al.

(2018)). Brunetti et al. (2019) compare causality and physical networks formed in the interbank

market of euro-area banks.

The centrality metrics used in the above studies are employed to identify the most intercon-

nected nodes, i.e. which can be considered the most important for risk transmission. However,

due to the methodology used, it is usually not possible to use these metrics to reliably distin-

guish between sources, transmitters or receivers of financial stress. This limitation could be

especially important for studies that employ flow data of direct exposures or construct causality

networks, due to the relatively high volatility of the network topology and the importance of

the temporal dimension for a correct economic interpretation.2

In this paper we construct a time series of tri-partite Granger causality-in-tail networks

2The currently employed static methods seem well suited to analyse networks with slowly changing links,
e.g. when links represent stock amounts that may vary slowly over time, or network topologies that incorporate
all adjustments to external shocks due to transmission mechanisms operating almost instantly, e.g. when links
represent price changes in highly liquid markets. In these cases the emphasis is on the structural properties of
the network and not on the topology dynamics, e.g. as in Chinazzi et al. (2013).
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and use Expected Default Frequency (EDF) data from Moody’s Analytics. This approach

enables a comprehensive analysis of the financial contagion channels that operated during the

global financial crisis and its aftermath. In contrast, existing studies usually either investigate

contagion across individual institutions within one national financial system or focus on cross-

border contagion towards one specific country. Our study aims at enriching the literature that

looks into the cross-country, cross-sectoral contagion simultaneously for a relatively larger set

of countries, and is the first that looks into paths of causality-in-risk, simultaneously in both

the country and financial sector dimensions.

We define contagion as incremental predictive power of a tail event conditional on the occur-

rence of tail events for the predictor variable in the right-hand tail of the distribution. Therefore,

our study distinguishes contagion from interdependence by focusing on the predictive power in

the tail. In addition, we use a GARCH filter addressing the critique that heteroscedasticity may

bias tests for contagion (Forbes and Rigobon (2002)). We use a robust form of the Granger

causality-in-distribution test proposed by Candelon and Tokpavi (2016), in which the test is run

for different parameter values and kernel forms, thus addressing model uncertainty. The weight

assigned to each edge connecting a pair of nodes is proportional to the number of parameter

combinations that find this causality link, reflecting different degrees of certainty for contagion

along this edge.

We find that the most typical sequence of contagion starts from either banks or shadow

banks and much less frequently from insurance firms. The only exception to this pattern is

observed during the global financial crisis of 2007-2010, when insurers were also sources of risk,

consistently with default events that unfolded during that period and involved insurance firms.

Furthermore, we find evidence that banks play the most important role as transmitters of finan-

cial stress within the financial network as they occupy much more frequently the intermediate

nodes of time-respecting paths compared to other financial entities.

Our results also show that the temporal framework of analysis allows a clearer identification

of the country shock origin compared to static approaches, consistently with the intuition behind

the simple examples provided above. The static approaches that have been used so far to

characterise nodes within financial networks tend to exalt the importance of large countries,

such as the US or Japan, as sources of contagion while our approach is able to identify distress

countries, such as Greece, Spain or Italy, as sources of shocks. This is explained by the focus

of static approaches on synchronous and transmission paths of length one, leading to a bias
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towards large countries.

Our work shares with Billio et al. (2017) and Billio et al. (2021a) a similar focus on the

temporal dimension of networks applied to the analysis of risk transmission among countries and

sectors (financial and real sectors). In these papers, an econometric framework is adopted based

on multi-dimensional generalised matrices (tensors) that encapsulate information about time-

varying network topologies. In our approach, the higher-order representation allows preserving

the temporal dependence parsimoniously, simply based on the underlying edge evolution. The

multilayer structure used in these studies is accommodated in our setting without imposing any

layer structure a-priori. Our approach can also be seen as a dimensionality reduction technique,

as by moving to an higher-order we reduce the number of nodes and links while preserving the

temporal information.

The paper is structured as follows. Section 2 presents the methodology adopted for the

construction of temporal networks based on Granger causality-in-risk. The higher-order network

aggregation and the related centrality concepts are also introduced in this section. Section 3

presents the EDF dataset. Section 4 presents the results and Section 5 concludes.

2 Methodology

We present a methodology to empirically study contagion within a set of economic units (nodes)

and across time, utilising time-varying network topologies. The economic units could be coun-

tries, regions, sectors or institutions. In this paper nodes represent country-financial sector pairs

(e.g. ’Austrian banks’ or ’Belgian insurance firms’), as elaborated in Section 3.

For this purpose, we construct a directed temporal network of risk transmission, i.e. a

network with a time-varying topology where the directed edges represent incremental predictive

ability of tail risk realisation on the receiver node, when the source node is included in the

information set. Tail risk is realised when the default probability exceeds a specific VaR level.

The temporal network is formally defined as a tuple GT = (V,ET ) comprising a set of nodes

V and a set ET⊆V×V×[0, T ] of time-stamped links (x, y; t) corresponding to the presence of a

link from node x towards node y during the time interval [t, t+∆t]. ∆t is a unit of time during

which the topology remains constant. The temporal network is observed during the period [0, T ]

which comprises k intervals [0,∆t], [∆t, 2∆t], ..., [(k−1)∆t, k∆t = T ] each featuring (in general)

a different topology. The set of nodes together with the fixed topology prevailing during a time
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interval [t, t+∆t] is denoted by Gt.

The links of the network represent contagion in the Granger sense and based on the ability

of tail risk realisation in the transmitter node to enhance the prediction of tail risk realisation

in the receiver node, as explained in more detail in the following Subection 2.1. Therefore,

the links reflect potentially diverse transmission channels, either due to direct linkages, such as

bilateral exposures, trade linkages, exposures to common risks, or to indirect mechanisms, e.g.

related to increased risk aversion (Gai et al. (2011); Danielsson and Zigrand (2013)).3

2.1 A robust Granger causality-in-risk test

We introduce a robust version of the non-parametric test for Granger causality-in-distribution

presented by Candelon and Tokpavi (2016) to identify statistical causality between two time

series during tail events. The links of a temporal network are inferred by running the causality-

in-distribution test consecutively for rolling time windows and for each country-sector pair. The

test represents a multivariate extension of the test derived by Hong et al. (2009). Candelon

and Tokpavi (2016) formulate the null hypothesis of no Granger causality-in-distribution be-

tween two stochastic processes, say Yt and Xt, with direction Yt → Xt, by decomposing the

distribution support of each series into a multivariate process of inter-quartile indicator vari-

ables derived from a VaR model that features a finite set of population parameters θ0X . In this

way, causality-in-tail inference simultaneously considers different levels of the quantile, therefore

avoiding inferences that are sensitive to the definition of a specific quantile.

In particular, letm+1 be the number of VaR percentiles αs = P
[
Xt < V aRX

t,s(θ
0
X , αs)|ΩX

t−1

]
,

with s = 1, . . . ,m+ 1, covering the whole distribution support 0% ≤ α1 < · · · < αm+1 ≤ 100%.

Then, HX
t (θ0X) = (ZX

t,1(θ
0
X), . . . , ZX

t,m(θ0X))′ is an m-dimensional vector, indicating the percentile

where the value of Xt lies for each t. Note that we do not need to consider all the sub-regions

of the distribution, since m values suffice to identify the remaining region.4 Moreover, by

convention, V aRX
t,s(θ

0
X , αs) = −∞ for αs = 0% and V aRX

t,s(θ
0
X , αs) = ∞ for αs = 100%.

The indicator function ZX
t,s(θ

0
X) is activated whenever an event within the percentage range[

αs, αs+1) takes place

3Our focus is on Granger causality with respect to the occurence of tail events rather than identifying
structural relationships among the nodes of the network. The identification of actual causal relationships in a
multivariate setting is challenging as indirect and spurious causality may affect the conclusions. The literature
starting with Hsiao (1982) investigates types of spurious causality and how techniques such as network analysis
can be used to reconstruct causal chains (see also Eichler (2007)).

4Thereafter in this section we do not refer to the m+ 1 region.
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ZX
t,s(θ

0
X) =


1 if Xt ≥ V aRX

t,s(θ
0
X , αs) & Xt < V aRX

t,s+1(θ
0
X , αs+1)

0 else,

(1)

for each s = 1, . . . ,m.

The null hypothesis of no Granger causality-in-distribution can then be written as

H0 : E(HX
t (θ0X)|ΩX&Y

t−1 ) = E(HX
t (θ0X)|ΩX

t−1) (2)

where E() is the expectation operator, Ωt−1 is a filtration5 up to t − 1, which may contain

information either on both Xt and Yt or only on Xt.

