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Abstract

Can the aging process affect inflation? The prolonged decline of fertility and mortality rates induces
a persistent downward pressure on the natural interest rate. If this development is not internalized
by the monetary policy rule, inflation can be on a downward trend. Using the structure of a two-
sector overlapping generations model embedded in a New-Keynesian framework with price frictions,
calibrated for the euro area, this paper shows that following a commonly specified monetary policy
rule the economy features a ”disinflationary bias” since 1990, in a way that can match the downward
trend of core inflation found in the data for the euro area. In this model, continuing to follow the
same rule makes inflation to be on a declining pattern at least until 2030. At the same time, changing
consumption patterns towards nontradable items such as health-care generate a small ”inflationary
bias” a positive deviation of inflation from target of less than 0.1 percentage points between 1990
and 2030. In the model setting of this paper, this inflationary bias is not strong enough to counteract
the disinflationary bias generated by the downward impact of aging on the natural interest rate.

JEL codes: E43, E52, E58, J11.

Keywords: population aging, monetary policy, inflation, euro area, consumption composition.
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Non-technical summary

Europe is undergoing a demographic transition characterized by declining fertility and mortality rates

which reduce the size of the cohort entering the working-age and increase the average survival probabil-

ity. In parallel to this aging process, European economies have experienced persistently declining real

interest rates since the 1980s and, particularly since 2012, low inflationary pressures. This paper inves-

tigates to what extent demographic change can be associated to low levels of both the real interest rate

and inflation in the euro area, and does so in a context where the dynamics of prices can be influenced

by the sectoral shift of demand that goes hand in hand with aging.

First, within a two-sector overlapping generations model embedded in a New-Keynesian framework

with price frictions, the paper quantifies the impact on inflation of a monetary policy that does not in-

ternalize the endogenous impact of the demographic transition on the natural interest rate. As a result,

a ‘disinflationary bias’ is generated, which stems from a decrease of the natural interest rate by about

0.85 percentage points between 1990 and 2030. When the Taylor-type monetary policy rule features a

constant natural interest rate, inflation decreases persistently going from about 2% (the target) in 1990

to about 0.5% in 2030 using the UN (2017) demographic projections. This decrease seems to match the

declining path of low-frequency inflation, particularly since the global financial crisis of 2007. Using

a less naive monetary policy rule where the central bank updates regularly but with a delay the natural

level of the economic variables the disinflationary bias is reduced, but largely remains. In both cases the

central bank perceives too high a natural interest rate thus being chronically tighter than intended.

Second, the paper focuses on the sectoral analysis in order to capture the impact of the evolving

structure of consumption brought about by aging with an ensuing structural change in production. It

quantifies to what extent the change in demand composition due to aging can affect the dynamics of

inflation. It shows that due to the old-age consumption propensity towards nontradable items and sectoral

dynamics associated with imperfect labor mobility, prices in the nontradable sector (e.g. health sector)

grow more than in the tradable sector. The failure to internalize these sectoral developments, generates a

small “inflationary bias” of less than 0.1 percentage points between 1990 and 2030 from target inflation

Hence, this inflationary bias associated with the old-age consumption propensity towards nontradable

goods and services such as healthcare expenditures is not able to counterbalance the disinflationary bias

stemming from the impact of aging on the natural rate.

In conclusion and based on our model analysis, the ongoing demographic transition can carry im-

portant implications for monetary policy. Even though the impact of demographic transition on inflation

in the short- to medium-term horizon, which is relevant for monetary policy-making, is not bearing, this

slow-moving force seems to have contributed to a disinflationary bias in the euro area in the last two

decades. Monetary policy rules that do not internalize the downward impact of aging on the natural

interest rate are likely to be tighter than intended thus generating a potential downward trend of inflation.
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Looking ahead, aging and the declining working-age population are expected to continue

in those American and European countries. I cannot entirely rule out the looming menace

that may unveil itself into downward pressure on inflation rates [...]. (Shirakawa (2012),

Demographic Changes and Macroeconomic Performance: Japanese Experiences)

An excess of savings would simply mean that the equilibrium real interest rate required to

deliver price stability would be lower, and the central bank would have to factor that into

its monetary policy. Put another way, the effects of ageing would call for us to adjust our

instruments, but not our objectives. (Draghi (2016), How central banks meet the challenge

of low inflation)
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1 Introduction

Europe is undergoing a demographic transition. Though the extent and timing can vary substantially

across EU countries, fertility and mortality rates are decreasing thus reducing the size of the cohort

entering the working-age and increasing the average survival probability (see Figure 6). The result is

that the relative number of elderly is dramatically increasing. UN (2017) population statistics highlight

that before the 1980s the ratio of the elderly (aged 65 and above) to working-age (aged 15-64) was less

than 2 to 10, while in 2050 the proportion will be more than 5 to 10 in Europe (see Figure 7). Only

unimaginable inflows of young migrants could overturn this trend (Boersch-Supan et al., 2019). Similar

developments can be observed not only in Europe but also in other advanced economies.

