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Abstract

I propose a new model, conditional quantile regression (CQR), that generates density fore-
casts consistent with a specific view of the future evolution of some variables. This addresses
a shortcoming of existing quantile regression-based models, for example the at-risk frame-
work popularised by Adrian et al. (2019), when used in settings, such as most forecasting
processes within central banks and similar institutions, that require forecasts to be condi-
tional on a set of technical assumptions. Through an application to house price inflation in
the euro area, I show that CQR provides a viable alternative to existing approaches to con-
ditional density forecasting, notably Bayesian VARs, with considerable advantages in terms
of flexibility and additional insights that do not come at the cost of forecasting performance.

JEL Classification: C22, C53, E37, R31.

Keywords: at-risk, quantile regression, house prices, conditional forecasting, density fore-
cast evaluation.
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Non-Technical Summary

Risk assessment, that is, a quantitative focus on the entire distribution of possible future out-

comes, is an integral part of the forecasting processes and communications strategies of central

banks and many other institutions. However, until very recently, its analytical underpinnings

have not kept abreast with advances in the academic literature and the technological possibil-

ity frontier to the same extent as the production of point forecasts, where various uses of, for

example, DSGE, VAR or factor models have become common over the last couple of decades.

Instead, risk assessments are typically still carried out by either weighing the likelihood of al-

ternative point forecasts (scenarios), or by agreeing upon a central projection first and only

quantifying risks around it at a subsequent stage.

Repeated ‘tail events,’ such as the Great Financial Crisis or the more recent COVID-19 episode,

have put these approaches under increasing strain, and provided a window of opportunity to

consider some alternatives. Among these, the ‘at-risk’ framework has emerged as a viable

and popular contender, in academia, but even more so within policy institutions. The at-risk

approach is based on quantile regression, a framework which seeks to model the relationship

between different parts of the distribution of a variable of interest and a set of explanatory

variables. Because of its ability to capture changes over time in all moments of that distribution,

in a forecast setting it can not only provide a model-based central projection, but also estimates

of its uncertainty (variance), balance of risks (skewness) and ‘fat-tailedness’ (kurtosis), which

can all be of independent interest for both analytical and communications purposes.

But while analyses based on quantile regression have become increasingly popular, their im-

plementation to date suffered from a serious disadvantage in many policy settings, namely the

inability to incorporate conditioning information (technical assumptions) over the forecast hori-

zon. This limits a model’s role to that of an unconditional benchmark, whereas alternative

forecasts consistent with a particular view of the economic outlook are often what is required

by decision makers.

The main contribution of the paper is to propose a new framework, conditional quantile re-

gression (CQR), that allows to incorporate technical assumptions into an otherwise standard

quantile regression setup, and to show that it provides a viable alternative to existing approaches

to conditional density forecasting, notably Bayesian VARs. I present an application to euro area

house price inflation, showcasing some model-based outputs and the novel insights for risk as-

sessment purposes that can be obtained by conditioning forecasts on alternative scenarios for

the technical assumptions. I also show that these additional insights do not come at the cost

of forecasting performance.
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1 Introduction

Risk assessment, that is, a quantitative focus on the entire distribution of possible future out-

comes, is an integral part of the forecasting processes and communication strategies of central

banks and many other institutions. It has a long tradition, dating back at least to the Bank of

England’s pioneering use of fan charts (Britton et al., 1998) in its communication of macroe-

conomic forecasts through the Inflation Report.1 However, until very recently, its analytical

underpinnings have not kept abreast with advances in the academic literature and comput-

ing power to the same extent as the production of point forecasts, where various uses of, for

example, DSGE, VAR or factor models have become common over the last couple of decades.2

Instead, risk assessments are typically still carried out using one of two approaches. Either

different ‘risks’ are viewed as separate point forecasts (scenarios) distinct from the central pro-

jection3, explicitly or implicitly weighted by the subjective probabilities attributed to their

occurrence and communicated as such. Or a central projection is agreed upon first, and the

risks around it are quantified in a second stage and then summarised by means of predictive dis-

tributions superimposed to the central forecast. The former approach underpins, for example,

the ECB’s communication of its staff projections during the COVID-19 crisis (see for example

Box 4 in European Central Bank, 2021b). The latter is, by and large, the process underlying the

Bank of England’s fan charts, where the variance and skewness of predictive distributions cen-

tered around a modal forecast are adjusted judgementally by the Monetary Policy Committee

to convey their view of the balance of risks.

Repeated ‘tail events,’ such as the Great Financial Crisis or the COVID-19 episode, have put

these approaches under increasing strain,4 and provided a window of opportunity to consider

some alternatives. Among these, the ‘at-risk’ framework, popularised by Adrian et al. (2019),

has emerged as a viable and successful contender, in academia, but even more so within policy

institutions (Gaglianone and Lima, 2012; Korobilis, 2017; Gelos et al., 2019; Eguren-Martin

and Sokol, 2020; Ferrara et al., 2020; Figueres and Jarociński, 2020; Hasenzagl and Ricco,

2020; López-Salido and Loria, 2020; Tagliabracci, 2020; Valckx et al., 2020; Adams et al., 2021;

Eguren-Martin et al., 2021, among several others).

The at-risk approach is based on quantile regression (Koenker and Bassett, 1978), which allows

to model the entire distribution of a variable of interest. Because of its ability to capture

changes over time in all moments of that distribution, not just the first (mean), in a forecast

setting it can not only provide a model-based central projection, but also estimates of its

uncertainty (variance), balance of risks (skewness) and ‘fat-tailedness’ (kurtosis), which can all

be of independent interest for both analytical and communications purposes.

