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Abstract

A decision maker tests whether the gradient of the loss function eval-

uated at a judgmental decision is zero. If the test does not reject, the

action is the judgmental decision. If the test rejects, the action sets the

gradient equal to the boundary of the rejection region. This statisti-

cal decision rule is admissible and conditions on the sample realization.

The confidence level reflects the decision maker’s aversion to statistical

uncertainty. The decision rule is applied to a problem of asset alloca-

tion.

Keywords: Statistical Decision Theory; Hypothesis Testing; Confidence Intervals;

Conditional Inference.
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Non-technical Summary

The use of judgment is ubiquitous in decision making, yet it lacks a formal

treatment in statistics. Policy institutions, like central banks, routinely use

state of the art econometric models to forecast key economic variables. When

forecasts differ from the assessment of the decision makers, they are adjusted

with ‘expert judgment’.

The process of incorporating judgment in the decision process should be

turned on its head. Decision makers should first express their judgmental de-

cision and then econometricians should recommend whether there is statistical

evidence to deviate from it. The statistical decision incorporating judgment

lies at the boundary of a confidence interval.

Optimality is tested by checking whether, for a strictly convex loss func-

tion and confidence level, the gradient evaluated at the judgmental decision is

statistically zero. Rejection of the null hypothesis implies that marginal moves

decrease the loss function. This holds until the action associated with the clos-

est boundary of the confidence interval of the gradient is reached. Abandoning

a judgmental decision for a statistical procedure carries the risk of choosing a

worse decision. The confidence level puts an upper bound to the probability

of wrongly rejecting a decision when it is optimal.

The confidence level reflects the attitude of the decision maker towards

statistical uncertainty. Decision makers who dislike any statistical uncertainty

always follow their own judgmental decision and ignore the advice of the econo-

metrician. At the other extreme, decision makers indifferent to statistical un-

certainty ignore their judgment and always choose the maximum likelihood

decision. Policy makers engaging in statistical decision making are likely char-

acterized by low, but not extreme, confidence levels.
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1 Introduction

The use of judgment is ubiquitous in decision making, yet it lacks a formal

treatment in statistics. Policy institutions, like central banks, routinely use

state of the art econometric models to forecast key economic variables. When

forecasts differ from the assessment of the decision makers, they are adjusted

with ‘expert judgment’, either by tinkering with the econometric model or by

modifying directly the forecast. It is an ad hoc procedure, which clashes with

the rigourous foundations of statistical decision theory.

The fundamental insight of this paper is that the incorporation of judg-

ment in the decision process should be turned on its head. Decision makers

should first express their judgmental decision and then econometricians should

recommend whether there is statistical evidence to deviate from it. The logical

conclusion is that the statistical decision incorporating judgment lies at the

boundary of a confidence interval.

Optimality is checked by testing whether, for a strictly convex loss func-

tion and confidence level, the gradient evaluated at the judgmental decision

is statistically equal to zero. Rejection of the null hypothesis implies that

marginal moves decrease the loss function. This holds until the action asso-

ciated with the closest boundary of the confidence interval of the gradient is

reached. Abandoning a judgmental decision for a statistical procedure car-

ries the risk of choosing a worse decision. The confidence level puts an upper

bound to the probability of wrongly rejecting a decision when it is optimal.

Maximum likelihood decisions are obtained as a special case of this theory.

Such decisions ignore judgment altogether, by setting the confidence level equal

to one. In this case, the confidence interval degenerates into a single point,
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coinciding with the maximum likelihood estimate. The statistical interpreta-

tion is that the probability that the maximum likelihood decision produces a

higher loss than the judgmental decision cannot be bounded away from one.