In parallel to the demographic transition, advanced economies have experienced persistently declin-

ing real interest rates since the 1980s (Rachel and Smith (2015), Rachel and Summers (2019)) and at

the same time there has been a prolonged period of low inflation, particularly since the global financial

crisis (Draghi (2016), Yellen (2017)). Both observations have led to a search for “slow-moving secular

forces” (Eggertsson et al., 2019) such as demographic change that might connect the two occurrences,

questioning whether inflation is purely a business cycle phenomenon.

Can the aging process affect inflation? In other words, can aging affect the central bank’s ability

to attain its inflation objective? In the context of the “post-monetary world” (Woodford, 1998) featured

in the New-Keynesian theoretical setting, adopted in this paper and widely used in central banking, the

immediate answer would be ‘no’. In such an environment, in principle, the central bank can attain target

inflation in each period. If it is so, then the nominal interest rate is equal to its natural counterpart, i.e. the

rate of interest that, following Wicksell (1898)’s intuitions, would prevail in a counterfactual economy

absent nominal rigidities bringing output in line with its potential or natural level. The policy implication

would be to monitor the natural interest rate when setting the nominal interest rate.

The practical shortcoming is that, even assuming to have the “true model” of the economic reality

and knowing all its parameters, one would need to observe in real time the realized values of all the

shocks impinging on the natural interest rate. Instead, in most applications the central bank is assumed

to set the nominal interest rate following a policy rule based on observable variables where the natural

interest rate is often constant (see e.g. Gomes et al. (2012), a model of policy analysis for the euro area),

while considerable effort is devoted in estimating the natural interest rate trying to assess the stance of

monetary policy (see WGEM (2018)). The demographic transition can essentially be thought as one of

those shocks to the natural interest rate characterized by being slow-moving and persistent.

It is widely recognized that aging leads to a progressive decrease of the natural real interest rate

(recently see e.g. Krueger and Ludwig (2007), Gagnon et al. (2016), Carvalho et al. (2016), Lisack et al.

(2017), Jones (2018), Bielecki et al. (2018), Papetti (2019)). Labor-input becomes scarcer and individuals

are willing to save more in expectation of higher survival probabilities. Both factors are the dominant

forces in most general equilibrium overlapping-generations (OLG) models and contribute to increase

the capital-labor ratio, thus decreasing the marginal product of capital which equals the natural real

interest rate. Generally this happens despite the aggregate saving rate decreases as the share of elderly
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(dissavers, according to the underlying life-cycle structure) increases. Central bankers have commonly

considered this development induced by aging as negligible and too slow-moving to call for a monetary

policy reaction.1 Therefore, it becomes legitimate to ask whether neglecting for long the ‘glacial’ yet

continuous developments induced by aging might bring about significant misalignments of inflation from

its target.

The main contribution of this paper is to investigate whether the demographic transition can add

to explaining the recent low levels of inflation in the euro area. It does so in a threefold way. First,

within the New-Keynesian framework, it quantifies the impact on inflation of a monetary policy that

does not internalize the endogenous impact of the demographic transition on the natural interest rate. The

‘disinflationary bias’ so generated can be conspicuous, in presence of a natural interest rate projected to

decreases about 0.85 percentage points between 1990 and 2030. When the Taylor-type monetary policy

rule features a constant natural interest rate, inflation decreases persistently going from about 2% (the

target) in 1990 to about 0.5% in 2030 using the UN (2017) demographic projections. This decrease

seems to match the declining path of low-frequency inflation, particularly since the global financial crisis

of 2007. Using a less naive monetary policy rule where the central bank updates regularly but with a

delay the natural level of the economic variables, the disinflationary bias is reduced, but largely remains.

In both cases the central bank perceives too high a natural interest rate thus being chronically tighter

than intended. The key exogenous variable to understand the impact of the demographic transition on

the natural interest rate, hence on inflation, is the growth rate of the effective labor-population ratio. It

depends not only on the number of workers but also on their age-dependent productivity, as compared to

the number of people in the whole economy.