1From November 2019, the Inflation Report became the Monetary Policy Report.
2See for example, Burgess et al. (2013); Coenen et al. (2018); Bok et al. (2018); Cimadomo et al. (2020) for

some examples within central banks.
3Usually understood as a modal forecast.
4Witness the marked changes to the uncertainty and skewness parameters of the GDP fan chart in the August

2020 Monetary Policy Report (Bank of England, 2020).
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But while analyses based on quantile regression are increasingly popular,5 their implementa-

tion to date suffered from a serious disadvantage: the inability to incorporate conditioning

information. Forecasts produced in most institutions typically require that the projections of

a variable be consistent with a set of technical assumptions6, that is, paths for some of its de-

terminants that are assumed to be known with certainty over the forecast horizon.7 Technical

assumptions are a form of expert judgement imposed upon forecasts for a variety of reasons,

ranging from the mixed-frequency nature of some forecasts (see for example Bok et al., 2018;

Cimadomo et al., 2020), to the long-standing practice of providing projections conditional on

specific paths for fiscal and/or monetary policy instruments, the exchange rate or energy prices

(Burgess et al., 2013; Bańbura et al., 2015; Angelini et al., 2019; Boneva et al., 2019; Domit

et al., 2019; Chalmovianský et al., 2020; Antoĺın-Dı́az et al., 2021, among others).8

There are well-established methods to incorporate technical assumptions in DSGE and VAR

models (see Del Negro and Schorfheide, 2013; Antoĺın-Dı́az et al., 2021), which have found

many applications also in conditional density forecasting.9 However, they suffer from at least one

important limitation, namely that their predictive densities are constrained by the distributional

assumptions made for the error terms, which are typically Gaussian or otherwise symmetric,

and therefore also imply symmetric forecast densities. This limits their usefulness for modelling

higher moments, notably the balance of upside and downside risks.10 Instead, the greater

flexibility of quantile regression can be fully leveraged in this respect, but hasn’t been to date.

The main contribution of the paper is therefore to propose a new conditional quantile regression

(henceforth CQR) model that allows to incorporate technical assumptions into an otherwise

standard Bayesian quantile regression setup (Yu and Moyeed, 2001; Kozumi and Kobayashi,

2011; Khare and Hobert, 2012). The CQR model is a straightforward extension to quantile

regression of the conditional direct multi-step (DMS) framework studied by McCracken and

McGillicuddy (2019), who compare the performance of (conditional) point forecasts generated

by iteration and direct projection. The approach works as follows: at the estimation stage,

leads of the technical assumptions up to the forecast horizon of interest are included among the

regressors, so that at the forecasting stage, conditional projections can be made once paths for

the technical assumptions are provided. As has become standard since Adrian et al. (2019), the

resulting conditional quantiles are then fitted with a flexible parametric distribution, the skew-t

(Azzalini and Capitanio, 2003). This yields predictive densities that are not only conditional

on the available data at the time of the forecast (such as those obtained with current imple-

5Witness, for example, their recurrent use in the IMF’s Global Financial Stability Report.
6I follow the terminology used within the ECB’s staff macroeconomic projections process. ‘Conditioning

paths’ and other expressions are also commonly used in other policy institutions.
7I abstract here from the important issue of the potential uncertainty surrounding technical assumptions (see

Andersson et al., 2010).
8For the interesting problem of how such conditional forecast should be properly evaluated, see Faust and

Wright (2008) or Clark and McCracken (2014).
9See for example Angelini et al. (2019); Boneva et al. (2019); Domit et al. (2019); Chalmovianský et al. (2020)

for some contributions that specifically focus on the density forecasting performance of standard models.
10For example, the methods discussed in Antoĺın-Dı́az et al. (2021) are only applicable to VAR models with

Gaussian or Student-t errors, which are both symmetric.
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Figure 1: Alternative scenarios for the predictive distributions of house price inflation.
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(a) Available data only.
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(b) Stress.

Note: The fan charts show realised data for house price inflation up to 2020Q2, and then density forecasts for
2020Q3 to 2022Q3 under different technical assumptions for the unemployment and long term real interest rates,
with the colour coding matching that of Figure 5: no technical assumptions over the projection (black) and a
stress scenario involving a gradual worsening in the technical assumptions (red). The fan chart bands cover 95%
of the support around the median: the darkest shade corresponds to the median, while lighter shades represent
percentiles increasingly removed from it. The forecasts are based on a CQR model estimated with data up to
2020Q2, and fed projections for the technical assumptions over the forecast horizon.

mentations of quantile regression), but also on the specific view of the future embodied in the

technical assumptions fed to the model.11

To showcase the usefulness of the CQR framework, I present an application to euro area house

price inflation. House prices are an important variable from both a macroeconomic and a

financial stability perspective: they are a driver of households’ spending and borrowing decisions,

with considerable ramifications for aggregate activity and inflation,12 as well as a key asset price

determining the health of investors’ and financial intermediaries’ balance sheets. As such, they

have a long history of modelling efforts, including, more recently, within the quantile regression

framework (Gerdesmeier et al., 2015; Valckx et al., 2020). Building on the former, I specify a

parsimonious CQR model where house price inflation forecasts depend both on the histories of

house price inflation, household income growth, unemployment and real interest rates up to the

time when the forecast is made, and on technical assumptions for the unemployment and real

interest rates over the projection period.

11In related work, Chavleishvili and Manganelli (2019) propose a quantile VAR that can in principle also be
used to generate density forecasts conditional on a specific path for one or more technical assumptions. However,
to compute the conditional forecast distribution, the quantile VAR requires an iterative procedure that can
become computationally very costly for larger systems.

12See for example the recent focus on owner-occupied housing (OOH) within the ECB’s strategy review
(European Central Bank, 2021a).
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Figure 1 summarises the outputs of the CQR model by means of fan charts,13 and illustrates

the impact that technical assumptions can have on the conditional predictive densities of house

price inflation. The models underlying both panels are estimated on the same data, but while

the left fan chart is only conditioned on realised data up to the time when both forecasts

are made – as a standard quantile regression model would do – the right fan chart shows the

effects of conditioning the projection on a ‘stress’ scenario for the technical assumptions.14 As

further discussed in Section 5, the stress scenario entails large changes to all moments of the

predictive distributions: the red fan chart displays a weaker and downward-sloping median path,

is generally wider, and less skewed. All three effects can be of interest to policy makers, but

typically only the first and second are captured by existing approaches.