We further denote by Γ̂X and Γ̂Y the sample correlation matrices of the estimated ĤX
t

and ĤY
t , respectively. In addition, we also define the sample cross-covariance and cross-

correlation matrices between ĤX
t and ĤY

t . The sample cross-covariance matrix equals Λ̂(j) =

T−1
∑T

1+j(Ĥ
X
t −Π̂X)(ĤY

t−j−Π̂Y ) for 0 ≤ j ≤ T−1 and Λ̂(j) = T−1
∑T

1−j(Ĥ
X
t+j−Π̂X)(ĤY

t −Π̂Y )

for 1 − T ≤ j ≤ 0, where Π̂X (respectively Π̂Y ) is the sample mean of ĤX
t (respectively ĤY

t ).

Consequently, the sample cross-correlation matrix R̂(j) is equal to R̂(j) = D(Σ̂
−1/2
X )Λ̂(j)D(Σ̂

−1/2
Y ),

with Σ̂X and Σ̂Y representing the sample covariance matrices of the estimated event variables

ĤX
t and ĤY

t and D() is the diagonalization operator.

The test utilises the following quadratic expression of cross-correlations between the indica-

tor vectors for Xt and Yt

Q̂(j) = Tvec(R̂(j))′(Γ̂−1
X ⊗ Γ̂−1

Y )vec(R̂(j)) (3)

with vec() denoting the vectorization operator and ⊗ the Kronecker product.

Specifically, the test is based on the following kernel-weighted sum of past Q̂(j)s

T̂ =
T−1∑
j=1

κ2(j/M)Q̂(j) (4)

where κ() represents a kernel that discounts past values6 and M is a truncation parameter

5A filtration is an increasing sequence of σ-algebras. In turn, a σ-algebra on a certain set is a collection
of subsets (including the whole set itself) that is closed under complement and countable unions. Filtrations
represent essentially information up to a certain time and are useful to define conditional expectations.

6We follow Hong et al. (2009) and Candelon and Tokpavi (2016) and define the kernel to be a symmetric func-
tion on the real line with co-domain [−1, 1] and continuous at zero with at most a finite number of discontinuity
points, so that: (i) κ(0) = 1; (ii)

∫∞
−∞ κ2(z)dz < ∞.
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dependent on the sample size T so that M → ∞ and M/T → 0 as T → ∞.7

Using the above notation, the following test statistic is used to test the hypothesis in (2)

(after scaling and centering T̂ ):

VY→X =
T̂ −m2CT (M)

(m2DT (M))1/2
(5)

where CT (M) =
∑T−1

j=1 (1− j/T )κ2(j/M), DT (M) = 2
∑T−1

j=1 (1− j/T )(1− (j + 1)/T )κ4(j/M).

Following Candelon and Tokpavi (2016), our default parameterisation of the test involves

the use of the Daniell kernel κ(x) = sin(πx)/πx and choosing M = [1.5T 0.3]. To ensure that our

results are not sensitive to these choices we also implement a robust form of the test whereby

the test results for three different kernels and three different truncation parameters are aggre-

gated. In this robust form of the test we employ all combinations of different kernel functions

(uniform, Bartlett and Daniell kernels) and different values for the truncation parameter M

(M = [1.5T 0.3], M = [ln(T )] and M = [2T 0.3]), calculate the weighted sum, where the weights

reward evidence of Granger causality. This is a model averaging approach that reduces un-

certainty over the results which could be induced by the choice of the kernel function and the

truncation parameter.

The quadratic form in (4) is based on the squared absolute distance between kernel es-

timators of the cross-spectral density without and with the restriction imposed by the null

hypothesis. When this distance is sufficiently large, the null hypothesis of no Granger causality-

in-distribution is not confirmed. However, in a financial contagion context we are not interested

in the whole distribution as interdependence relationships in normal times may not correspond

to active links transmitting contagion during financial stress. We thus focus on financial stress

events by selecting the appropriate VaR levels, and we consider the right tail of the EDF distri-

bution, representing high default risk, in order to form a network whose links represent added

predictive ability of tail risk.8 Therefore, we investigate causality-in-distribution using the VaR

levels A = {90%, 95%, 99%, 100%}, i.e. m+1 = 4. Technical details about the VaR model have

been relegated to Appendix A.

7The M parameter reflects the degree to which lagged values are considered.
8This is in contrast to other studies that utilise e.g. stock returns where the left tail is the one corresponding

to extreme negative shocks.
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2.2 A tail risk statistical causality network

Using the robust version of the above-described test, we construct a network whereby nodes

represent country-sector pairs and edges change over time. Our focus is to identify country-

sector pairs which are critical in risk transmission and investigate the relative importance of the

various financial sector segments and countries.

The calculation of node centrality metrics, e.g. node degree, closeness, betweenness and

eigenvector centrality, is the standard approach to identify critical nodes and investigate the

topological properties of a network. Existing applications of network theory in finance and

economics employ these concepts of centrality, applied each time to a given network topology (for

example, see Bonaccolto et al. (2019), Billio et al. (2012), Chinazzi et al. (2013) and Corsi et al.

(2018)). Specifically, assuming a temporal network with topological dynamics GT = (V,ET )

for the observation period [0, T ], comprising a set of nodes V and a set of time-stamped links

ET⊆V×V×[0, T ], node metrics are computed for each topology separately, i.e. for each Gt,

where the unit of time ∆t represents the minimum time for which the network topology can

be considered as constant. Therefore, a centrality metric C(·) for each node υ is specific to the

current topology, i.e. Ct(υ) = f(Gt).

This standard approach provides insights into how the structural features of the network

are changing throughout time, however it is memoryless as it focuses only on the links existing

synchronously. Therefore, it does not consider transmission mechanisms operating with a delay

longer than ∆t. Another approach, which is also used in the financial contagion literature,

is to aggregate the time-stamped links into a single network where the weights in the time-

aggregated network are related to the number of times that a specific link is found. Specifically,

we can define the (first-order) time-aggregated network G(1) = (V,E(1)) based on the aggregated

temporal links E(1)⊆V×V . This means that two nodes υ1, υ2 ∈ V will be connected in G(1)

whenever there is at least one t ∈ [0, T ] for which (υ1, υ2; t)∈ET .9 In that case, the corresponding

centrality measure C(1)(υ) is a function of the temporal network f(GT ); however, the sequence

with which the topologies Gt occurred does not impact the value of the centrality metric and

therefore potentially critical information is not utilised. Specifically, if we consider an alternative

temporal network ǴT which is identical to GT except from two points in time t1 and t2 for which

the corresponding time-stamped network instances are reversed, i.e. Ǵt1 = Gt2 and Ǵt2 = Gt1 ,

9Depending on the application, the weights of the network can be defined to reflect the total duration for
which the link between υ1 and υ2 has persisted.
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the centrality measures calculated for ǴT would be the same as for GT since the respective

aggregated networks are identical, i.e. Ǵ(1) = G(1). Therefore, potentially critical information

on the temporal sequence is lost and the economic interpretation may be distorted.

To summarise, when considering individual topologies or the time-aggregated network, the

information content of the dynamics and, specifically, how paths are created across the changing

topologies is not utilised.10 However, the phenomenon of contagion entails the transmission of

stress from one agent to another and then at a subsequent point in time to a third. Such dynamic

paths spanning different periods are essential when analysing the transmission of contagion and

to identify origins, transmitters and receivers of financial stress.

In addition, network analyses from the perspective of either static or time-aggregated net-

works assume the transitivity property which is fundamental for the definition of the standard

centrality metrics: namely that the existence of links a→b and b→c implies that a path a→b→c

of stress transmission is operating. One can easily imagine situations in which whether the exis-

tence of such a path can be inferred depends on the timing of the past links that lead to node c,

e.g. if the two links a→b and b→c occurred in the opposite order or a→b occurred much earlier

than b→c, then the inference of a path a→b→c is not plausible. Time-aggregated networks, for

example, do not consider the sequencing of edges and therefore may assume transitivity also in

cases where this property does not apply, potentially leading to a distortion in the set of iden-

tified paths. This distortion could overestimate the centrality of nodes which exhibit relatively

many links across the various topologies (e.g. large countries), as the transitivity assumption

would make them appear as parts of many long paths (and consequently attain high values of

centrality) even if these paths do not actually respect the transitivity property.

The example in Figure 2 illustrates the importance of considering the dynamics of the

network topology. The figure shows three cases where the same topology has different inter-

pretations depending on the timing of each edge. In the static network case (case (a)), we

consider only the links existing at a specific point in time (or equivalently the total number

links throughout a period, as in a time-aggregated network). One could infer from this topol-

ogy that node b acts as an amplifier node, by transmitting financial stress from the source node

a towards nodes c and d.