The second contribution is to focus the analysis on a two-sector model in order to capture the im-

pact of the evolving structure of consumption brought about by aging with ensuing structural change

in production. As analyzed by Boersch-Supan (2001), demand will shift towards more services and

products for older members of the society. Groneck and Kaufmann (2017) and Giagheddu and Papetti

(2017) find that this shift occurs particularly towards consumption items classifiable as nontradable with

a consequent increase of the relative price of nontradables in presence of imperfect mobility of labor

between sectors.2 Keeping their same tradable vs non-tradable classification and theoretical structure,

despite considering the euro area as a closed economy, we quantify to what extent the change in demand

composition due to aging can affect the dynamics of inflation. We find that, due to the old-age con-

sumption propensity towards nontradable items and sectoral dynamics associated with imperfect labor

mobility, prices in the nontradable sector grow more than in the tradable sector. When the central bank
1The observation by Bean (2004): “the ‘slow burn’ nature of demographic change suggests that the immediate implications for
monetary policy could be modest” has generally found support among central bankers. See e.g. Trichet (2007): “the demo-
graphic developments [...] are not the types of shock that may trigger significant and immediate monetary policy responses”
or Papademos (2007). Among academics, see e.g. Mojon (2002) commenting on Miles (2002); Kara and von Thadden (2010)
conclude: “The main finding is that demographic changes, while contributing slowly over time to a decline in the equilibrium
interest rate, are not visible enough within the shorter time horizon relevant for monetary policy-making to require monetary
policy reactions”.

2Notice that in the absence of frictions such as imperfect mobility of labor, a change in the relative demand would be simulta-
neously matched by a change in relative supply with no change in relative prices.
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internalizes the downward impact on the natural real interest rate throughout the demographic transition,

implicitly targeting only inflation in the tradable sector, which serves as the numerarire, generates an

“inflationary bias” which is, however, small in magnitude: a deviation of inflation from target of less

than 0.1 percentage points between 1990 and 2030.

The third contribution is methodological. Kara and von Thadden (2016) notice that monetary policy

is typically addressed using New Keynesian dynamic stochastic general equilibrium (DSGE) frameworks

in which demographic changes are not explicitly modelled. Trying to obviate this shortcoming, we

provide a New Keynesian framework that can be used to characterize the response of macroeconomic

variables to demographic shocks. The model we use is a version with nominal rigidities of Papetti

(2019) who in turn builds on Jones (2018), extending the model to two sectors with age-varying sectoral

consumption shares and imperfect labor mobility. Relying on his methodology allows to approximate

the equilibrium of a fully-fledged OLG model solving only for the aggregates. While we use it for the

purpose of perfect-foresight simulations where demographic change is the unique driver, the structure of

this model could be introduced into canonical DSGE frameworks, thus taking into account demographic

change via analytic and computational tools commonly used in policy making under the representative

agent paradigm. The drawback is that it does not offer an exact equilibrium characterization of the

underlying OLG model.

So far, the academic literature on the link between demographics and inflation is scarce and has

focused mainly to establish an empirical link not finding a consensus. Bobeica et al. (2017) find a positive

long-run relationship between euro area inflation and the growth rate of the working-age population ratio,

consistently with our theoretical prediction and with the empirical work of e.g. Gajewski (2015) and

Yoon et al. (2018). Opposing results are found by Juselius and Takats (2018) where increases of the

share of relatively older cohorts seem to be inflationary; and also by Aksoy et al. (2019) who include

inflation in an empirical long-run model and build a non-monetary theoretical model where the effect of

demographics on innovation is key.3

While it is common to evaluate the implications of demographic change using real macroeconomic

theoretical models, there exists only a limited set of papers that evaluate the nominal implications.

Within this set, the works mostly related to our contributions are Carvalho and Ferrero (2014), Kara

and von Thadden (2016), Bielecki et al. (2018), Jones (2018). Focusing on Japan, Carvalho and Fer-

rero (2014) use a two-age groups model based on Gertler (1999), augmented with nominal rigidities in

a New-Keynesian framework, clarifying to what extent deflation might arise in equilibrium as a conse-

quence of a nominal interest rate that does not adjust to the low-frequency movements of the natural

real interest rate induced by demographic change. A similar setting is used by Kara and von Thadden

(2016) who find below-target inflation persistence in the euro area due to aging, but only to a limited

extent. Bielecki et al. (2018) emphasize that setups à la Gertler (1999) might give results too sensi-

tive to the simplifying ‘Blanchard-Yaari’ assumptions (which involve an age-independent mortality risk

during retirement). Conventionally solving for the transition dynamics of a fully-fledged OLG model

within a New-Keynesian framework calibrated on the euro area, they estimate a prolonged period of
3See Boersch-Supan et al. (2019), section 7, for a short review of the literature.

ECB Working Paper Series No 2382 / March 2020 6



non-negligible below-target inflation due to a monetary authority that learns slowly over time the impact

of the demographic processes on the natural interest rate and potential output. A magnitude which is in

line with our estimates. Jones (2018), as explained above, offers the theoretical framework on which we

built our model, while his contribution is more focused on the deviation of output from its long-run trend

in the US, including business cycle fluctuations and the zero lower bound (ZLB) for monetary policy.