I also show that such usefulness for the purpose of scenario analysis doesn’t come at the cost of

out-of-sample forecasting performance. I benchmark the CQR’s density forecasts to those of a

Bayesian VAR (BVAR) estimated with state-of-the-art techniques (Giannone et al., 2015) and

conditioned on the same technical assumptions, and find that overall, the two models perform

similarly out of sample. Coupled with the additional insights that can be gleaned from the

CQR approach, these results should encourage its wider adoption as a risk assessment tool.

Paper structure The rest of the paper is organized as follows. In Section 2 I introduce

the conditional quantile regression (CQR) model, then in Section 3 I present an application to

house price inflation. In Section 4 I benchmark its forecasting performance to that of a BVAR

estimated and conditioned on the same data, while in Section 5 I provide an example of scenario

analysis. Section 6 concludes, with additional material reported in Appendices A and B.

2 The Conditional Quantile Regression Model

McCracken and McGillicuddy (2019) are the first to study the (point) forecast performance of

conditional direct multi-step (DMS) models. Their conditional DMS setup is a simple linear

regression where a standard direct forecast model, which relates a dependent variable to a set of

regressors known h periods in advance, is augmented with a set of technical assumptions, that

is, variables for which a forecast needs to be provided when the projection is made. They focus

on the performance of models estimated with OLS, that is, under standard assumptions about

the error term. However, their framework is in fact more general, and can be easily adapted to

quantile regression, potentially yielding DMS forecasts of the full conditional predictive distri-

bution of a variable of interest – what I call a conditional quantile regression (CQR) model. As

shown in Sections 4 and 5, this is a viable and appealing alternative to the conditional density

forecasting approaches currently in use.

13That is, sequences of predictive densities over the forecast horizon. Note that unlike the original Bank of
England fan charts (Britton et al., 1998), where the darkest band covers the mode, the fan charts presented here
are centered around the median of the underlying distributions. The interpretation of the bands is therefore
slightly different in the two cases, but still conveys the overall shape of the distributions.

14The ‘stress’ scenario assumes that the unemployment rate is 2pp higher, and the real interest rate 1pp
higher, by the end of the projection, see Section 5.
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Slightly adapting their notation, for each forecast horizon h one can estimate a regression of

the following form

yt = α+

p−1∑
j=0

β′jx
b
t−h−j +

∑
1≤i≤h

γ ′ix
f
t−h+i + εt (1)

where the β coefficients multiply variables known at the time of the projection (t−h), while the

γ coefficients multiply leads (relative to t−h) of the technical assumptions, for which a forecast

needs then to be provided to project the model. As in McCracken and McGillicuddy (2019),

I use realised values of the technical assumptions to estimate the model, but the alternative,

namely to use vintages of actual technical assumptions made in the past, is interesting in its

own right, especially for institutions with a long history of conditional forecasting, such as most

central banks. The key difference between the two alternatives is that by using realised values,

the γ coefficients capture the conditional relationship between yt and xf ′t−h+1 . . .x
f ′
t in the data,

while in the other case they capture the conditional relationship between yt and the history of

technical assumptions made in each period and for each forecast horizon up to h.15

Equation 1 nests the simpler variant

yt = α+

p−1∑
j=0

β′jx
b
t−h−j + γ ′hx

f
t + εt (2)

which is more parsimonious and performs slightly better in my application.16 For the latter

specification, the h−step-ahead conditional forecast is then given by

ŷt+h|t = α̂+

p−1∑
j=0

β̂
′
jx

b
t−j + γ̂ ′hx

f
t+h|t (3)

where xft+h|t is a forecast, made at time t, for the technical assumptions.

Equations 1 or 2 can be readily adapted to quantile regression, and thus to estimate quantile- (as

well as horizon-) specific CQR models, by assuming that the error terms εt have an Asymmetric

Laplace distribution, as explained in Section 2.1. For each horizon, individual quantile estimates

can then be fitted with a continuous distribution.17 As in Adrian et al. (2019), I use Azzalini

and Capitanio (2003)’s skew-t distribution, which allows a very flexible modelling of higher

15The latter model can therefore also capture systematic features of the process that leads to the formulation
of technical assumptions within an institution, which could potentially affect its forecasting performance. Instead,
the baseline setup is entirely data-driven at the estimation stage, and a portion of its forecast errors are readily
attributable to the discrepancy between technical assumptions and outturns for the conditioning variables.

16Another theoretically interesting variant is

yt = α+

p−1∑
j=0

β′jx
b
t−h−j +

∑
1≤i≤H

γ′ix
f
t−h+i + εt

where H denotes the maximum forecast horizon, i.e. when the direct forecast for each horizon includes the
conditioning information up to the longest forecast horizon.

17Following a quantile sorting step, as proposed by Chernozhukov et al. (2010).

ECB Working Paper Series No 2624 / December 2021 7



moments, and thus of one- and two-sided risks.18 Then, predictive distributions for different

horizons can be combined into a fan chart, or studied individually. A point worth noting is

that especially with Equation 1, the number of regressors can increase quickly with the forecast

horizon and number of variables for which technical assumptions are provided. This makes

Bayesian estimation particularly attractive, as shrinkage allows to mitigate the adverse effect

of a large number of regressors on parameter uncertainty.

2.1 Bayesian Quantile Regression

Let Y be a response variable and X a set of explanatory variables. Then the linear quantile

regression model of Y is given by

yt = x′tβ + σεt (t = 1, . . . , T ) (4)

where β = β (q), the error term σεt = σ (q) εt (q) has a density function fq (·) such that the

q-th quantile equals zero, i.e.
∫ 0
−∞ fq (σεt) dεt = q, and σ = σ (q) > 0 is a scale parameter.