The contribution of this paper lies at the intersection between statistics and

decision theory. Statistical decision theory emerged as a discipline in the 1950’s

with the works of Wald (1950) and Savage (1954). Berger (1985) provides a

comprehensive and accessible review. Recent works within this tradition are

Granger and Machina (2006), Patton and Timmermann (2012) and Elliott

and Timmermann (2016). Other contributions include Chamberlain (2000)

and Geweke and Whiteman (2006), who deal with forecasting using Bayesian

statistical decision theory, and Manski (2013 and the references therein), who

uses statistical decision theory in the presence of ambiguity for partial iden-

tification of treatment response. Manganelli (2009) introduces the original

idea of incorporating judgment at the beginning of the decision process and

proposes the heuristic decision rule of moving to the boundary of the confi-

dence interval. The present paper provides a formal theoretical justification

of such a procedure. It also shows that the decision incorporating judgment is

admissible and therefore satisties the basic rationality principle of not being

dominated by any other decision rule.

The paper is structured as follows. Section 2 sets up the decision environ-

ment and introduces the concept of judgment. Judgment is defined as a pair

formed by a judgmental decision and a confidence level. It is used to define

the hypothesis testing framework. The key results of this section are that the

decision incorporating judgment is admissible, forms an essentially complete

class and is either the judgmental decision itself or at the boundary of the

confidence interval of the sample gradient of the loss function. The fundamen-
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tal concept behind these results is conditioning. Section 3 provides economic

intuition. The confidence level, by putting an upper bound to the probability

of wrongly rejecting an optimal decision, can be interpreted as the preference

of the decision maker toward statistical uncertainty. Section 4 uses an asset

allocation problem as an illustrative example. Section 5 concludes.

2 Decisions with Judgment

This section introduces the concept of judgment and shows how hypothesis

testing can be used to arrive at optimal decisions. I denote random variables

with upper case letters (X) and their realization with lower case letters (x).

The decision environment is formally defined as follows.

Definition 2.1 (Decision Environment).

1. The observed data xn ≡ (x′1, . . . , x′n)′ are a realization from a p.d.f.

ft(xt|θ), where xt ∈ Rv, θ ∈ Rp, v, p ∈ N. θ is unknown.

2. θ̂(Xn) is an extremum estimator (Newey and McFadden, 1994). The

sample size n is sufficiently large, so that
√
n(θ̂(Xn)− θ) ∼ N(0,Σ).

3. a ∈ Rq, q ∈ N, denotes the action of the decision maker.

4. The decision maker minimizes the loss function L(θ, a), which is strictly

convex in a and twice continuously differentiable in θ and a.

In words, Definition 2.1 assumes that 1) the econometric model is correctly

specified, 2) the sample size is sufficiently large for asymptotic approximations

to hold, 3) the action to be taken is any generic q-vector, and 4) a necessary
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and sufficient condition for an action to be optimal is to set the gradient of

the loss function to zero.

2.1 Judgment

I introduce the following definition of judgment.

Definition 2.2 (Judgment). Judgment is the pair A ≡ {ã, α}. ã ∈ Rq is

the judgmental decision. α ∈ [0, 1] is the confidence level.

Judgment is routinely used in hypothesis testing, for instance when testing

whether a regression coefficient is statistically different from zero (with zero in

this case playing the role of the judgmental decision), for a given confidence

level (usually 1%, 5% or 10%). I say nothing about how the judgmental

decision is formed. This question is explored by Tversky and Kahneman (1974)

and subsequent research. The choice of the confidence level is discussed in

section 3. For the purpose of this paper, judgment is a primitive to the decision

problem, like the loss function.

2.2 Hypothesis Testing

Define the action associated with the sample realization of the extremum es-

timator:

â(xn) ≡ arg min
a
L(θ̂(xn), a) (1)

Define also the shrinkage action:

a(λ) ≡ λâ(xn) + (1− λ)ã λ ∈ [0, 1] (2)
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Notice that â(xn), and therefore a(λ), is observed at the time the decision is

taken, as it depends on the sample realization.