Härlt and Leite (2018) analyze the interplay between aging and inflation in a OLG model with money in

the utility function. They find that decreases in the population size are the main drivers of disinflationary

pressures while changes in the population structure matter little. Their approach differs essentially from

ours as it abstracts from a bond interest rate that equates aggregate money demand and supply which

instead is key for our New Keynesian perspective.

To our knowledge, Katagiri (2012) is the only paper that tries to quantify the impact of changes in

the demand structure induced by aging for monetary policy. However, there the main mechanism is

based on the assumption that aggregate productivity decreases (with a sequence of unexpected revisions

of population aging forecasts in Japan) because the change in demand structure brings about a resource

reallocation away from the sector with relatively higher productivity (manufacturing). Again, the implied

decrease of the natural interest rate not internalized by the central bank leads to deflation. We focus

instead on a mechanism purely based on relative prices under imperfect labor mobility.

Finally, the presence of a declining natural interest rate carries an important challenge for monetary

policy that deserves further investigation. If the central bank is successful in keeping inflation at target,

it must be the case that the policy rate is declining too. It is ‘physiological’. Therefore, it is obvious

that the demographic transition per se increases the probability of hitting the ZLB.4 As a consequence,

the central bank might be forced to reconsider the inflation target or perhaps adjust policies with excep-

tional instruments in order to have sufficient ammunition against recessionary shocks (see Ball (2014),

Williams et al. (2016), Kiley and Roberts (2017), Rogoff et al. (2017)). Andrade et al. (2018) have

studied the relationship between the optimal inflation target and the natural interest rate in a full-blown

New-Keynesian DSGE model that incorporates the potential non-linearities due to the ZLB. How this

relationship might be affected by demographic change is an exercise that still needs to be done in the

literature. We hope that our framework can provide help in this regard for future research.

The rest of the paper proceeds as follows. Section 2 presents the two-sector OLG model for a

closed-economy with “New Keynesian” frictions in price setting and how it can be approximated with an

aggregate representation. Section 3 provides the quantitative analysis by setting the calibration strategy,

discussing the effect of demographic transition on the real interest rate and inflation and inspecting the

mechanism through which the demographic transition can impact these two. It also examines the impact

of the demographic transition on sectoral developments and its implications for inflation. Section 4

concludes. Technical issues are relegated to the Appendices at the end of the paper.
4 Quantification of this probability is provided by Bielecki et al. (2018) for the euro area and Jones (2018) for US interacting
demographic trends with the estimation of standard temporary shocks. We do not do this exercise, focusing uniquely on
demographic forces.
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2 Model

This section presents a two-sector overlapping-generation (OLG) model for a closed-economy with

“New Keynesian” frictions in price setting. The exogenous demographic change is the only source

of change in the model (together with exogenous technological change in the production functions, but

the baseline analysis will abstract from it). Two sectors produce two different goods: tradable (T) and

nontradable (N).

2.1 OLG part

POPULATION. For age j = 0, 1, · · · J , the size of the population in period t, Nt,j , is given recursively

by:5

Nt,j = Nt−1,j−1st,j

where st,j is the conditional survival probability. Given that a person is aged j − 1 at time t − 1, st,j is

the probability to be alive at age j in period t.

HOUSEHOLD. The representative household at time t chooses: consumption in each sector cNt+j,j ,

cTt+j,j and the amount of assets to hold the sequent period at+j+1,j+1 under the assumption of a perfect

domestic annuities market6 for each age j ∈ {0, 1, 2, · · · J}; how to allocate in each sector hNt+j,j , h
T
t+j,j

an exogenously given amount of hours to work ht+j,j for each age j ∈ {0, 1, 2, · · · jr}, with income

yt+j,j composed by net of tax labor-income (1− τt+j)(wNt+jhNt+j,j +wTt+jh
T
t+j,j), pension transfer from

the government dt+j,j and a share of the real profits from the firms Ωt+j . The maximization problem

is written in real terms where the price of T-goods is the numeraire. Hence, given sectoral real hourly

wages and the relative price of N-goods:

wTt+j ≡
W T
t+j

P Tt+j
; wNt+j ≡

WN
t+j

P Tt+j
; Zt+j ≡

PNt+j

P Tt+j

whereW s
t+j , P

s
t+j for s ∈ {T,N} identify the sectoral nominal hourly wage and good price respectively,

5Following Domeij and Floden (2006), the the survival probabilities st,j are backed up using data onNt,j for all t, j. Therefore,
due to migration, the survival probabilities can exceed 1.