When one considers the timing of links, the conclusion may differ sharply. In the second

10To make an analogy with econometrics, it is akin to analysing a panel dataset either as separate cross-sections
or as a pooled dataset neglecting the correlations of observations across time.
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(a) Static network or time-aggregated net-
work

(b) Time-varying network with time-
respecting paths

(c) Time-varying network without time-
respecting paths

Figure 2: Topological properties are sensitive to the network dynamics. It is assumed that
δ1 < δ ≪ δ2 where δ represents the maximum time required for financial stress to be transmitted
from a node to another. The numbers in (a) represent the weights of each link. For each link
in (b) and (c) the corresponding parenthesis contains the weight and the timing, respectively.

case, (b), node b receives two inward links (i.e. representing financial stress from a at time

t and t + δ0, respectively), which are followed by outward links (i.e. further transmission of

financial stress) occurring within a delay δ1 that is comparable to the scale ∆t of the financial

contagion phenomenon. Therefore, the conclusion remains similar to that of case (a). However,

in the third case, (c), the outward links occur within a lag δ2 ≫ ∆t. Consequently, it would

be misleading to attribute the links from b towards c and d to a further transmission of stress

which node b received from node a. It would be more plausible to infer that two independent

contagion phenomena have taken place, the first being a contagion from source node a towards

receiving node b and the second with node b as the source and nodes c and d at the receiving

end. Therefore, node b functions here as a source while the analysis of the time-aggregated

network would lead to a misleading conclusion that it is a transmission node.

The scale of the phenomenon under discussion, as measured by the value of ∆t, is therefore

a critical parameter to distinguish paths across time and the proper identification of the role
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played by the various nodes during contagion. In other words, the ordering of the edges needs

to be complemented by their timing in order to define a path comprising edges that occur at

different points in time. In this context, we would need to define generalised centrality metrics

that would incorporate information about time-varying topologies such as those depicted in

Figure 2 to properly account for contagion dynamics and systemic relevance of the network

nodes. Such metrics should distinguish between related and unrelated paths and should be

informed by a relevant time horizon parameter ∆t.

The concept of time-respecting paths (Scholtes et al. (2016)) enables reconstructing chains

of contagion episodes across multiple nodes over time. A time-respecting path is a collec-

tion of triples composed of a sender node, a receiver node and a time snapshot when the

link between sender and receiver occurred, for all times recorded. Formally, a time-respecting

path between nodes υ0 and υl with a maximum time difference δ is defined as a sequence

(υ0, υ1; t1), ..., (υl−1, υl; tl) in which the time-stamps of the links in the path is increasing, i.e.

t1 < t2... < tl and, in addition, 0 < ti+1 − ti < δ, for i = 1, ..., l − 1.

In our context, time-respecting paths represent contagion chains tracing the paths of trans-

mission for arbitrary lengths, i.e. determining sequences of Granger causality-in-tail of length

greater than one (i.e. not only just a link, but time-respecting chains of links). For instance,

we are interested in investigating whether the global financial crisis originated e.g. mainly from

shadow banks to then affect banks and insurers and finally feed back to shadow banks. Using

the notion of time-respecting paths we can understand the role of financial market segments in

the contagion episodes, i.e. whether they act as sources, transmitters or receivers.

An additional appealing feature of the temporal network analysis, as regards its use to study

economic phenomena and specifically financial contagion, is the ability to distinguish transmis-

sion channels operating across various time scales. Standard centrality measures calculated in

individual topologies are based on synchronous paths, i.e. network paths that exist in a specific

topology, which are assumed to reflect the economic links existing for a short period, e.g. [t,∆t].

On the other hand, time-respecting paths and the generalised centrality measures consider also

paths formed across longer time lengths, reflecting more slowly-moving transmission channels.

For example, such channels may include those caused by changes in volumes, such as credit

crunches, investment adjustments, or sticky price adjustments.

The analysis of temporal networks based on the time-aggregated network representation is

underpinned by implicit Markovian assumptions. Specifically, it is assumed that the existence
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of an edge does not depend on previous edges preceding it. In contrast, the approach adopted in

this paper is able to accommodate non-Markovian temporal network features. The reference to

(non-)Markovian features of a network can be further made clearer by considering the mapping

which exists between a temporal network and a transition matrix comprising the probability of a

random walker jumping to another node from each node in the network (Scholtes et al. (2014)).

When a time-aggregated network is examined, the construction of the corresponding transition

matrix considers each specific edge individually, without any reference to potentially related

edges and their timing. An expanding recent literature has moved beyond this (essentially static)

approach and investigated non-Markovian network features (Rosvall et al. (2014); Scholtes et al.

(2014); Scholtes et al. (2016)). However, to our knowledge, this strand of temporal network

analysis has not found application in economics and finance.

In this work we follow this literature on modelling non-Markovian characteristics of temporal

networks and compute centrality measures taking into account the network dynamics. For this

reason we employ the notion of higher-order aggregate network (Scholtes et al. (2014)) which is

a Markovian representation of non-Markovian temporal networks. Specifically, a nth-order ag-

gregate network G(n) comprises nth-order nodes V (n)⊆V n and nth-order edges E(n)⊆V (n)×V (n)

whereby each existing edge represents a time-respecting path in the original temporal network

and the weight of the edge reflects the frequency with which the time-respecting path occurs.

Formally, a nth-order edge (υ, ω), where υ = (υ1, . . . , υn) and ω = (ω1, . . . , ωn) are n-tuples,

exists if and only if υ and ω overlap in n− 1 elements as follows

(υ1, υ2 = ω1; t1), ..., (υn = ωn−1, ωn; tn) (6)

thus defining a path of length n in the original network. The edge will exist in the nth-order

aggregated network if and only if in the temporal network a set of {t1, ..., tn} exists for which

the above path is a time-respecting path for a given δ. The weight of the edge is given by

w(υ, ω) = |{(υ1, υ2 = ω1; t1), ..., (υn = ωn−1, ωn; tn) : 0 < ti+1 − ti < δ}|. (7)

A nth-order aggregated network accomodates non-Markovian features, as the nth edge (υn =

ωn−1;ωn) of a time-respecting path of length n depends on the n− 1 previous edges.

Generalised centrality metrics can be computed on the nth-order aggregate network to ob-

tain economically meaningful rankings of systemic importance. Scholtes et al. (2016) show
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that second-order centralities better approximate temporal centralities compared to static cen-

tralities, which are normally used in the economics and finance literature. The second-order

betweenness centrality can be defined as

BC(2)(v) =
∑

x̸=y∈V,
u−x∈V (2),
y−w∈V (2)

|{p ∈ P (2)(u− x, y − w; v) : len(p) = dist(2)(u,w)}| (8)

where P (2)(u− x, y −w; v) is the set of shortest time-respecting paths across all starting times

connecting vertex u− x to y − w in the second-order network via v in the first-order network,

dist(2)(u,w) = minr,z∈V (2),r=u−∗,z=∗−wL
(2)(r, z) + 1 is a second-order distance function and

L(2)(r, z) denotes the length of a shortest path between two arbitrary second-order nodes r, z ∈

V (2), where, in turn, V (2) is the set of (second-order) nodes.11

The second order out-closeness centrality is defined as

CC(2)(v) =
∑
u̸=v

1

dist(2)(u, v)
(9)

where for each node in the network, we sum the inverse distances towards all other nodes

according to the topology of the second-order aggregate network. Alternatively, the second

order in-closeness centrality considers distances from all other nodes of the network.

Finally, we also compute the standard first order centralities for each network instance (i.e.

the topology corresponding to an interval [t, t + ∆t]) and examine their evolution over time.

The first order betweenness centrality is given by

BC
(1)
t (v) =

∑
u̸=v ̸=w

P
(1)
t (u,w; v) (10)

where P
(1)
t (u,w; v) is the set of those shortest paths from node u to w in a static network that

pass through node v. The first-order out-closeness centrality is given by

CC
(1)
t (v) =

∑
u̸=v

1

dist
(1)
t (u, v)

(11)

where dist
(1)
t (u, v) is the first-order distance, that is the length of a shortest path, from node u to

v in the first-order aggregate network. The subscript t denotes the time snapshot when the cen-

11The notation a− b stands for a second-order node.
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trality is computed. The first order in-closeness centrality is defined using instead dist
(1)
t (v, u).

The joint evaluation of the first order centralities calculated for each snapshot topology com-

plements the second order analysis which looks holistically into the whole sequence of topologies.