The decision maker can test whether a(λ) is optimal by testing if the gradi-

ent ∇λL(θ, a(λ)) is equal to zero. Define the gradient Z(θ, λ) ≡ ∇λL(θ, a(λ))

to simplify notation. A test statistic for the gradient can be obtained by re-

placing θ with its extremum estimator θ̂(Xn) and exploiting its asymptotic

properties. The hypothesis to be tested is whether one should move in the

direction of a(1). Since by construction Z(θ̂(xn), 0) < 0, Z(θ̂(xn), 1) = 0 and

by assumption 4 of Definition 2.1 is monotonic in λ, one can conclude that

values of λ higher than 0 decrease the empirical loss function. The decision

maker is interested, however, in the population value of the loss function. If

the population gradient is positive, higher values of λ would increase the loss

function, rather than decrease it. The null hypothesis to be tested is therefore

that the population gradient has opposite sign relative to the sample gradient:

H0 : Z(θ, λ) ≥ 0 vs H1 : Z(θ, λ) < 0 (3)

The following theorem provides the distribution of the associated test statistic.

Theorem 2.1. (Test statistic) Consider the decision environment of Def-

inition 2.1 and define Z(θ, λ) ≡ ∇λL(θ, a(λ)), where a(λ) is defined in (2).

The distribution of the test statistic Z(θ̂(Xn), λ) is

√
nσ−1[Z(θ̂(Xn), λ)− Z(θ, λ)] ∼ N(0, 1) (4)

where σ2 ≡ ∇′θZ(θ, λ)Σ∇θZ(θ, λ).

Proof — See Appendix.
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The random gradient Z(θ̂(Xn), λ) depends not only on the random vari-

able Xn, but also on the sample realization xn via λ. Let us make this de-

pendence explicit, by writing Z(θ̂(Xn), λ(xn)). Under the null hypothesis H0 :

Z(θ, λ(xn)) = 0, the p-value is αλ ≡ P (Z(θ̂(Xn), λ(xn)) ≤ Z(θ̂(xn), λ(xn))).

The interpretation is the following. Repeating the hypothetical experiment

of drawing independent values {xnh}Hh=1 from the population distribution, the

argument of the probability would be true αλ of the times:

lim
H→∞

H−1
H∑
h=1

I(Z(θ̂(xnh), λ(xn)) ≤ Z(θ̂(xn), λ(xn))) = αλ (5)

When performing the thought experiment, λ(xn) is held fixed and does not

change with xnh. By conditioning on the data, the potential realizations of the

random variable Xn are not conflated with the observed realization xn.

2.3 Decision

Consider the following standard definition (Wald, 1950):

Definition 2.3 (Decision Rule). ψ(Xn) : Rvn → Rq is a decision rule,

such that if Xn = xn is the sample realization, ψ(xn) is the action taken.

In an hypothesis testing decision problem, only two actions are possible:

the null hypothesis is either accepted or rejected. Recall that the hypothesis

being tested is (3), that is whether the gradient evaluated at any given λ is

non negative. Let 0 < γ < 1 and Φ(cα) = α, where Φ is the cdf of the standard

normal distribution. Define the decision rule ψA(xn, λ), where the dependence

on the parameter λ has been made explicit:
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A(xn, λ) =



0 if
√
nσ̂−1Z(θ̂(xn), λ) > cα/2

γ if
√
nσ̂−1Z(θ̂(xn), λ) = cα/2

1 if
√
nσ̂−1Z(θ̂(xn), λ) < cα/2

(6)

where σ̂2 = ∇′θZ(θ̂(xn), 1)Σ̂∇θZ(θ̂(xn), 1) is a suitable estimator of the asymp-

totic variance. I have replaced ∇θZ(θ̂(xn), λ) with ∇θZ(θ̂(xn), 1) to eliminate

the dependence of the variance on λ. This is possible, because under the null

hypothesis that a(λ) is optimal, σ̂2 is a consistent estimate of σ2. Notice that

since the sample gradient is negative by construction, the critical region is

defined by α/2, instead of α.