6The assumption of “perfect annuities market” means that the agents within each age group j agree to share the assets of the
dying members of their age group among the surviving members. Using the notation just introduced, consider those that at
time t are aged j. The total amount of assets of the dying members is: at,j(1− st,j)Nt−1,j−1, while the number of surviving
members is: Nt,j = Nt−1,j−1st,j . Hence, in the budget constraint the asset holding in period t + 1 will depend on what as
been accumulated plus this sort of ‘equal gift’ from the dying members given the real interest rate (rt) at which these assets
can be invested (minus consumption plus income):

at+1,j+1 = at,j(1 + rt) +
at,j(1 + rt)(1− st,j)Nt−1,j−1

Nt−1,j−1st,j
− ct,j + yt,j

=
at,j(1 + rt)

st,j
− ct,j + yt,j

which is the budget constraint written in the main text.
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the problem to solve from period t to infinity is the following:

max
cNt+j,j ,c

T
t+j,j ,h

N
t+j,j ,h

T
t+j,j ,at+j+1,j+1

{
J∑
j=0

βjπt+j,j
(ct+j,j)

1−σ

1− σ

}

subject to

ct+j,j = (cTt+j,j)
αj (cNt+j,j)

1−αj

ht+j,j =
[
χ−

1
ε (hTt+j,j)

ε+1
ε + (1− χ)−

1
ε (hNt+j,j)

ε+1
ε

] ε
ε+1

at+j+1,j+1 =
at+j,j(1 + rt+j)

st+j,j
− cTt+j,j − Zt+jcNt+j,j + yt+j,j

yt+j,j = (1− τt+j)(wNt+jhNt+j,j + wTt+jh
T
t+j,j)I(j ≤ jr) + dt+j,jI(j > jr) + Ωt+j

at+J+1,J+1 = 0

at,0 = 0

where πt+j,j =
∏j
k=0 st+k,k represents the unconditional survival probability with st,0 = 1; β is the

discount factor; rt+j is the real interest rate; 0 < αj < 1 ∀j are the age-dependent consumption shares

on T-goods; in the CES function for aggregate hours: 0 < χ < 1 and ε > 0; τt+j is a tax rate identified

below; I(·) is an indicator function; jr denotes the last working age (so that jr + 1 is the first period of

retirement) which is exogenously imposed.7 The household’s labor supply in efficiency units, ht+j,j =

hj for all t, is exogenous and depends on age but is constant over time. Particularly, it varies because

of changes in productivity and labor market participation similarly to Domeij and Floden (2006). The

parameter σ > 0 is the the coefficient of risk-aversion.

GOVERNMENT. Given a certain level of generosity of the PAYGO pension system, i.e. the replacement

rate d̄ defined as the pension benefit dt received by each household per unit of the average labor income

wt(1− τt)h̄, the government sets a tax rate τt such that its budget is balanced in each period:

dt = d̄wt(1− τt)h̄ (2.1)

τt =
dt
∑J

j=jr+1Nt,j

wtLt
(2.2)

where wt is the economy-wide hourly wage (whose expression is implied by the functional form with

which sectoral hours are aggregated), wt ≡ Wt

PTt
:

wt =
[
χ(wTt )ε+1 + (1− χ)(wNt )ε+1)

] 1
ε+1

7The two main non-standard features of the model are on the household’s side: age-varying sectoral consumption shares,
αj , justified by empirical findings; CES aggregator for sectoral hours, thus assuming that the representative household has a
preference to work in both sectors (for any positive sectoral wage) and that hours are partially substitutable between the two
sectors (as long as ε <∞). Particularly, notice that as ε→∞, sectoral hours tends to be perfectly substitutable, i.e. wages are
equalized between sectors and it results ht+j,j = hTt+j,j + hNt+j,j . On the contrary, as ε → 0, the relative supply of sectoral
hours tends to be perfectly rigid. A motivation for the use of this CES short-cut is provided in Cardi and Restout (2015) who
also provide country-specific empirical estimates of ε. It was first used by Horvath (2000).
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Lt represents the (exogenously given) aggregate hours worked:

Lt =
J∑
j=0

hjNt,j

and

h̄ =

∑jr
j=0 hj

jr + 1

is the average efficiency-hours worked in the working life-periods.

2.2 New Keynesian part

FIRMS. On the firms side, elements of the standard New Keynesian framework are introduced sym-

metrically in both sectors. The combination of the OLG part of the model with the New Keynesian one

will depend on the representation of the OLG household problem with wedges which means solving a

problem of an infinitely lived agent like in Jones (2018).

Final goods producers. For each sector s ∈ {T,N} the final good is produced under perfect competition

using intermediate goods indexed by i ∈ [0, 1] with a constant-returns-to-scale technology, solving the

profit-maximization problem (taking as given all intermediate goods prices P sit and the final good price

P st ):

max
Y sit

{
P st Y

s
t −

∫ 1

0
P sitY

s
itdi

}
(2.3)

s.t Y s
t =

(∫ 1

0
(Y s
it)

ηs−1
ηs di

) ηs
ηs−1

(2.4)

whose solution gives the demand function of input i for the production of final good s: Y s
it =

(
P sit
P st

)−ηs
Y s
t

for all i ∈ [0, 1]. Thus, ηs measures the constant elasticity of demand for each intermediate good.