With a slight abuse of notation, Equation 1 can be cast in the above format by letting β =[
α β0 . . .βp−1 γ1 . . .γh

]′
, xt =

[
1 xb′t−h . . .x

b′
t−h−p+1 x

f ′
t−h+1 . . .x

f ′
t

]′
and σεt = εt.

The classical (frequentist) solution to the problem of finding β obtains from the minimisation

of the criterion function
T∑
t=1

ρq
(
yt − x′tβ

)
(5)

where ρq (u) = u [q − I (u < 0)] is the so-called check function (see for example Koenker and

Bassett, 1978). Yu and Moyeed (2001) pointed out that solving (5) is equivalent to finding

the maximum likelihood estimator of β in (4) under the assumption that the errors have an

Asymmetric Laplace distribution. This in turn opens the way to re-casting (4) as a Nor-

mal variance-mean mixture model (Barndorff-Nielsen et al., 1982), as shown by Kozumi and

Kobayashi (2011) and further refined by Khare and Hobert (2012). Indeed, assuming that the

εt are iid19 Asymmetric Laplace with probability density function

fq (ε) = q (1− q) exp {ρq (ε)} (6)

the scaled error terms in (4) have an equivalent latent variable representation (Kotz et al., 2001),

18I also obtain very similar results, not reported to conserve space, by fitting a non-parametric distribution to
the estimated quantiles, as in Eguren-Martin and Sokol (2020).

19The iid assumption is not entirely innocuous in a time series context, and especially with a DMS setup
such as Equation 2, because for h > 1, the error terms are auto-correlated by construction. Various solutions to 
this problem have been provided in a frequentist setup: Fitzenberger (1998) showed that for quantile regression, 
the block bootstrap is robust to autocorrelation of unknown form; Manzan and Zerom (2013) proposed an ad-
hoc procedure for ‘purging’ the error terms of their MA structure prior to running the quantile regressions; and 
Adrian et al. (2019) rely on artificial data generated by a VAR to compute confidence bands around their quantile 
regression point estimates. In a Bayesian setting, Sokol (2020) proposes a solution based on a modification of 
the framework outlined in this Section.
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Table 1: Data sources and transformations.
Variable Symbol Formula/Transformation Source
Nominal house price index (SA) HPt Log ECB and Eurostat
Harmonised index of consumer prices (SA) Pt Log ECB and Eurostat
Nominal long-term interest rate p.a. it ECB
Unemployment rate Ut ECB and Eurostat
Real household disposable income (SA) Yt Log ECB and Eurostat
Annual HICP inflation πpt 100 ∗ (Pt − Pt−4)
Annual real house price inflation πhpt 100 ∗ (HPt −HPt−4)− πpt
Real long-term interest rate change rt (it − it−1)− (πpt − π

p
t−1)

Unemployment rate change ut Ut − Ut−1
Real household disposable income annual growth yt 100 ∗ (Yt − Yt−4)

given by

σεt
d
= θzt + τ

√
σztut (7)

where Z = Z (q) ∼ Exp (σ), U = U (q) ∼ N (0, 1), Z and U are mutually independent,

θ = θ (q) = 1−2p
q(1−q) and τ2 = τ2 (q) = 2

q(1−q) . Then Y conditional on Z is Normal and given by

yt|zt ∼ N
(
x′tβ + θzt, στ

2zt
)
,

the likelihood of {Yt, Zt}Tt=1 is

f∗ (y, z;β, δ, σ,x) =

T∏
t=1

1√
2πστ2zt

exp

{
− 1

2στ2zt

(
yt − x′tβ − θzt

)2}
σ−1 exp

{
−zt
σ

}
, (8)

and given an appropriate (conjugate) choice of priors, the posterior distributions of all param-

eters and of the latent variables Zt are known and amenable to Gibbs sampling, as shown in

Appendix A.

3 A Simple CQR Model of House Price Inflation

To illustrate the usefulness of the framework in a policy setting, I present an application to

house price inflation. As discussed in the introduction, house prices are closely monitored for

both macroeconomic and financial stability purposes, and have therefore also a long history

of modelling efforts. As they share some features with both asset prices and durable goods,

Gerdesmeier et al. (2015), in their review of the existing literature, distinguish between asset

price-based and ‘structural’ (i.e. relying on macroeconomic fundamentals affecting the demand

for and supply of housing) approaches. They also provide an early example of an application

of quantile regression to the study of house prices,20 albeit with important methodological

differences to this paper, most notably the absence of technical assumptions in the formulation

of out-of-sample forecasts.

I follow these authors in specifying a very parsimonious ‘structural’ model of house price inflation

that includes disposable income, real long-term interest rates and the unemployment rate as its

20Another useful precedent is Valckx et al. (2020) and earlier work carried out at the IMF for the Global
Financial Stability Report.
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Figure 2: House price inflation fan chart for 2018Q3-2020Q3.
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Note: The fan chart shows realised data for house price inflation up to 2018Q2, and then density forecasts for
2018Q3 to 2020Q3, with actual data outturns for the forecast period overlaid in red. The fan chart bands cover
95% of the support around the median: the darkest shade of blue corresponds to the median, while lighter shades
represent percentiles increasingly removed from it. The forecasts are based on a CQR model estimated with data
up to 2018Q2, and fed realised data for the technical assumptions over the projection horizon.

main determinants. However, an important difference is the inclusion of technical assumptions

about the future evolution of both real long-term interest rates and the unemployment rate.

The exact CQR model specification is, following Equation 2,

πhpt = α+

1∑
j=0

β′j

[
πhpt−h−j , yt−h−j , rt−h−j , ut−h−j

]′
+ γ ′h [rt, ut]

′ + εt (9)

where all coefficients and the error term are both horizon- (h) and quantile- (q) specific, but 
with the dependencies suppressed to simplify the notation. Equation 9 is essentially a quantile 
autoregression model (Koenker and Xiao, 2006), with additional exogenous regressors that 
include both variables known at the time of the forecast and technical assumptions over the 
projection horizon made at the time of the forecast. The estimation sample is 1981Q1:2020Q2, 
and information about data sources and transformations is provided in Table 1.