3 Data

We utilise EDF data provided by Moody’s Analytics. The EDF represents a risk measure

derived by combining balance sheet information and market fundamentals. Compared to stock

or CDS prices, EDF are less affected by frictions, which are especially prevalent during crisis

periods, such as liquidity risk, strategic trading and counterparty risk (Jarrow (2012) and Tang

and Yan (2010)). Similarly, Bongaerts et al. (2011) argue that CDS prices, which are often used

in the related literature, should not be considered as a pure measure of credit risk due to the

impact of liquidity on them. Therefore, the use of EDFs allows a clearer focus on the credit risk

characterising the underlying entities. In addition, compared to equity returns, EDFs quantify

the firm’s default probability, which is a more relevant factor when considering the propagation

of contagion compared to the shareholders’ expected return.

The data on EDFs are locational in nature, span the period from 1 January 2006 to 7

February 2018 (in total 3050 days), and cover a set of 16 advanced economies. These economies

are Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Japan, the Netherlands,

Portugal, Slovakia, Spain, Sweden, the UK, and the US.

EDFs represent daily estimates of forward-looking probabilities of default within a one year

horizon (EDF 8 and EDF 9 models). Estimation is based on an option-pricing model utilising

Vasicek’s formulation of option contracts. Country- and industry-level volatility estimates and

credit risk information are used to compute a distance-to-default measure which is mapped

against the probability space.12

Our sample covers the three main components of the financial system, namely banks, shadow

banks and insurers, thus enabling a study of contagion across aggregated country-sectors. Lo-

cational data are well-suited for that purpose, as foreign entities which may belong to a parent

entity are not consolidated and risk transmission across entities from different countries that

belong to the same financial conglomerate can be identified. The banking sector is represented

by Moody’s industry code N06 that includes banks and savings and loan associations. The

12More details are available at https://www.moodysanalytics.com/-/media/whitepaper/2015/

2012-28-06-public-edf-methodology.pdf
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insurance sector comprises codes N29 and N30, i.e. life insurance and property/casualty/health

insurance, respectively. Shadow banks include codes N23 (Finance Companies), N24 (Finance -

not elsewhere classified), Investment Management (N31), Real Estate Investment Trusts (N47),

Security Brokers and Dealers (N48). Institutions can change industry over time. Our sample

includes publicly traded firms, therefore includes entities that are in general more exposed to

market signals.

Consistently with other studies (Candelon and Tokpavi (2016) and Podlich and Wedow

(2014)), we retain all institutions in the sample, thus considering also those that disappeared at

some point in time from the sample or companies that entered the sample after the beginning of

the sample period. This is consistent with our aim to identify spillovers at the country level. If

we studied only the sample that is present throughout the entire period the sample size would

be significantly reduced, and survival bias would be introduced.

Similarly to Podlich and Wedow (2014), EDF changes are expressed as a weighted aver-

age for each country-sector pair and computed using: i) each company’s asset value, which is

estimated by Moody’s to reflect the market’s view of the value of a company in light of its

equity value, equity volatility and liability structure; ii) the EDF1 of each company, which is

Moody’s calculated expected default frequency value within a year (EDF 9 model), expressed in

percentages. In this framework, a default event occurs in case of failure of a principal or interest

payment or a government bailout. EDFs are regarded as a measure of the default probability;

and iii) total assets computed as the sum of the asset values of the institutions included in the

sample of each jurisdiction.

In the analysis that follows we also consider separately four different periods corresponding

to a commonly used periodisation of the last fifteen years as regards the different phases of the

financial crisis. The first one, which we label as the ’pre-crisis’ period is up until August 2007,

when hedge funds Bear Stearns High-Grade Structured Credit Strategies Fund and Bear Stearns

High-Grade Structured Credit Strategies Enhanced Leveraged Fund filed for bankruptcy. The

second period corresponds to the global financial crisis and runs until the onset of the Greek

crisis in April 2010. This event defines the start of the third period, the European financial

crisis, which ends with Mario Draghi’s London speech of July 2012 and marks the beginning

of the fourth and last period, featuring a number of less intense crisis episodes, especially after

2015 (see Billio et al. (2016)).

Figure 3 plots the aggregate EDFs for each country and financial segment separately for two
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sets of countries in the sample. These are ’large’ countries (the US, Japan, the UK, Germany

and France)13 and ’distress’ countries (Italy, Spain, Ireland, Greece, Portugal) that includes

four countries that required at some point in time financial assistance programs in addition to

Italy where episodes of political instability were followed by financial turbulence. Overall, the

most elevated risk levels were observed during the global and the European financial crises, with

bouts of financial stress occurring after Mario Draghi’s speech in 2012 especially in the banking

sectors of ’distress’ countries after 2015. A significant degree of heterogeneity across countries

and financial institutions is apparent. For example, the risk for insurance companies was highest

until 2012 and since then it has remained at relatively low levels while banks and shadow banks

have experienced relatively high risk levels also during the post-2012 period. Furthermore, the

group of ’large’ countries experienced elevated levels of risk mainly during the global financial

crisis while the ’distress’ countries were much more impacted later, after 2010.

The summary statistics of Table 1 show that overall shadow banks have higher credit risk

compared to banks while insurances represent the least risky financial segment, a risk ranking

which is consistent when either the mean, the median or the 3rd quartile of the distribution is

considered.14

As expected, the Greek, Belgian, Portuguese, Irish, Spanish and Italian banking sectors

stand out in terms of riskiness. Similar is the situation for the insurance sector, with the US

insurance sector also exhibiting high risk. The shadow banking sector is more idiosyncratic

and the US is on the top of risk, followed by Greece and Portugal, when the mean value is

considered.

Table 1: Summary statistics of EDFs. EDFs are expressed as percentages. Source: Moody’s
Analytics and authors’ calculations.

Sector-country Mean Min 1st quartile Median 3rd quartile Max

Banks 1.43 0.01 0.24 0.54 1.27 21.76

Austria 1.07 0.02 0.40 0.89 1.53 4.09

Belgium 4.84 0.03 0.32 0.65 12.62 16.54

13The first set includes the largest economies in the sample, which did not require financial assistance nor
faced the risk of losing market access for their sovereign debt issuance.

14We conducted a preliminary statistical analysis, not reported here, using the tests on the equality of means
and the Wilcoxon rank-sum (Mann-Whitney) test. It was found that the average EDF is statistically lower for
the pre-crisis periods compared to all other phases (for all three financial sectors). EDFs attain their highest
values for the banking and insurance sector during the European phase of the crisis while for the shadow banking
sector the peak of risk is associated with the global financial crisis period.
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Table 1 – continued from previous page

Sector-country Mean Min 1st quartile Median 3rd quartile Max

Germany 1.81 0.12 0.30 1.12 2.80 7.52

Spain 0.58 0.01 0.20 0.44 0.71 3.20

Finland 0.44 0.01 0.16 0.38 0.57 1.66

France 0.70 0.01 0.27 0.43 0.99 3.69

Greece 4.72 0.07 0.56 2.45 6.52 21.69

Hungary 0.90 0.07 0.46 0.63 0.90 10.27

Ireland 1.99 0.03 0.24 1.63 2.94 14.73

Italy 0.96 0.01 0.25 0.63 1.47 4.52

Japan 2.13 0.10 0.46 0.82 3.69 9.89

Luxemburg 0.11 0.10 0.10 0.11 0.12 0.16

Netherlands 0.74 0.01 0.29 0.47 0.77 3.77

Portugal 2.31 0.04 0.50 1.23 2.37 16.71

Slovakia 0.82 0.01 0.17 0.73 1.14 4.16

Sweden 0.26 0.03 0.11 0.26 0.38 1.36

United Kingdom 0.53 0.02 0.14 0.42 0.72 2.78

United States 0.67 0.03 0.10 0.30 1.20 4.21

Insurance firms 1.23 0.01 0.17 0.46 1.07 27.62

Austria 0.42 0.06 0.18 0.37 0.59 1.46

Belgium 2.09 0.01 0.01 0.06 0.17 19.76

Germany 0.46 0.05 0.20 0.31 0.74 1.45

Spain 0.36 0.01 0.12 0.33 0.52 1.91

Finland 0.09 0.01 0.04 0.06 0.14 0.27

France 0.51 0.03 0.28 0.40 0.70 2.32

Greece 6.16 0.07 0.86 2.94 9.33 27.62

Hungary 1.70 0.41 1.15 1.49 2.29 3.68

Ireland 3.26 0.04 0.79 2.42 5.05 16.30

Italy 0.97 0.06 0.32 0.48 0.95 5.01

Japan 1.34 0.16 0.50 0.78 2.29 4.99

Luxemburg 0.39 0.08 0.17 0.34 0.51 1.45
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Table 1 – continued from previous page