Intermediate goods producers. The problem for each monopolistically competitive intermediate good

producer i ∈ [0, 1] is divided in two stages. In the first stage, taking nominal input prices W s
t , P

T
t rt

as given, firm i in each sector s ∈ {T,N} solves the following cost minimization problem, choosing

sectoral labor (Lsit) and capital (Ks
it) inputs:

min
Lsit,K

s
it

W s
t L

s
it + P Tt rtK

s
it (2.5)

s.t. Y s
it = (Ks

it)
ψ(AstL

s
it)

1−ψ (2.6)

where the last expression is the supply of inputs for the final good s producer. In the second stage, each

firm i ∈ [0, 1] in each sector s ∈ {T,N} chooses the price that maximizes the discounted real profits,

taking as given the demand for their differentiated product, with quadratic cost of changing prices à la
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Rotemberg (1982):8

max
P sit

{
E0

∞∑
t=0

Λ0,t

[
(P sit −MCst )

Y s
it

P Tt
− θs

2

(
P sit

ΠsP sit−1

− 1

)2 P st Y
s
t

P Tt

]}
(2.7)

s.t. Y s
it =

(
P sit
P st

)−ηs
Y s
t (2.8)

with Λt,t+1 = β λt+1

λt
, where λt is the Lagrangian multiplier in the economy’s resource constraint whose

existence owes to the representation of the household’s problem in terms of aggregate wedges (or “demo-

graphic adjustment factors”, see Jones (2018)) that allow to transform the OLG structure of the problem

into a standard infinitely lived representative agent problem; MCst identifies the nominal marginal cost

in sector s which is the Lagrangian multiplier in the cost minimization problem in the first stage above.

MONETARY POLICY. The central bank follows the following simple Taylor-type rule with reaction

parameter φπ > 1:9

Rt
R

=

(
Πt

Π

)φπ
(2.9)

where Rt ≡ (1 + it) is the gross nominal interest rate (R its steady state vale), Πt ≡ Pt
Pt−1

is the gross

rate of aggregate inflation (Π its steady state value) and can be identified by using the following identity:

PtCt = P Tt C
T
t + PNt C

N
t

where Ct =
∑J

j=0Nt,jct,j , CTt =
∑J

j=0Nt,jc
T
t,j , C

N
t =

∑J
j=0Nt,jc

N
t,j .

Once the OLG part of the model is represented as an infinite lived representative household problem, it

will be necessary to add a nominal bond as a choice variable for the representative household in order to

make monetary policy implementable.

CLEARING. With pricing cost à la Rotemberg (1982), aggregation on the firms side leads to have

simply: Ks
it = Ks

t , Lsit = Lst for each intermediate good firm i ∈ [0, 1], for each sector s ∈ {T,N}. On

the household side one needs to add up over each age class j.

Hence, the expression for labor market clearing in each sector s ∈ {T,N} for each period t is:

Lst =
J∑
j=0

hst,jNt,j

8Similarly to Keen and Wang (2007) it is assumed that each intermediate goods firm, in each sector s, pays a quadratic cost
of nominal price adjustment when the size of its price increase deviates from steady state inflation, Πs. The fact that it is
measured in deviation from steady state inflation will simplify the first order conditions.

9The assumed simplicity of this policy rule serves to isolate the channel of interest and will be relaxed later, see section 3.4.
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The capital market also needs to clear:

KT
t +KN

t =
J∑
j=0

at+1,j+1Nt,j

The market for both goods needs to clear. It is assumed that only T-goods can be used for the purpose of

capital investment. Hence:

Y N
t =

J∑
j=0

cNt,jNt,j +
θN
2

(
ΠN
t

ΠN
− 1

)2

Y N
t

Y T
t =

J∑
j=0

cTt,jNt,j +
θT
2

(
ΠT
t

ΠT
− 1

)2

Y T
t +KT

t+1 +KN
t+1 − (1− δ)(KT

t +KN
t )

Finally, one needs an expression to distribute the profits generated by the monopolistically competitive

firms to the household as an age-independent transfer Ωt.

2.3 Aggregate representation with demographic wedges

Appendix A shows that the model can be approximated in terms of an infinitely lived representative

agent using demographic wedges, i.e. exogenous time-varying parameters that capture the evolving

age-structure in the economy (that directly affects the preferences of the representative agent and the

efficiency units of labor used in production).10 The special case of logarithmic preferences (i.e. σ = 1)

is used. Again, all real variables are meant to be evaluated in terms of the price of T-goods.