Figures 2 and 3 show a fan chart for horizons up to 9 quarters ahead and the corresponding 
predictive densities for h = 5 and h = 9, respectively. To obtain the plots, I estimated the model
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Figure 3: House price inflation forecasts as of 2018Q2 and outturns.
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(a) Conditional forecast for 2019Q3.
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(b) Conditional forecast for 2020Q3.

Note: The two panels show density forecasts for 2019Q3 and 2020Q3, respectively, with actual data outturns
overlaid in red and the unconditional distribution of house price inflation over the estimation sample shown in
dashed black. The forecasts are based on a CQR model estimated with data up to 2018Q2, and fed realised data
for the technical assumptions over the projection horizon.

with data available as of 2018Q2, and then used realised interest rate and unemployment data up

to 2020Q3 as technical assumptions21 to produce conditional forecasts for each horizon. House

price inflation outturns over the same forecast horizon are shown in red. The fan chart shows

that until the end of 2019, the model, once fed with the actual developments of real interest and

unemployment rates, would have assigned a high probability to house price inflation turning

out as it did in the data, as evidenced by the red line falling within the darker region of the fan

chart. The conditional forecast for 2019Q2 shown in 3a (which is nothing but a ‘slice’ of the fan

chart at h = 5) provides a different illustration of the same fact, with the vertical red line very

close to the mode of the predictive distribution. The panel also illustrates another interesting

feature, namely how much the conditional predictive distribution, which incorporates knowledge

of past developments up to the time of the forecast as well as technical assumptions over the

projection, differs from the unconditional distribution of house price inflation over the entire

sample, shown by the dashed black line.

From 2020Q1 onwards, with the onset of the COVID-19 pandemic, the real interest and unem-

ployment rate data used as technical assumptions showed a marked deterioration (see the solid

black lines in Figure 5). Based on the historical regularities captured by the model estimates,

this would have implied both a substantially weaker central projection and, by 2020Q3, also

some downside risks to the outlook (Figures 2 and 3b). Instead, house price inflation didn’t

show any signs of weakness and even picked up to historically high levels. Figure 3b shows

that by 2020Q3, it was a complete outlier relative to the conditional predictive distribution for

21These would of course not been available in real time, so the forecasts shown in Figure 2 are best thought
of as a (counterfactual) ‘upper bound’ to the model’s out-of-sample forecasting ability.
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the same quarter (blue curve), but also high by historical standards, as shown by its location

within the unconditional distribution (dashed black curve). This corroborates the narrative put

forward by Battistini et al. (2021), who note that compared to their behaviour during both

the Global Financial Crisis and the Sovereign Debt Crisis, house prices remained surprisingly

resilient in the face of both macroeconomic and financial stress, and attribute these differences

to both the different nature of the COVID-19 shock and of the ensuing policy responses.

Beyond this narrative validation over the recent past, in the next Section I also provide a formal

evaluation of the model’s predictive ability, benchmarking it against a standard Bayesian VAR

(BVAR). The results show that not only does the CQR model provide reasonable and well-

calibrated out-of-sample forecasts, but also that its forecasts are comparable, and for longer

horizons somewhat better, than those of a BVAR sharing the same conditioning information,

which should allay concerns about the use of the model in a live policy setting. In the following

Section I then show what that might look like by means of a simple scenario analysis example.

4 Forecast Evaluation

To assess the CQR model’s forecasting performance, I carry out a (pseudo-) out-of-sample

evaluation. Because the data used do not, as a rule, get revised (except for sporadic corrections

and methodological changes), the qualifier is not particularly relevant for the estimation of the

model in real time. However, at the time of each forecast, technical assumptions would have

needed to be provided, instead of which I use ex-post realised data (as in the example discussed

in Section 3). The evaluation sample spans the 1999Q1 to 2020Q3 period, for a total of 79

forecast vintages that can be compared against outturns up to 9 quarters ahead.22

As a benchmark, I estimate a Bayesian VAR on the same data, and feed it the exact same set

of technical assumptions as the baseline model. The BVAR model is given by

zt = A0 +A1zt−1 + · · ·+Apzt−p + ηt, (10)

where, following the notation of Table 1, zt = [(HPt − Pt), Yt, (it − πpt ), Ut]
′
, A0, . . . , Ap are

matrices of coefficients, the lag order is p = 5 and ηt is a Normally-distributed white noise

process with full covariance matrix Ση. All variables are purposefully specified in levels so as

not to put the BVAR at an undue disadvantage because of the data transformations required

by the quantile regression setup. The BVAR is estimated following Giannone et al. (2015), that

is, adopting Minnesota (Litterman, 1979), sum-of-coefficients (Doan et al., 1984) and dummy-

initial-observations (Sims, 1993) priors and choosing their optimal degree of tightness based

on the model’s marginal likelihood. Technical assumptions are implemented with the Kalman

22The date of the vintage indicates the first quarter of the forecast. So for example, in the 2020Q3 vintage, 
house price inflation data up to 2020Q2 are available, and the 2020Q3 number needs to be forecasted. Note that 
due to the comparatively long delay in the release of house prices data, 2020Q3 data for all explanatory variables 
included in the model are available well in advance, and therefore technical assumptions only need to be provided 
for 2020Q4 and subsequent quarters. A similar ‘ragged edge’ situation arises in each vintage.

ECB Working Paper Series No 2624 / December 2021 12



Figure 4: 1-year-ahead conditional forecasts for 2000Q1-2019Q2.
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Note: The chart shows successive vintages of 1-year-ahead forecasts for house price inflation, with corresponding
data outturns overlaid in red. The bands cover 68% and 95% of the support around the median. The forecasts
are based on a CQR model estimated with data available as of the time of each forecast, and fed realised data
for the technical assumptions over the projection horizon.

filtering techniques described in Bańbura et al. (2015).