Sector-country Mean Min 1st quartile Median 3rd quartile Max

Netherlands 1.03 0.02 0.41 0.75 1.15 5.40

Slovakia 1.44 1.12 1.33 1.46 1.57 1.61

Sweden 0.31 0.09 0.22 0.36 0.38 0.72

United Kingdom 0.59 0.05 0.26 0.58 0.82 1.57

United States 1.52 0.04 0.35 0.53 2.77 11.15

Shadow banks 3.10 0.00 0.21 0.73 2.58 35.02

Austria 3.00 0.01 0.27 0.66 1.85 28.17

Belgium 1.85 0.03 0.06 0.30 1.34 11.68

Germany 3.32 0.03 0.51 1.20 2.05 32.62

Spain 0.66 0.01 0.13 0.27 0.63 9.25

Finland 0.19 0.01 0.02 0.08 0.17 3.81

France 0.46 0.02 0.18 0.29 0.43 4.27

Greece 8.94 0.02 1.89 7.02 12.79 29.31

Hungary 3.59 0.17 1.11 2.04 4.97 17.71

Ireland 3.53 0.01 0.06 0.28 0.58 29.03

Italy 2.28 0.08 0.63 1.81 2.66 14.05

Japan 3.21 0.23 1.07 2.36 4.74 13.94

Luxemburg 0.87 0.01 0.05 0.60 1.51 4.21

Netherlands 0.54 0.05 0.24 0.44 0.65 2.83

Poland 1.57 0.05 0.79 1.49 2.36 4.59

Portugal 7.01 0.00 1.74 6.60 10.57 32.96

Slovakia 5.51 0.06 0.42 0.88 5.52 32.85

Sweden 0.44 0.06 0.17 0.37 0.65 7.22

United Kingdom 1.69 0.09 0.52 1.05 1.73 10.86

United States 9.75 0.21 8.17 11.94 12.91 17.00
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(a) Banks - large countries (b) Banks - distress countries

(c) Insurance - large countries (d) Insurance - distress countries

(e) Shadow banks - large countries (f) Shadow banks - distress countries

Figure 3: EDFs for different financial sector segments and countries. EDFs are expressed as
percentages. Four periods of the sample period are marked by the three vertical lines. Source:
Moody’s Analytics and authors’ calculations.

4 Empirical analysis

This section provides the empirical results. Subsection 4.1 presents the sequence of Granger

causality-in-risk networks obtained and how the basic properties of this sequence reflect the
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periods of financial distress. Subsection 4.2 employs standard measures of node centrality to

gauge the relative importance of countries and sectors in the contagion transmission. Subsection

4.3 extends this analysis using the tools of higher-order aggregate networks to account for the

dynamic topology of the network and compares the findings with those of the static network

analysis. Subsection 4.4 investigates contagion patterns across sectors.

4.1 Network macro-features and validation

We estimate Granger causality-in-risk for each country-sector pair, i.e. in total (16×3)2 −

(16×3) = 2, 256 times, where 16 is the number of countries and 3 is the number of financial

sectors. The tests are run at each iteration for a rolling sample spanning 12×30 = 360 obser-

vations, which is increased by 30 observations for each new iteration. In this way, 90 network

topologies are constructed.

The evolving topology of the network is shown in Figure 4, where 9 network snapshots are

visualised, spanning in an equidistant way the whole range of network instances.15 We observe

that the density of the network fluctuates significantly across time periods and intensifies with

the severity of the crisis. The increasing density during periods of elevated financial stress has

been noted in the literature and renders our results consistent with those derived in Brunetti

et al. (2019) for correlation networks.16

Figure 5 reports the density of the network against the Composite Indicator of Systemic

Stress (CISS) published by the European Central Bank (see Holló et al. (2012)). All in all, the

network density closely tracks the CISS. Financial stress during the global financial crisis and the

European phase of the crisis is mirrored in the evolution of both the CISS and network density.

The CISS places relatively more weight on situations where stress is simultaneously elevated in

various market segments.17 On the other hand, the network density increases when causality-

in-risk is present for more country-sector pairs. The turbulence of 2015-2017, characterised by

the Greek referendum, emerging markets volatility, a slump in the Chinese stock market and

the UK referendum, is reflected more intensely in the network density compared to the CISS.

However, all in all, the pattern seen in the network density and the CISS is very similar.

To further investigate the macro-properties of the network, we compute the time-aggregated

15To visualise the sequence of networks in a video please visit: https://youtu.be/_g__5JTVN68.
16This pattern is reversed for direct exposure networks, as interbank lending freezes or fragmentation takes

place during periods of elevated risk.
17The CISS considers money, bond, equity and foreign exchange markets in addition to market indices linked

to financial intermediaries.
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Figure 4: Temporally equidistant network snapshots during the period 1 January 2006 to 7
February 2018. Only cross-border linkages are shown for visualisation purposes.

network by adding all links in any topology and weighing the resulting edges by the number of

times the link was active. The resulting network is visualised in Figure 6. In this figure, the

thickest arrows (i.e. those present in the largest number of network instances) are connecting

the US and Japan, the two largest countries in our sample, and for all three segments of

the financial system. As this network representation focuses on synchronous links, we expect

that the largest countries exhibit a common factor in their risk movements. However, this

network representation cannot reveal the dynamics of the network topology. For example, it

cannot answer questions such as which countries and sectors were most central in transmitting

contagion to or receiving contagion from other country-sector pairs. This representation simply
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Figure 5: Density of the network vs. CISS.

confirms that, on average, the most stable co-movement of risk is the one between the financial

systems of the two largest economies in our sample.

Figure 6: Aggregate network. Blue nodes and the corresponding outgoing arrows refer to
banks, red to shadow banking and green to insurance. Only cross-border linkages are shown for
visualisation purposes.
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4.2 Standard centrality measures

We turn to the nodes of the network, i.e. the country-sector pairs, to gauge their importance

in the transmission of financial stress using standard centrality measures. Figure 7 depicts

the range of attained values for the out-degree metric of each country-sector pair, ordered by

their median value across all network instances. As expected, the largest countries such as

the US, UK, France, and countries which experienced crisis episodes, such as Spain, Italy and

Greece, are all ranked high. As confirmed by Figure 8, the differences between the out-degree

values across countries are clearly larger than the differences of the out-degrees across different

segments of the financial sector within the same country. According to this metric, the country

dimension is the main factor differentiating the importance of the various country-sector pairs,

rather than the specific sector of the financial system.

Figure 7: Range of the out-degree for each country-sector pair, ordered by their median value.

The ranking of nodes based on the reverse in-degrees metric is shown in Figure 9. The set

of highest ranked countries is now different, mostly consisting of ’safe’ countries such as Japan,

Finland, Netherlands, Austria and Germany. As shown in Figure 10, a clearer pattern emerges

when the in-degree metric is considered, in which the banking sector is the main receiver of

stress.

The out- and in-degree metrics discussed so far only consider the neighbouring nodes. There-

fore, these metrics do not distinguish, for example, between a source-node of contagion and a

node that operated as a transmitter. Therefore, it is important to consider also the paths of
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Figure 8: Total out-degree for each country-sector pair.

Figure 9: Ranking of the in-degree for each country-sector pair, ordered by their median value.

transmission when assessing the centrality of a country-sector pair. In Figure 11 we present the

corresponding ranking of country-sector pairs based on the median value of their betweenness

centrality across the network topologies. The banking sectors of the two largest countries in

our sample, the US and Japan, are ranked the highest. This is a plausible result as it is to be

expected that such large economies would occupy the most central role in the network, both

as receivers or transmitters of shocks, to and from other countries, respectively. Following in

this ranking are smaller countries such as Finland, Austria, Netherlands and Greece, followed
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Figure 10: Total in-degree for each country-sector pair.

by Spain, Germany and France. As the betweenness centrality considers the number of shortest

paths passing through a node, i.e. it does not distinguish between receivers and transmitters,

this set of countries includes both crisis-hit countries and countries which may have been im-

pacted from external shocks even if characterised by stronger fundamentals. The ranking based

on betweenness centrality does not provide a clear differentiation across the sectoral dimension.

However, according to this measure, the banking and shadow banking sectors seem to be more

critical compared to the insurance sector, as they appear more often than the insurance sector

in the highest ranks.

Figure 12 shows the corresponding ranking for the out-closeness centrality. Out-closeness

centrality captures the average distance of paths leading from a node to all other nodes in

the network, and for this reason it can be considered as an extended form of the out-degree

measure. Large countries and crisis-hit countries exhibit the highest values of out-closeness

centrality, starting with the US and Greece, and followed by the UK, Spain, France and Italy.

Banks and shadow banks also dominate the highest positions when the closeness centrality is

used, similarly to the case of the betweenness centrality, confirming the assessment of systemic

importance for the various sectors that was provided by the betweenness centrality metric.