HOUSEHOLD. On the household side the age-heterogeneity is now represented by the demographic

wedges γTt , γNt :

γTt =
J∑
j=0

λi,jφi,jt Nt,jαj , γNt =
J∑
j=0

λi,jφi,jt Nt,j(1− αj) (2.10)

where, following Jones (2018), the welfare weights λi,j are set to be equal across all j and φi,jt is always
1. The representative household now chooses aggregate sectoral consumptions (CTt , CNt ), aggregate
sectoral labor supplies (LTt , L

N
t ), savings in the form of claims on aggregate capital (Kt) and of nominal

10The methodology of approximating the model has been first developed by Jones (2018) who shows (see his Appendix) how
close the approximate solution is to the actual solution obtained by solving the OLG model in a standard way (i.e. by keeping
track of the dynamics of each generation’s variables, not only of the aggregate variables). The aggregate representation
presented here is based on Papetti (2019) and differs from Jones (2018) in two main ways: (i) instead of one sector, here there
are two sectors with imperfect substitutability of sectoral hours worked and with age-specific sectoral consumption shares; (ii)
instead of endogenous aggregate labor choice, here the supply of labor is fully exogenous (and depends, as in Jones (2018),
on age-specific productivity in addition to the number of people in the labor force with exogenous retirement age).
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bonds (Bt), solving the problem:

max
CTt ,C

N
t ,L

T
t ,L

T
t ,Kt,Bt

E0

∞∑
t=0

βt log

[(
CTt

)γTt (
CNt

)γNt ]
(2.11)

s.t. CTt + ZtC
N
t +

Bt
PTt

+ It = (1− τt)(wTt LTt + wNt L
N
t ) + rtKt−1 +Rt−1

Bt−1

PTt
+ Tt (2.12)

Kt = (1− δ)Kt−1 + It (2.13)

Lt =
[
χ−

1
ε (LTt )

ε+1
ε + (1− χ)−

1
ε (LNt )

ε+1
ε

] ε
ε+1 (2.14)

where Rt is the gross nominal interest rate, Tt denotes transfers (pension from the government, profits

from firms), the tax rate τt is the same as the one identified in the previous section.

FIRMS. On the firms side the problem is identical to the one presented in section 2.2.

MONETARY POLICY. The Taylor rule of section 2.2 holds, where the gross inflation rate is identified

by the identity for aggregate consumption (PtCt = P Tt C
T
t + PNt C

N
t ) which gives (see Appendix A):

P t ≡
Pt

P Tt
=
CTt + ZtC

N
t

Ct
=

∑J
j=0 λ

i,jφi,jt Nt,j∑J
j=0 λ

i,jφi,jt Nt,jα
αj
j

(
1−αj
Zt

)1−αj (2.15)

Have Πt ≡ P t
P t−1

, it follows:11

Πt = ΠtΠ
T
t

Finally, to identify inflations one needs to use the following identity:

ΠN
t =

Zt
Zt−1

ΠT
t

CLEARING. Aggregate labor (in efficiency units) and capital markets clear:12

Lt =

J∑
j=0

hjNt,j (2.16)

Kt−1 = KN
t +KT

t (2.17)

11Consider the definition of gross inflation in the T-sector:

ΠT
t ≡

PTt
PTt−1

=
PTt
PTt−1

Pt
Pt

Pt−1

Pt−1
=
P t−1

P t
Πt

12Consider the underlying timing and dynamics. Throughout period t − 1 the representative household saves Kt−1. At the
end of period t− 1, a financial intermediary stores the household’s savings Kt−1 with a costless technology. In period t this
intermediary transforms savings into capital: Kt−1 = KN

t +KT
t . How? CapitalKt−1 is rented to the firms which pay rental

rate rtKt and return undepreciated capital (1− δ)Kt to the intermediary. This financial intermediary pays interest, define it
rFt , to the household (1 + rft )Kt−1 making zero profit so that rtKt−1 + (1 − δ)Kt−1 − (1 + rFt )Kt−1 = 0. Hence the
household’s savingsKt−1 give a return: 1+rFt = 1+ rt− δ, which justifies the expression in the representative household’s
budget constraint above.
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The two goods markets clear:

CNt = Y N
t −

θN
2

(
ΠN
t

ΠN
− 1

)2

Y N
t (2.18)

CTt +Kt = (1− δ)Kt−1 + Y T
t −

θT
2

(
ΠT
t

ΠT
− 1

)2

Y T
t (2.19)

Bonds are in zero net supply, hence Bt = 0.

SHOCKS. Aggregate uncertainty is not considered in this model. Instead, the model has a perfect-

foresight set-up: there is a one-time shock, that moves the system outside the initial steady state, where

the time-path of all exogenous demographic variables is revealed; the initial shock is unanticipated but

agents are perfectly aware of the entire path revealed, including the fact that at some point in the future

demographic variables will remain at the given constant level forever. Essentially, the exogenous varia-

tion in the number of people Nt,j in all periods t and in all cohorts j is the only shock in the model. It

gives rise to three exogenous variables, γTt , γNt , Lt, and it appears in the auxiliary price index P t whose

dynamics is not exogenous as it depends on the endogenous relative price of N-goods, Zt.