The test function (6) rejects the null hypothesis when it is equal to 1

and does not reject if it is equal to 0. The next theorem shows that this

decision cannot be improved. Let us first report some additional definitions

for convenience.

Definition 2.4 (Risk Function). The risk function associated with the

decision rule ψ(Xn) is R(θ, ψ) ≡ Eθ(L(θ, ψ(Xn))).

Definition 2.5 (Dominance). A decision rule ψ1 dominates a decision rule

2 if R(θ, ψ1) ≤ R(θ, ψ2) for all θ ∈ Rp, with strict inequality for some θ. A

rule ψ1 is equivalent to ψ2 if R(θ, ψ1) = R(θ, ψ2) for all θ.

Definition 2.6 (Admissibility). A decision rule is admissible if it is not

dominated by any other decision rule.

Definition 2.7 (Completeness). A class C of decision rules is essentially

complete if, for any decision rule ψ /∈ C, there is a decision rule ψ′ ∈ C

which dominates or is equivalent to ψ.
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A standard result is that if an admissible decision rule ψ is not in an

essentially complete class C, then there exists a decision rule ψ′ ∈ C which

is equivalent to ψ (see for instance Lemma 2, page 522, Berger 1985). An

essentially complete class does not necessarily contain all admissible decisions,

but it contains all admissible risk functions.

Theorem 2.2. (Complete Class) Given the decision environment of Defi-

nition 2.1, the decision rule associated with the test function ψA(Xn, λ) in (6)

is admissible and forms an essentially complete class.

Proof — See Appendix.

The admissibility result is obtained by applying Karlin-Rubin theorem to

the test function (6). It follows from two facts. First, even though the param-

eter θ may be a vector, the tested hypothesis is about a scalar. Second, the

randomness of the decision rule stems from the test function ψA(Xn, λ), while

the corresponding actions in case of rejection or non rejection are not random.

The next theorem finally derives the decision compatible with judgment:

Theorem 2.3. (Decision with judgment) Consider the decision environ-

ment of Definition 2.1. A decision maker with judgment A = {ã, α} selects

the action a(λ̂) from (2), where λ̂ is the max between 0 and the solution that

sets the test function ψA(Xn, λ̂) = γ in (6).

Proof — See Appendix.

3 Economic Intuition

To understand the intuition behind Theorem 2.3, consider that the null hy-

pothesis (3) for λ = 0 is a statement about the population gradient evaluated
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at the judgmental decision ã. It says that marginal moves from ã in the di-

rection of â(xn) do not decrease the loss function. If it is not rejected at the

given confidence level α, the chosen action must be ã = a(0). Rejection of the

null hypothesis, on the other hand, implies accepting the alternative, which

states that marginal moves away from ã decrease the loss function.

The decision problem is depicted in Figure 1. The decision maker has two

possible choices: 1) hold on to the judgmental decision ã, denoted by the action

J , or 2) follow the econometrician’s advice, which is equivalent to accepting

the bet Lα. In this second case, there is no information to distinguish the

upper part of the decision tree, denoted by the node H0, from the lower part,

denoted by H1. Under H0, the null hypothesis (3) is true, so that any deviation

from the judgmental decision ã does not result in a lower loss. A marginal

ε > 0 move away from ã results in the loss L(θ, ã) + |Z(θ, 0)|ε for sufficiently

small ε. Under H1, the null hypothesis is false, so that a marginal ε move

away from ã results in the loss L(θ, ã) − |Z(θ, 0)|ε. The dash line connecting

the two nodes represents true uncertainty for the decision maker, in the sense

that it is not possible to attach any probability to being in H0 or in H1. The

decision maker can choose the confidence level α, which puts an upper bound

to the probability that the null is wrongly rejected when it is true, and a lower

bound to the probability of correctly rejecting H0 when it is false.