When the in-closeness centrality metric is used (see Figure 13), which can be considered an

extension of the in-degree, a set of safe countries such as Japan, Finland, Netherlands, Austria

and Germany rank the highest, similarly to the results when the in-degree was used. Banks
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Figure 11: Ranges of the betweeness centrality of country-sector pairs, ordered by their median
value.

and shadow banks tend to rank higher than insurers.

Figure 12: Ranges of the out-closeness centrality of country-sector pairs, ordered by their median
value.

Overall, the results presented in this section identify a set of countries mostly consisting of

large economies or crisis-stricken countries, which are identified as playing a critical role during

the unfolding of contagion episodes. In addition, the results do not clearly indicate which

financial segments have a more central role during financial contagion episodes, although there

is some evidence that banks and shadow banks are more relevant than insurers.
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Figure 13: Ranges of the in-closeness centrality of country-sector pairs, ordered by their median
value.

4.3 Higher-order centrality measures

The analysis presented in Subsection 4.2 was underpinned by static centrality measures, whereby

each topology is examined separately without considering how it is related to the past or the

future. As a result, the ranking of countries is specific to each instance of the network and

therefore we derived an overall ranking based on the median centrality value across time for each

node. As explained in Subsection 2.2, this approach can be improved upon by generalising the

static network metrics to utilise the topology dynamics and examine the time-respecting paths.

In this way, one does not only look e.g. whether country-sector pair x influences country-sector

pair y at time t, but also whether the country-sector pair y subsequently influences another

country-sector pair z in another instance of the network at time t+ δ. This approach considers

more slowly-moving transmission channels that do not operate only through market prices.

The definition of the time scale in which we consider a subsequent link to be part of the

same contagion chain is critical. In our case, we set the parameter δ = 1 which corresponds

to 30 observations (see Subsection 4.1). In other words, we consider the link y → z as being

part of the same contagion event as x → y only if the former occurs at maximum in the next

network instance after the latter, i.e. within a 30 days time window. The 30 observations

window corresponds to more than one calendar month (as weekends and holidays are excluded

from our sample), therefore this calibration of δ seems a plausible approach. Otherwise, there

is a risk that unrelated events occurring within a time distance of two months or more would
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be erroneously assigned to be parts of the same contagion phenomenon thus contaminating the

contagion dynamics that we seek to capture.

Table 2 presents the ranking of the country-sector pairs obtained when the generalised

second-order centralities CC − out(2), CC − in(2) and BC(2) are used. When the generalised

closeness centrality metric CC − out(2) (i.e. defined based on the shortest time-respecting path

from each node to all other nodes) is used, the set of countries ranked in the highest places

is similar to that obtained when the corresponding static metric is used. This set comprises

the same mixture of large countries, such as the US, the UK, Germany and France, and crisis-

hit countries such as Spain, Greece and Italy. However, we also observe in this list a striking

differentiation in the ranking of sectors, which was not present in the ranking based on the

corresponding static centrality metric. The prominence of the banking sector is apparent as

all nodes featuring the highest values of CC − out(2) refer to banks, except from the banking

sectors of Slovakia, Belgium, Sweden and Portugal which are ranked lower. Shadow banks

clearly represent the second most important sector and insurers seem to be the least important.

Therefore, the second-order metric discriminates clearly among sectors in contrast to the static

counterpart.

Table 2: Generalised centrality metrics calculated on the second-order aggregated network. ’B’
refers to banks, ’Ins’ to insurance firms and ’Sb’ to shadow banks.

Out- In- Betweenness

closeness closeness

USA-B 59 GBR-B 59 JPN-B 88.9

ESP-B 59 IRL-B 58.5 BEL-Ins 59.5

GRC-B 58.5 JPN-B 58 IRL-Sb 45.1

AUT-B 58.5 AUT-B 58 FIN-B 41.6

GBR-B 58.5 FIN-B 58 GRC-B 36.5

ITA-B 58.5 NLD-B 57.5 NLD-B 24.7

DEU-B 58.5 GRC-B 57.5 DEU-B 23.5

JPN-B 58 DEU-B 57.5 JPN-Ins 22.5

IRL-B 58 AUT-Sb 57.3 IRL-B 18.4

FIN-B 57.5 FIN-Sb 57.2 BEL-B 18.3

Continued on next page
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Table 2 – continued from previous page

Out- In- Betweenness

closeness closeness

FRA-B 57.5 IRL-Sb 57.2 AUT-B 17.4

NLD-B 57.5 JPN-Sb 57 FIN-Sb 16.7

AUT-Sb 57.3 USA-B 57 SVK-B 14.4

DEU-Sb 57 FRA-B 57 ESP-B 12.2

FRA-Sb 56.9 ESP-B 57 JPN-Sb 12.0

USA-Sb 56.9 ITA-B 57 SVK-Sb 10.5

ITA-Sb 56.9 ITA-Sb 56.8 DEU-Sb 9.9

ESP-Sb 56.7 FRA-Sb 56.7 GBR-Sb 9.7

GRC-Sb 56.6 NLD-Sb 56.6 NLD-Sb 9.5

IRL-Sb 56.3 DEU-Sb 56.4 ITA-B 9.0

FIN-Sb 56.3 USA-Sb 56.4 SWE-B 8.8

GBR-Sb 56.2 ESP-Sb 55.5 DEU-Ins 7.4

NLD-Sb 56 GBR-Sb 55 FRA-B 6.6

JPN-Sb 55.7 GRC-Sb 54.6 USA-B 6.5

FRA-Ins 53.8 GBR-Ins 53.8 FIN-Ins 5.8

GBR-Ins 53.3 AUT-Ins 53.5 AUT-Ins 5.5

SVK-B 53 IRL-Ins 53.4 SVK-Ins 5.4

ESP-Ins 52.7 FIN-Ins 53 GBR-B 5.3

AUT-Ins 52.5 JPN-Ins 52.8 ITA-Ins 5.1

DEU-Ins 52.3 ESP-Ins 52.5 FRA-Ins 5.0

FIN-Ins 52.3 SVK-B 52.5 FRA-Sb 4.6

JPN-Ins 52.3 FRA-Ins 52.2 ESP-Ins 4.5

ITA-Ins 52 DEU-Ins 52.2 GRC-Ins 4.4

NLD-Ins 52 ITA-Ins 52.2 USA-Ins 3.8

USA-Ins 51.8 GRC-Ins 52 ITA-Sb 3.6

GRC-Ins 50.8 USA-Ins 51.3 USA-Sb 3.3

IRL-Ins 50.7 BEL-B 48.5 AUT-Sb 3.0

SVK-Sb 49.5 SWE-B 48 SWE-Sb 2.8

Continued on next page
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Table 2 – continued from previous page

Out- In- Betweenness

closeness closeness

BEL-B 49 BEL-Sb 46.7 IRL-Ins 2.8

SWE-B 48.8 NLD-Ins 46 GRC-Sb 2.5

SVK-Ins 48.5 SVK-Sb 45.8 ESP-Sb 2.3

BEL-Sb 47.5 SVK-Ins 44.3 NLD-Ins 2.1

BEL-Ins 45.5 BEL-Ins 44 GBR-Ins 2.0

SWE-Sb 45.4 SWE-Ins 42.7 PRT-Sb 1.8

SWE-Ins 43.8 SWE-Sb 37 SWE-Ins 1.8

PRT-B 37.7 PRT-B 36.2 BEL-Sb 1.1

PRT-Sb 19 PRT-Sb 17 PRT-B 0.5

Similarly, the ranking based on the second-order in-closeness centrality metric places banks

at the top positions, followed by shadow banks, and with the insurance sector at lower positions.

In this ranking, more shadow banks can be found in high places compared to the case of the

second-order out-closeness ranking. In other words, the banking sector is more sharply ahead

of the shadow banking sector in the ranking based on the second-order out-closeness compared

to that based on the second-order in-closeness, reflecting the fact that the banking sector is a

source or transmitter of stress with a distinctly higher frequency compared to the other sectors.

The set of countries which receive the most financial stress is not much different compared to

the static case, except from the fact that the UK is now found in the top position.

Finally, the ranking based on the second-order betweenness centrality also displays the same

sectoral ranking as those derived from the previous two second-order metrics, with most top-

ranking positions occupied by banking sectors, however it should be noted that the Belgian

insurance and the Irish shadow banking sector are found in the second and third positions,

respectively. In general, financial hubs such as Japan, Belgium, Ireland and the Netherlands

are identified as having a prominent role as transmitters in the topology of causality networks.