Figure 4 shows that 1-year-ahead conditional forecasts from the CQR model would have mostly

tracked well the evolution of the data, including during the two sharp downturns experienced

over the 2007-2009 and 2011-2013 periods, corresponding to the fallouts on the housing market

of the Great Financial Crisis and European Sovereign Debt Crisis episodes. This remains largely

true also for 2-years-ahead forecasts (Figure B.8). Such ability to track realised data is of course

at least partly due to the model’s counterfactual knowledge of the outturns for the technical

assumptions at each forecast horizon, but is nevertheless reassuring. A comparison with the

corresponding Figures B.10a and B.10b for the BVAR is also instructive. The confidence bands

around the BVAR forecasts are wider, and of course symmetric by construction given the

distributional assumption for the error terms in Equation 10. Instead, the somewhat narrower

bands in Figures 4 and B.8 display noticeable changes in both variance and skewness.

This illustrates a key advantage of a more flexible approach to modelling predictive distributions:

the BVAR is constrained to convey changes to forecast uncertainty over time solely through

changes to the first and second moments of its predictive distributions, which are generally

wider, and thus potentially less informative, as a result.23 Instead, the CQR model can in

23A BVAR with stochastic volatility, such as the one proposed by Carriero et al. (2019), might be better at 
modeling changes to the second moments of predictive distributions, but would still not address the symmetry 
point.
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Table 2: Performance metrics of CQR and BVAR out-of-sample conditional forecasts.

Log score
Quantile score

q = 0.05 q = 0.5 q = 0.95
CQR BVAR CQR BVAR CQR BVAR CQR BVAR

h = 1 -1.27 -0.80 0.08 0.05 0.26 0.20 0.08 0.07
h = 2 -1.69 -1.39 0.12 0.10 0.38 0.36 0.09 0.12
h = 3 -1.76 -1.79 0.15 0.15 0.51 0.52 0.12 0.18
h = 4 -1.95 -2.09 0.18 0.20 0.65 0.72 0.15 0.24
h = 5 -2.06 -2.16 0.18 0.21 0.77 0.77 0.16 0.25
h = 6 -2.17 -2.23 0.22 0.22 0.83 0.87 0.20 0.26
h = 7 -2.20 -2.32 0.19 0.24 0.85 0.97 0.20 0.27
h = 8 -2.28 -2.39 0.27 0.25 0.90 1.05 0.21 0.29
h = 9 -2.53 -2.49 0.33 0.28 0.99 1.16 0.31 0.32

Note: The table reports average logarithmic and quantile scores over the forecast evaluation period 1999Q1 to
2020Q3, for a total of 79 vintages. A larger (less negative) average logarithmic score, and a smaller average
quantile score indicate better forecasting performance.

addition also change their higher moments, at times avoiding the need for large changes to their

mean or variance. The ability to also convey information about the balance of risks, which are

captured by a distribution’s skewness, is an important advantage in a policy setting, and was,

for example, the motivation behind the choice of the two-part Normal distribution for the Bank

of England’s official fan charts (see Britton et al., 1998).

The probability integral transforms (PITs) of the two sets of forecasts (Figure B.11) show

that the CQR’s greater flexibility doesn’t come at the cost of a worse calibration. The PIT is

defined as the (predictive) cumulative distribution function evaluated at the actual data outturn,

formally

PITv,tv+h =

∫ πhp
tv+h

−∞
p̂v,h(w)dw ≡ P̂v,h(πhptv+h), (11)

where v indexes vintages, p̂v,h(w) is the predictive density function estimated in vintage v

for forecast horizon h, and P̂v,h(w) the corresponding cumulative distribution function. An

ideally-calibrated model should deliver a sequence of predictive distributions whose PITs are

distributed uniformly over the unit interval, that is, should lie on the diagonal of each panel

of Figure B.11. The figure shows that the two sets of PITs are rather similar, and in fact, for

horizons up to 7 quarters ahead, on this metric the CQR’s PITs are somewhat better calibrated

than the BVAR’s.

A comparison of the two models’ density forecasting performance also shows that the two

models typically score similarly, with a few exception discussed below. Table 2 reports two

sets of metrics: the average logarithmic score as a summary measure for the entire predictive

distribution, and three average quantile scores measuring local fit in the tails (5th and 95th

percentiles) and for the median of the predictive distribution. The average logarithmic score is

defined as

LSh =
1

Nv

∑
v

ln p̂v,h(ytv+h) (12)
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where Nv denotes the number of forecast vintages. The log score penalises forecasts that assign

a low probability to actual outturns. The average quantile score is defined as

QSq,h =
1

Nv

∑
v

ρq

(
ytv+h − P̂−1v,h(q)

)
(13)

The quantile score penalises outturns that are more extreme (i.e. fall further in the correspond-

ing tail) than the predictive quantile P̂−1v,h(τ).

Except for the first two quarters, the log scores of the CQR model are similar or slightly better

than those of the BVAR (first two columns of Table 2), indicating that the two models’ overall

density forecast ability is comparable. The difference in log scores in the first two quarters is

however mostly due to a very small number of outliers for the CQR model, rather than to a

more systematic discrepancy, and the two models otherwise perform similarly also in the first

two quarters.24 As for the quantile scores, the CQR model generally performs very similarly to

the BVAR in the left tail and for the conditional median (columns 4 to 6 in Table 2), and a little

bit better for the right tail, indicating that the CQR model is somewhat better at forecasting

upside risk to house prices inflation.

The overall picture from the forecast evaluation exercise is therefore that despite its greater

flexibility in modelling asymmetric risks, the CQR model is able to deliver out-of-sample density

forecasts that are for the most part better or at a par with those from an established benchmark

such as the BVAR. In the next Section, I show how this greater flexibility can be exploited for

the purposes of scenario analysis of risks.