In case of rejection, the preferred decision a(λ̂) is the action which lies at the

boundary of the (1−α)-confidence interval of the gradient Z(θ̂(Xn), λ̂). Other

actions would not be compatible with the confidence level α of the decision

maker. In fact, actions closer to the original judgmental decision ã are rejected

at the confidence level α, while actions further away may be wrongly rejected

with a probability greater than α.
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Figure 1: Statistical Decision Tree

Note: A decision maker with judgmental decision ã, confidence level α and loss function
L(θ, ã) can choose ã (branch J) or follow a statistical decision rule (branch Lα). For a
given estimate θ̂(xn) of the statistical parameter, the rule tests whether marginal (ε > 0)
deviations from ã are warranted. It will not decrease the loss if ã is optimal (node H0)
and it will not increase the loss if ã is not optimal (node H1). The dashed line connecting
H0 and H1 represents uncertainty, as the decision maker cannot distinguish between the
two parts of the tree and no probability can be attached to them. By choosing α, she can
control the probability p0 of increasing the loss function, in case H0 is true. α provides also
the lower bound to the probability p1 of correctly deviating from ã in case H1 is true.
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The confidence level α determines the willingness of the decision maker to

engage in the statistical bet. A decision maker who likes statistical uncertainty

chooses α = 100%. When α = 100% the confidence interval degenerates into a

single point and the null hypothesis that ã is optimal is always rejected. This

corresponds to the maximum likelihood decision a(1). At the other end of the

spectrum, a decision maker with an extreme aversion to statistical uncertainty

chooses α = 0%. When α = 0% the confidence interval degenerates into the

entire real line and the null hypothesis that ã is optimal is never rejected. This

corresponds to the minmax decision a(0). An intermediate case is represented

by the subjective classical estimator of Manganelli (2009), which sets α ∈ (0, 1)

and gives the decision a(λ̂) of Theorem 2.3.

There is a trade-off associated with the choice of the confidence level, which

is the one associated with Type I and Type II errors in hypothesis testing.

Lower values of α imply a lower probability of wrongly rejecting the null hy-

pothesis, but also a lower probability of correctly rejecting it. It is up to

the decision maker to solve this trade-off. The choice of the confidence level

depends on the decision problem at hand and the confidence that decision

makers have on their own judgmental decision. Notice that it is impossible

not to choose. Any decision maker facing a statistical decision problem is

forced to choose a confidence level.

4 An Asset Allocation Example

This section implements the decision with judgment, solving a standard port-

folio allocation problem.1 The empirical implementation of the mean-variance
1See Gelain and Manganelli (2020) for an application to estimation of Dynamic Stochastic

General Equilibrium models.
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asset allocation model introduced by Markowitz (1952) has puzzled economists

for a long time. Despite its theoretical success, standard estimators of the

portfolio weights produce volatile asset allocations with poor out-of-sample

performance (Brandt 2007). This paper takes a different perspective on this

problem, by starting with a judgmental decision and testing whether its per-

formance can be improved.

To implement the statistical decision rule of Theorem 2.3, I take a monthly

series of closing prices for the EuroStoxx50 index, from February 1987 until

September 2019. EuroStoxx50 covers the 50 leading Blue-chip stocks for the

Eurozone. The data is taken from DataStream. The closing prices are con-

verted into period log returns, xn ≡ (x1, . . . , xn)′, for a total of n = 392

monthly observations. Assume for simplicity Et(Xt+1) = θ1 and Vt(Xt+1) =

θ2, that is both first and second moments are not time varying, and define

θ ≡ [θ1, θ2]′. The methodology can be readily applied to cases where the

conditional mean and variance are time varying.