To further illustrate the differences in the rankings obtained using the second-order and the

static metrics, Figures 14, 15 and 16 provide the two corresponding rankings in scatterplots for

the out-closeness, in-closeness and betweenness, respectively. The numbering of the rankings
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starts at number 1, therefore the most systemically important nodes have a value close to 1 in

at least one of the two axes. Consistently with the observations made in Subection 4.2, most

network nodes are close to the 45-degrees line and most bank nodes (with blue colour) below

that line. This reflects that the ranking of most countries does not change much when we switch

from the static to the second-order metrics and that banks are much more clearly identified as

having a critical role in contagion when the second-order metrics are used. We focus next on

the cases where there is a large divergence between the ranking based on the second-order and

the corresponding static centrality metric, i.e. on the nodes which are away from the 45-degrees

line and are also close to the beginning of one of the two axes (i.e. they are ranked highly in

one of the two alternative versions of the given metric).

The comparison of the out-closeness centralities (Fig. 14) shows that the banking sectors of

crisis-hit countries, such as Italy and Ireland, and also of Germany and Austria, feature higher

centrality values when the second-order metric is used. By contrast, the shadow banking sectors

of the US and Japan and the insurance sector of the UK are ranked lower when the second-

order out-closeness centrality is used. These differences reflect both the increased weight that

the second-order metric attaches to the banking sector compared to the static metric and, in

addition, the more nuanced identification of crisis-hit countries by the second-order version of

the out-closeness centrality.

The same pattern is even more clearly illustrated in the ranking differences among the two

versions of the in-closeness metric (Fig. 15). In this case, the banking systems of Spain, Italy

and Greece are ranked higher when the second-order approach is used while at the same time

the non-bank sectors of a large and two smaller but relatively safe countries (specifically, the

insurance sectors of Japan, Finland and Austria) are ranked much lower.

Finally, the same pattern can be also discerned in the case of the betweenness centrality

(Fig. 16). An additional element here is that also a non-bank node is classified clearly higher

by the second-order metric, specifically the insurance sector of Belgium. This seems to be

highly intuitive given the prominent cases of financial conglomerates with significant insurance

activities in Belgium (such as Belfius/Fortis and Dexia) that came into trouble during the global

financial crisis phase.

Therefore, a few general patterns emerge from the comparison of second-order and static

centrality metrics. First, second-order metrics identify more clearly nodes that are known to be

sources of shocks (e.g. the distress countries mentioned above) compared to the corresponding

ECB Working Paper Series No 2667 / June 2022 36



static ones. Second-order metrics also rank much more clearly the financial segments according

to their role in the transmission of stress, with banks ranked first followed by shadow banks

and at lower positions the insurance sector. The degree of sectoral differentiation depends on

the specific metric used but it is clearly discernible in all cases while this is not the case when

the static metrics are used. Furthermore, the static centralities seem to overemphasise the role

of large countries, such as the US or Japan, in the transmission of contagion. Even if these

large countries participate in a large number of links, as it is clearly illustrated in the aggregate

network depicted in Fig. 6, these links do not form a part of a time-respecting path through

which financial stress is propagated (in contrast to the links formed by crisis-hit countries) and

rather reflect the participation of large countries in relatively large number of synchronous links

or paths. Therefore, the relatively higher values attained countries when static metrics are used

reflect also the above average co-movement of the large countries with other countries. However,

as the second-order metrics suggest, crisis-hit countries form part of contagion paths relatively

more often when we consider the time series of topologies.

Figure 14: Static vs. 2nd order out-closeness ranking.

4.4 Cross-sectoral contagion

In this subsection we focus specifically on the sectoral dimension, aiming to understand the di-

rection of contagion within the financial system. For this purpose we utilise both the sequence of

network instances and the second-order aggregate network representation. In this investigation
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Figure 15: Static vs. 2nd order in-closeness ranking.

Figure 16: Static vs. 2nd order betweenness ranking.

we generally abstract from the country dimension and only distinguish between the cross- and

within-country causality-in-risk paths.

First, we quantify the occurrence of each specific sectoral direction of contagion (e.g. banks

→ insurers). We aggregate the number of each cross-sectoral, cross-country contagion links (i.e.

from country i to all other countries j, including country i) across the whole sequence of the

individual network instances and plot these quantities for each direction in Figure 17.

The time series reflect similar dynamics as for the density of the entire network, displaying
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peaks during the crisis periods of 2008-2009 and 2012 while the intensification of stress during

2016-2017 also emerges. Secondly, the contagion directions shadow banks → banks and banks

→ shadow banks are clearly the most commonly recurring. Contagion links involving insurers

are less frequent. When the total number of links across time is considered, the direction shadow

banks → banks occurs 6,003 times in total while the direction banks → shadow banks occurs

5,259 times.

Figure 17: Cross-country sectoral contagion.

These results hold if we focus only on contagion taking place within one country. Specifically,

we compute the total number of cross-sectoral, within-country (from country i to i itself, for

all i) contagion links, for each specific sectoral contagion direction, again across the whole time

span. We plot these quantities separately for each sectoral direction in Figure 18.

As expected, there is a lower number links in the within-country case, compared to Figure

17, as we restrict our attention only to contagion taking place within one country. The shadow

banks → banks is the dominant path in this case as well. Edges with insurers appear less often

also in this case. Aggregation over time confirms that the most frequently occurring links are

the shadow banks → banks (occurs 360 times) and banks → shadow banks (occurs 267 times).
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Figure 18: Within-country sectoral contagion.

Furthermore, we analyse paths of contagion episodes of length larger than one, using the

second-order aggregate network. This allows us to consider paths of length two, e.g. banks →

shadow banks → insurers. We use the adjacency matrix from the second-order representation

of the network sequence over the whole sample period and count the frequency of occurrence

for each link in that representation (which by definition corresponds to a path of length two in

the temporal network representation). The results are reported in Table 3.

The contagion scenario shadow banks → banks → banks occurs more frequently than all

others (in total 1,982 times), followed closely in number of occurrences by the scenario banks →

banks→ banks (1,937 times) and banks→ shadow banks→ banks (1,757 times). In comparison,

contagion chains with insurers as the source of stress are found to occur much less often and

the insurance sector acts mainly as a receiver (rather than the origin) of stress. Therefore,

the evidence provided here points to a tight interconnectedness between the banking and the

shadow banking sectors, with the insurance sector being less systemically important.

As a robustness check we examine whether these results hold during the various critical

phases of the examined period, i.e. we analyse the chain of contagion events also separately

for four periods: the pre-crisis period January 2006 - August 2007, the global financial crisis

period August 2007 - April 2010, the European sovereign debt crisis April 2010 - July 2012

and finally the post ’whatever it takes’ period July 2012 - February 2018 when sporadic and

less intense crisis episodes occurred. We derive separately for each period the second-order

aggregate network representation and count the frequency of occurrence of the cross-sector
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contagion paths (of length two).18 Table 4 reports the results (sorted in decreasing order, with

the three largest numbers in bold).

Table 3: Chains of contagion of length two - full sample

Contagion path Frequency

Shadow banks → banks → banks 1982
Banks → banks → banks 1937

Banks → shadow banks → banks 1757
Shadow banks → shadow banks → banks 1666

Insurers → banks → banks 1651
Banks → insurers → banks 1438

Insurers → shadow banks → banks 1415
Shadow banks → insurers → banks 1357

Insurers → insurers → banks 1090
Insurers → banks → insurers 353

Insurers → insurers → insurers 310
Shadow banks → insurers → insurers 277
Shadow banks → banks → insurers 267

Banks → insurers → insurers 245
Banks → banks → insurers 195

Insurers → shadow banks → insurers 195
Shadow banks → shadow banks → insurers 163
Shadow banks → banks → shadow banks 113

Banks → shadow banks → insurers 112
Shadow banks → insurers → shadow banks 100

Banks → banks → shadow banks 84
Shadow banks → shadow banks → shadow banks 72

Banks → insurers → shadow banks 69
Banks → shadow banks → shadow banks 49

Insurers → shadow banks → shadow banks 49
Insurers → banks → shadow banks 40

Insurers → insurers → shadow banks 23

18Note that this methodology implies that the sum across periods can exceed the value that is based on the
whole sample.
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During the pre-crisis period January 2006 - August 2007, the most frequent paths are found

to be: banks → shadow banks → banks (occurring 308 times), banks → banks → banks

(298 times) and shadow banks → shadow banks → shadow banks (276 times). The period

of the global financial crisis August 2007 - April 2010 features the causal path shadow banks

→ banks → banks as the most frequent contagion chain (759 times), followed by the chain

featuring solely the banking sector (737 times) and followed by insurers → banks → banks (682

times). Interestingly, this is the only period for which the insurance sector is found frequently

in contagion paths also as a source. During the European sovereign debt crisis (April 2010

- July 2012), banks and shadow banks were the protagonists of contagion episodes: the path

shadow banks → banks → banks occurred 601 times, the path shadow banks → shadow banks

→ shadow banks occurred 551 times and finally banks → shadow banks → banks is observed

429 times. Finally, during the post-2012 period (i.e. July 2012 - February 2018) contagion

paths involving banks and shadow banks also dominated: banks → banks → banks (926 times),

shadow banks → banks → banks (896 times) and banks → shadow banks → banks (889 times).