5 Scenario Analysis for the Balance of Risks

Scenario analyses are ubiquitous in central banks and other policy institutions. As discussed

in the Introduction, model-based scenarios typically take the form of forecasts for one or more

variables of interest conditional on the path of of some other variables (technical assumptions

in the terminology of this paper). In this section I show how the greater flexibility of the CQR

model can be leveraged for the purposes of scenario analysis of risks.

Over the projection horizon, policy makers might wish to understand the implications of al-

ternative paths for the technical assumptions. To continue the house price inflation example

of Section 3, they might query the impact on house price inflation of alternative paths for the

future evolution of the unemployment rate and the long-term real interest rate. Figure 5 shows

the time series of the two variables,25 extended over the projection horizon with three alter-

native paths: a ’no change’ scenario (blue), in which both variables remain at their current

24As is well-known, the log score imposes a disproportionately heavy penalty on outturns that fall in regions
of very low probability density. For the CQR model, this occurs 3 and 4 times over the forecast evaluation sample
for h = 1 and h = 2, respectively.

25Note that as per Table 1, both variables enter the model in first differences, but are shown in levels in Figure
5 for ease of interpretation.
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Figure 5: Alternative scenarios for the conditioning variables.

2012 2014 2016 2018 2020 2022
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
No change
Recovery
Stress
Available data

(a) Long-term real interest rate.

2012 2014 2016 2018 2020 2022
7

8

9

10

11

12

13
No change
Recovery
Stress
Available data

(b) Unemployment rate.

Note: The charts show the time series over the available sample period (up to and including 2020Q3) and three
alternative scenarios over the projection horizon (up to 9 quarters ahead) for the long-term real interest rate and
the unemployment rate, as defined in Table 1.

value throughout the projection; a ‘stress’ scenario (red), in which the unemployment rate is

2pp higher, and the real interest rate 1pp higher, by the end of the projection; and a recovery

scenario, in which the unemployment rate is 1pp lower, and the real interest rate also 1pp lower,

by the end of the projection (green). In this case, the three scenarios are purely arbitrary, but

a scenario for the technical assumptions might equally be the output of another forecast which

policy makers want their house price inflation forecast to be consistent with. I also consider

a fourth scenario, in which no technical assumptions are provided, but only knowledge of the

latest available data is exploited, as would be the case with current implementations of quantile

regression (black). Figure 6 shows the resulting fan charts for the CQR model estimated with

data up to 2020Q2.26 Moreover, Figure 7 shows the corresponding predictive densities 1 and 2

years ahead, benchmarked against the unconditional distribution of house price inflation over

the estimation sample.

The forecast based on available data only, shown in black, is a purely statistical forecast without

any additional inputs (very much like a VAR forecast obtained by pure iteration from current

conditions), and is therefore a useful starting point. It shows a median forecast settling around

2.5% within a year’s time, but within a wide range of possible outcomes and risks mostly skewed

to the downside. For forecasts 2 years ahead (Figure 7), this is the most optimistic forecast (in

terms of the mode), but also the one with the highest variance and displaying most downside

skewness. In terms of the mode (the most likely outcome), a no-change forecast, shown in blue,

is a bit more optimistic 1 year ahead, but considerably more cautious 2 years out; 1 year ahead,

this comes with much less dispersion, but still signalling downside risks, while 2 years ahead

the risks are much more balanced, while the variance of the distribution is somewhat smaller

than for the available data only scenario.

26And knowledge of unemployment, household income and interest data up to 2020Q3.
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Figure 6: Alternative scenarios for the predictive distributions of house price inflation.
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(b) No change.
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(c) Recovery.
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(d) Stress.

Note: The fan charts show realised data for house price inflation up to 2020Q2, and then density forecasts for 
2020Q3 to 2022Q3 under different technical assumptions for the unemployment and long term real interest rates, 
with the colour coding matching that of Figure 5: no technical assumptions over the projection (black), no change 
in technical assumptions over the projection (blue), a recovery scenario involving a gradual improvement in the 
technical assumptions (green), and a stress scenario involving a gradual worsening in the technical assumptions 
(red). The fan chart bands cover 95% of the support around the median: the darkest shade corresponds to 
the median, while lighter shades represent percentiles increasingly removed from it. The forecasts are based on 
a CQR model estimated with data up to 2020Q2, and fed projections for the technical assumptions over the 
forecast horizon.
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Figure 7: Alternative scenarios for the predictive distributions of house price inflation 1 and 2
years ahead.
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(a) Scenarios for 2021Q3.
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(b) Scenarios for 2022Q3.

Note: The two panels show density forecasts for 2021Q3 and 2022Q3, respectively, under different technical
assumptions for the unemployment and long term real interest rates. The colour coding matches that of Figure
5: no technical assumptions over the projection (black), no change in technical assumptions over the projection
(blue), a recovery scenario involving a gradual improvement in the technical assumptions (green), and a stress
scenario involving a gradual worsening in the technical assumptions (red). The unconditional distribution of
house price inflation over the estimation sample is also shown (dashed black). The forecasts are based on a CQR
model estimated with data up to 2020Q2, and fed projections for the technical assumptions over the forecast
horizon.

The stress and recovery scenarios for the technical assumptions, shown in red and green, re-

spectively, also imply interesting concomitant changes to the predictive distributions. First of

all, the modal (and median) forecasts in the stress scenario are unambiguously the lowest ones,

while in the recovery scenario they are at the high end,27 as one would expect. Second, the

recovery scenario displays consistently lower variance than the stress one, and is in fact the

one with the lowest variance across all four scenarios and all horizons. And finally, while both

scenarios signal some downside risks 1 year ahead, by the end of the projection the risks are

broadly balanced under both sets of paths for the technical assumptions.