Consider an investor with a quadratic utility function U(W ) = W−0.5bW 2

with b > 0 and W < 1/b. The decision is about the fraction a of cash Wn to

be invested in the stock market. Assuming that the return on cash is zero,

the monthly portfolio returns are axi, for i = 1, . . . , n. The loss function

is the negative of the expected utility and is, up to a linear transformation,

L(θ, a) = −(1−bWn)aθ1 +0.5bWna
2(θ2 +θ2

1). The decision associated with the

maximum likelihood estimate is â(xn) = (1 − bWn)θ̂1/(bWn(θ̂2 + θ2
1)), where

θ̂1 = n−1 ∑n
i=1 xi and θ̂2 = n−1 ∑n

i=1(xi− θ̂1)2. The robust asymptotic variance-
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covariance matrix is Σ̂ = Â−1B̂Â−1 (see Newey and McFadden, 1994), where:

Â = n−1
n∑
i=1
∇θs(xi, θ̂), B̂ = n−1

n∑
i=1

s(xi, θ̂)s(xi, θ̂)′

s(xi, θ̂) = [(xi − θ̂1)θ̂−1
2 ,−0.5θ̂−1

2 + 0.5(xi − θ̂1)2θ̂−2
2 ]′

∇θs(xi, θ̂) =

 −θ̂−1
2 , −(xi − θ̂1)θ̂−2

2

−(xi − θ̂1)θ̂−2
2 , 0.5θ̂−2

2 − (xi − θ̂1)2θ̂−3
2



The gradient is Z(θ̂, λ) = −(1 − bWn)(â(xn) − ã)θ̂1 + bWna(λ)(â(xn) −

ã)(θ̂2 + θ̂2
1) and ∇θZ(θ̂, 1) = [−(1 − bWn)(â(xn) − ã) + 2bWna(1)(â(xn) −

ã)θ̂1, bWna(1)(â(xn)− ã)]′. There are now all the elements to compute σ̂2.

The decision rule of Theorem 2.3 is implemented by choosing bWn = 0.9

and the choices of A = {ã, α} reported in Table 1. By choosing α = 100%,

the decision maker ignores any judgmental decision and selects the decision

associated with the maximum likelihood estimate. In the current exercise, this

corresponds to investing 19% of the portfolio in the stock index and keeping

the rest in cash. At the other extreme, by choosing α = 0%, the decision

maker ignores any statistical evidence and selects the judgmental decision.

This can be seen from the fact that the decisions in the column under α = 0%

are identical to the corresponding ã.

Intermediate choices of the confidence level, α ∈ (0, 1), result in decisions

which shrink toward the maximum likelihood decision, provided there is suffi-

cient statistical evidence to move away from the judgmental decision. The null

hypothesis that ã = 0 is optimal is not rejected at the 10% confidence level,

and therefore the decision coincides with ã. Notice that this finding explains

the lack of participation in the stock market, even though the standard ex-

pected utility theory predicts that all agents should always invest some fraction

ECB Working Paper Series No 2512 / January 2021 15



Table 1: Asset allocation decisions

α
0% 1% 10% 100%

0 0 0 0 0.19
ã 0.5 0.5 0.5 0.4 0.19

1 1 0.53 0.4 0.19

Note: Share of wealth invested in the monthly Eurostoxx50 index, according to alterna-
tive choices of judgmental decision (ã) and confidence level (α). α = 100% always ignores
any judgmental decision and chooses the decision associated with the maximum likelihood
estimate. α = 0% always ignores any statistical evidence and chooses the judgmental deci-
sion. α ∈ (0, 1) results in decisions which shrink toward the maximum likelihood decision,
provided there is sufficient statistical evidence to move away from the judgmental decision.

of their wealth in the risky asset. Investors averse to statistical uncertainty

prefer not to invest in the stock market if the available statistical evidence

is not strong enough. This explanation is consistent with a larger body of

literature which explains the lack of participation with the assumption that

investors view stock returns as ambiguous (Epstein and Schneider, 2010).

Investors prefer also not to move away from the judgmental decision ã =

0.5 at the 1% confidence level. This judgmental decision is however rejected

at 10%, leading to an investment in the stock market of 40% of the overall

portfolio. Notice that ã = 1 is also rejected and leads to the same decision as

the one associated with ã = 0.5.