These results are intuitive and reflect the most well-known events that unfolded during the

respective crisis episodes. For example, the global financial crisis in 2007 had its origin in

the subprime market where shadow banking entities sponsored by banks repackaged subprime

mortgages into securities. In addition, this period featured defaults of prominent insurance

companies, leading to stress propagation more widely into the financial system; however, this

was not the case in the following years when insurance companies appear to have been insulated

and were not at the epicenter of other crises. In general, we confirm that the nexus between

banks and shadow banks dominates (in both directions) over links involving insurers.

In addition, these results show that while both shadow banks and banks represent potential

sources of contagion, the banking sector represents the main intermediary sector in the prop-

agation of contagion. This is shown clearly in Tables 3 and 4, as the banking sector functions

far more frequently as an intermediary node compared to the shadow banking and insurance

sectors. This is consistent with the results discussed in Subsection 4.3 that focused on specific

nodes, as the dominant position of banks derived by the second-order metrics is shown here to

be due to the critical role of banks in transmitting contagion, which may have originated in

other parts of the financial system, either other banks or the shadow banking sector.
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5 Conclusion

The financial system has become ever more interconnected during the last decades, driven by

the opening up of international trade and technological innovation including digital technology.

The increasing complexity of the financial world manifests itself also in contagion phenomena

which transcend the boundaries among countries and different segments of the financial system.

In this study we trace the dynamics of contagion across countries and sectors of the financial

system, covering the turbulent period that started in 2007 and has continued up to 2018 with

spurts of financial stress, triggered by both political and economic developments. We construct

Granger causality-in-risk networks with time-varying topologies for the time span 2006-2018,

based on underlying credit risk data compiled by Moody’s for the banking, shadow banking

and insurance sectors of 16 advanced economies. For the first time in the financial contagion

literature, we apply the concepts of time-respecting paths, higher-order networks and generalised

centrality measures to identify the directions through which financial stress is transmitted.

The dynamics of the network density are found to reflect closely the CISS, an index of euro

area financial stress, providing evidence that transmission of stress across financial entities is

intensified during crisis episodes.

Our analysis points to the tight interconnectedness of the banking and shadow banking

sectors during contagion episodes and the relatively lower systemic risk posed by the insurance

sector. Overall, the average crisis event starts either from the banking or the shadow banking

sector, while insurers are most often affected at a later stage. Specifically, based on the second-

order aggregated network of causality-in-risk links, we identify episodes involving bi-directional

feedback loops between banks and shadow banks as the most frequently occurring transmission

paths. We also find that the insurance sector acts as a source of stress during the phase of the

global financial crisis, consistently with the well-known financial troubles experienced by large

insurers such as the AIG in 2008. In addition, we identify the crucial role of the banking sector

as a transmitter of financial contagion. Banks are found to be in the intermediate nodes of

contagion paths much more often then either shadow banks or insurance firms.

In general, we find that it is crucial to move beyond static network analysis in order to cap-

ture the importance of the various segments of the financial sector and the different countries

during crisis episodes. The generalised centrality metrics, constructed using the second-order

network representation, identify more clearly than the corresponding static measures the bank-
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ing and shadow banking sectors as the primary financial segments where financial contagion

takes place. In addition, the generalised centrality metrics identify the insurance sector as a

critical financial segment in a few cases that correspond well to known cases of financial distress

in that sector. In addition, second-order centrality metrics provide a much clearer characteriza-

tion of countries experiencing distress, such as Spain, Italy and Greece, as critical nodes during

crisis episodes.

The evidence of financial contagion transmitted across financial sectors could inform the

design of macroprudential policy and banks’ supervision. Stress tests to assess banks’ solvency

should not neglect the second-order effects of an initial shock which could be realised due to the

links of banks to the rest of the financial system (Baranova et al. (2017)). The macroprudential

policy stance should be consistent across the segments of the financial system, otherwise it may

be less effective and could promote the amplification of shocks, a result which is consistent with

Feve et al. (2019).

Our analysis is statistical in nature, and we do not seek to distinguish transmissions channels

operating during crises, e.g. due to direct exposures and indirect exposures. This extension

would be of great interest for future research and could also exploit temporal node centrality

concepts to analyse dynamic networks, as done in this paper. Also, in our non-parametric

setting, we robustify the Granger causality-in-distribution test ex-post by integrating over the

kernels and truncation parameters. An alternative approach on how to deal with biases in

network metrics due to edge estimation and measurement errors could be the de-noising pro-

cedure proposed by Billio et al. (2021b). Finally, it is interesting to apply our framework

when comparing estimated versus physical data, following the taxonomy of “informational”

versus “portfolio/balance sheet-related” contagion (Allen et al. (2011)) or between “correla-

tion/dependence” versus “physical” contagion (Brunetti et al. (2019)). Following this approach

it could be explored whether during crises “informational” contagion increases while physical

interconnections (e.g. interbank lending) simultaneously become less dense (Brunetti et al.

(2019)). We leave these extensions to future research.

Appendix A. VaR estimation

To perform the Granger causality-in-distribution test we need to estimate the VaR levels so as

to identify tail events for each node, i.e. a country-sector pair, of the network. Therefore, we
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employ customized parametric models which are chosen by means of model selection criteria.

Specifically, we estimate GARCH models (Bollersev (1986)) for each country-sector pair in order

to account for heteroscedasticity in the EDFs that could bias tests of contagion (Candelon and

Tokpavi (2016), p. 25, and Forbes and Rigobon (2002))19. In particular, we estimate a battery

of AR(n)−GARCH(q, s) models as follows:

yij,t = µij +
n∑

m=1

ρmyij,t−m +
4∑

k=1

θk1k,ij,t + ϵij,t (12)

ϵij,t = uij,tσij,t (13)

σ2
ij,t = ωij +

q∑
p=1

βpϵ
2
ij,t−p +

s∑
r=1

γrσ
2
ij,t−r (14)

where yij,t represents changes of EDFs in sector i and country j on day t and is a function of

a constant20 µij , its own lagged value(s) yij,t−m, a set of indicator variables 1k,ij,t to allow for

structural breaks in means across the four main phases of the period under investigation (see

Section 3)21 and uij,t is i.i.d. noise with zero mean and unit variance. The conditional variance

σ2
ij,t is a function of a constant ωij and depends on past shocks ϵ2ij,t−p and its lagged values

σ2
ij,t−r. We define the model space by setting n ∈ {0, 1} and q, s ∈ {1, 2, 3}. ρm, θk, βp and γr

are parameters. We choose the model specification based on the AIC.22

Model estimation is performed via quasi-maximum likelihood allowing the errors uij,t to be

either Gaussian or follow a t distribution. The latter option accommodates heavy-tailed EDF

changes. To ensure plausible estimations, e.g. which do not exhibit explosive behaviour, we

employ restrictions on the coefficients. Specifically, we impose positive values for the ARCH,

GARCH and constant coefficients while constraining the sums of GARCH coefficients to ensure

convergence of the conditional variance to a positive value, i.e.
∑q

p=1 βp+
∑s

r=1 γr ≤ 1. Finally,

we use Huber-White (or sandwich) robust variance estimates.

We consider the set A ∈ {α1, α2, α3} of risk levels α1 = 90%, α2 = 95% and α3 = 100%.

19Forbes and Rigobon (2002) frame the discussion in terms of the bias that heteroscedasticity causes towards
the estimation of cross-correlation between markets.

20We use constants unlike e.g. Candelon and Tokpavi (2016)), as we do not model equity returns that have
zero mean changes but EDFs where the expected value is not zero.

21The results we obtain remain qualitatively similar when excluding the indicator variables.
22We aim at taking into account all possible transmission channels, therefore we do not condition on variables

besides lagged EDFs so that the derived VaRs contain all information explained by EDFs past values, given the
conditional volatility at each point in time.
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The VaRs, on which the causality tests are performed, are then obtained as

ˆV aRij,t,s = µ̂ij +
n∑

m=0

ρ̂myij,t−m + σ̂ij,tq(ûij,t, αs) (15)

where s ∈ {1, 2, 3}, σ̂ij,t is the fitted volatility at time t and q(ûij,t, αs) is the sample αs-quantile

of the standardized residuals ûij,t.
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