The above discussion illustrates the value added that the CQR approach can bring to the

assessment of risks. Different projections for the technical assumptions can lead to meaningful

changes not only to the first and second moments of predictive distributions, as would be the

case, for example, if conditional forecasts based on them had been generated by the BVAR

introduced in the previous Section, but also to higher moments. In the proposed framework,

these changes can be easily quantified and communicated using well-established tools such as

fan charts and plots of the predictive densities, allowing for example a model-based sensitivity

analysis of upside and downside risks around a modal forecast, an essential element of most

institutional forecasting processes, but one that so far has been largely limited to qualitative

assessments or an interpretation of model-based outputs not explicitly designed for this purpose.

27The modal recovery forecast is below the one based on available data only, but given the absence of skew,
its median forecast is the highest one, as can be gleaned from the fan charts in Figure 6.
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6 Conclusion

I propose a novel approach, conditional quantile regression (CQR), to incorporate technical as-

sumptions over the projection horizon into an otherwise standard quantile regression framework.

The approach addresses a shortcoming of existing quantile regression-based models, for example

the by now common at-risk framework, when used in settings, such as most forecasting pro-

cesses within central banks and similar institutions, that require forecasts to be consistent with

a specific view of the future evolution of some variables. Through an application to house price

inflation in the euro area, I show that CQR provides a viable alternative to existing approaches

to conditional density forecasting, notably VARs, with considerable advantages in terms of

flexibility and additional insights that do not come at the cost of forecasting performance.
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A Gibbs Sampling for Bayesian Quantile Regression

Combining equation 8 with conjugate prior distributions for β and σ, namely β ∼ N (β0,Σ0)

and σ ∼ InvΓ (α0, γ0) implies

zt|β, δ, σ,x,y ∝
1
√
zt

exp

{
−(yt − x′tβ)2

2στ2zt
− θ2 + 2τ2

2στ2
zt

}
, (A.1)

which is the density of a Reciprocal Inverse Gaussian random variable28 with parameters λt =
θ2+2τ2

2στ2
and µt =

√
θ2+2τ2

|yt−x′tβ|
;

β|δ, σ,x,y, z ∼ N
(
β̂, Σ̂

)
(A.2)

with

Σ̂ =
(
x′Wx+ Σ−10

)−1
β̂ = Σ̂

(
x′Wy − θ

στ2
x′`+ Σ−10 β0

)
,

where W is a T × T diagonal matrix with diagonal elements given by
(
στ2zt

)−1
, ` is a T

vector of ones, and Σ0 is a diagonal matrix with diagonal elements given by δ, whose individual

elements have (hyper-)prior distributions δ2i ∼ InvGamma (η0, ζ0) and posterior distributions

given by

δ2i |β, σ,x,y, z ∼ InvΓ
(
η̂, ζ̂
)
, (A.3)

where η̂ = η0 + 1
2 and ζ̂ = ζ0 +

β2
i
2 ; and finally,

σ|β, δ,x,y, z ∼ InvΓ (α̂, γ̂) , (A.4)

with

α̂ = α0 +
3T

2
γ̂ = γ0 +

T∑
t=1

(yt − x′tβ − θzt)
2

2τ2zt
+ z′`.

28This follows directly from the fact that in a Normal variance-mean mixture model, the conjugate prior for
Z is Generalised-Inverse-Gaussian, and

Z ∼ Exp (σ)
d
= Γ

(
1,

1

σ

)
d
= GIG

(
1,

2

σ
, 0

)
.

Moreover, the following relationships hold between the Generalised-Inverse-Gaussian and the (Reciprocal) Inverse
Gaussian distribution (Barndorff-Nielsen and Koudou, 1998):

X ∼ GIG
(
−1

2
,
λ

µ2
, λ

)
d
= IG (µ, λ)⇐⇒ 1

X
∼ GIG

(
1

2
, λ,

λ

µ2

)
d
= RIG (λ, µ)
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B Additional Figures

Figure B.8: 2-year-ahead conditional forecasts for 2001Q1-2020Q2.
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Note: The chart shows successive vintages of 2-year-ahead forecasts for house price inflation, with corresponding
data outturns overlaid in red. The bands cover 68% and 95% of the support around the median. The forecasts
are based on a CQR model estimated with data available as of the time of each forecast, and fed realised data
for the technical assumptions over the projection horizon.

Figure B.9: Conditional fan chart for 2018Q3-2020Q3, BVAR.
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Note: The fan chart shows realised data for house price inflation up to 2018Q2, and then density forecasts for 
2018Q3 to 2020Q3, with actual data outturns for the forecast period overlaid in red. The fan chart bands cover 
95% of the support around the median: the darkest shade of orange corresponds to the median, while lighter 
shades represent percentiles increasingly removed from it. The forecasts are based on a BVAR model estimated 
with data up to 2018Q2, and fed realised data for the technical assumptions over the projection horizon.
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Figure B.10: BVAR forecasts and outturns.
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(a) 1-year-ahead conditional forecasts for 2000Q1-
2019Q2, BVAR
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(b) 2-years-ahead conditional forecasts for 2001Q1-
2020Q2,BVAR

Note: The two panels show successive vintages of 1- and 2-year-ahead forecasts for house price inflation, with
corresponding data outturns overlaid in red. The bands cover 68% and 95% of the support around the median.
The forecasts are based on a BVAR model estimated with data available as of the time of each forecast, and fed
realised data for the technical assumptions over the projection horizon.

Figure B.11: Probability integral transforms (PITs), CQR and BVAR.
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Note: The PIT of a forecast is defined as the predictive cumulative distribution function evaluated at the data 
outturn. Each panel shows the empirical distributions of the two models’ forecast vintages. An well-calibrated 
model should deliver an empirical distribution close to the diagonal, shown in black. For each panel, the mean 
absolute deviation between each model’s PITs and those of an ideal (uniform) distribution are also reported. A 
smaller value indicates that the model is closer to the ideal, that is, better-calibrated.
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