5 Conclusion

Judgment plays an important role not just for individuals, but also in policy

institutions. Most policy decisions are shaped by the judgment of policy mak-

ers. When advising a policy maker, the econometrician can test whether the

preferred judgmental decision is supported by models and data. If not, the
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decision incorporating judgment is always at the closest boundary of the con-

fidence interval. The probability of wrongly rejecting the judgmental decision

is bounded by the given confidence level. The decision rule is admissible and

is obtained by properly conditioning on the observed sample realization.

The confidence level reflects the attitude of the decision maker towards

statistical uncertainty. Decision makers who dislike any statistical uncertainty

always follow their own judgmental decision and ignore the advice of the econo-

metrician. At the other extreme, decision makers indifferent to statistical un-

certainty ignore their judgment and always choose the maximum likelihood

decision. Policy makers engaging in statistical decision making are likely char-

acterized by low, but not extreme, confidence levels.
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Appendix — Proofs

Proof of Theorem 2.1 — Consider a mean value expansion of the test

statistic:

Z(θ̂(Xn), λ) = Z(θ, λ) +∇′θZ(θ̄(Xn), λ)(θ̂(Xn)− θ)

The result follows from assumption 2 of Definition 2.1. �

Proof of Theorem 2.2 — Define X ≡
√
nσ̂−1Z(θ̂(Xn), λ) and ϑ ≡

√
nσ−1

Z(θ, λ). Given assumption 2 in the decision environment of Definition 2.1 that

n is finite, but sufficiently large for the asymptotic approximation to hold, it

follows that X ∼ N(ϑ, 1), under the null hypothesis that a(λ) is optimal. The

optimality test for a(λ) can be equivalently rewritten as H0 : ϑ ≥ 0.

The normal distribution belongs to the exponential family and therefore

possesses a monotone likelihood ratio (see section 1 of Karlin and Rubin,

1956). The test function foresees two actions: the null hypothesis is either

accepted or rejected. In case of rejection, it prescribes to marginally move

from a(λ) towards a(1). Denote the marginal move with a(λ + ε), for ε > 0.

Since the loss function is unique up to a positive linear transformation, let

L1 ≡
√
nσ−1ε−1L(θ, a(λ)) and L2 ≡

√
nσ−1ε−1L(θ, a(λ + ε)) be the losses

corresponding to the two actions. Taking the limit for ε→ 0:

lim
ε→0

(L2 − L1) =
√
nσ−1Z(θ, λ)

≡ ϑ

The function limε→0(L2 − L1) changes sign only once as a function of ϑ. The
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conditions of Theorem 5, page 530, of Berger (1985) are satisfied and the result

follows. �

Proof of Theorem 2.3 — If ψA(xn, 0) = 0, the null hypothesisH0 : Z(θ, 0) ≥

0 is not rejected at the given confidence level α. ã is therefore retained as the

chosen action.

If ψA(xn, 0) = 1, the null hypothesis is rejected. Let ∆̂ be the value

satisfying
√
nσ̂−1Z(θ̂(xn), ∆̂) = cα/2. Given the convexity assumption 4 in

Definition 2.1, this value exists and is unique. Denote with a(λ̂) the chosen

action and suppose by contradiction that λ̂ 6= ∆̂. If λ̂ < ∆̂, this implies that
√
nσ̂−1Z(θ̂(yn), λ̂) < cα/2, that is H0 : Z(θ, λ̂) ≥ 0 is rejected. This decision

cannot be optimal. If λ̂ > ∆̂, continuity implies that it exists ε > 0 such that

the null H0 : Z(θ, λ̂ − ε) ≥ 0 is rejected at the given confidence level α, even

though
√
nσ̂−1Z(θ̂(yn), λ̂ − ε) > cα/2. This decision cannot be optimal. The

chosen action must therefore be λ̂ = ∆̂. �
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