EQUILIBRIUM. Given the dynamics of the exogenous number of people Nt,j in all periods t and

in all cohorts j (which leads to the exogenous dynamics of the parameters: γTt , γNt , Lt, according

to (2.10) and (2.16)) and sectoral production technologies ATt , ANt , equilibrium for this closed econ-

omy is a sequence of prices
{
wTt , w

N
t , wt, rt,mc

T
t ,mc

N
t , Zt, Rt,Π

T
t ,Π

N
t ,Πt,Πt

}∞
t=0

and quantities{
LTt , L

N
t ,K

T
t ,K

N
t ,Kt, Y

T
t , Y

N
t , CNt , C

T
t

}∞
t=0

, such that:

1. The representative household solves (2.11), maximizing expected utility function subject to the

budget constraint (2.12), the law of motion of capital (2.13) and the preference to work in either

sector (2.14);

2. For each sector s ∈ {T,N} final goods producers solve (2.3) maximizing profits subject to their

technology constraint (2.4); intermediate goods producers solve (2.5) and (2.7) maximizing profits

subject to their technology constraint (2.6) and the demand for their differentiated product (2.8);

3. the fiscal authority sets a tax rate (2.2) such that its budget is balanced in each period given a certain

individual pension transfer (2.1); the monetary authority sets the nominal interest rate according

to the policy rule (2.9);

4. The markets for capital (2.17) and for goods (2.19), (2.18) clear.

Appendix B shows the equilibrium conditions. They are derived in section B.1 and reported with quan-

tities expressed in efficiency units (divided by the exogenous Lt) in section B.2. The initial steady state

is analytically derived and discussed in comparison to the final steady state in section B.3. The version

of the model log-linearized around the initial steady state (see section B.4) is used to study the transition

dynamics presented in the next session. The focus is on an equilibrium with no exogenous sectoral tech-

nology growth, i.e. ATt = AT , ANt = AN for all periods t. Notice that since labor supply is exogenous,
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the fiscal authority is uninfluential in this representative agent’s economy so that equations (2.2), (2.1)

do not enter in the equilibrium conditions necessary to pin down prices and quantities.

3 Quantitative analysis

The goal of the quantitative analysis is to study the transition dynamics of the macroeconomic system

from an initial to a final steady state, where the unique exogenous driving process is the time-varying

demographic structure. The focus is on the euro area comprised of twelve countries (EA12 henceforth)

modelled as a closed economy.13 The initial steady state is assumed to be year 1950 and agents learn

about the future demographic development at the beginning of the following year. The demographic

structure varies over the period 1950-2100 as provided in the data, remaining at the reached level forever

after 2100. Thus, the final steady state is reached at some point in time after 2100. The model is set at

the yearly frequency.

3.1 Calibration and time-varying parameters

Table 1 summarizes the values of the parameters in the baseline calibration. The initial steady state is

such that the capital- and investment-output ratios match the empirical average values for EA12 which

are found to be: K/Y = 2.76, I/Y = .21.14 The annual depreciation rate of the capital stock, δ, follows

immediately from the law-of-motion of capital (2.13) evaluated in steady state: δ = .21/2.76 = .0761.

The capital elasticity of output in the Cobb-Douglas production function, ψ, is set to the standard value

of .33. The degree of labor mobility between the two sector is captured by the parameter ε in the

CES aggregator (2.14) whose chosen value, .895 , is the GDP-weighted average on the country-based

estimates provided by Cardi and Restout (2015).15 To fully isolate the effect of demographic change,

differences in sectoral labor-technology parameters and in their growth are not considered. Hence AT =

AN = 1 for all periods. Following Gomes et al. (2012), the constant elasticity of demand for intermediate
13EA12 consists of the following countries: Austria (AT), Belgium (BE), Finland (FI), France (FR), Germany (DE), Greece

(EL), Ireland (IE), Italy (IT), Luxembourg (LU), Netherlands (NL), Portugal (PT), Spain (ES).
14The series used are: “Gross capital formation (constant LCU)”, “Gross fixed capital formation (constant LCU)” and “GDP

(constant LCU)”, data source: World Development Indicators (WDI) by the World Bank (update: January 2018). The capital
stock is estimated by applying the perpetual inventory method (see Technical Appendix of Cardi and Restout (2015)). The
initial capital stock (the base year is 1970, the first year data are available for all EA12 countries) is computed using the
formula:

K1970 =
I1970
gI + δK

where I1970 corresponds to the gross capital formation in 1970. gI is the average growth rate, while δK is set to 6% (see
McQuinn and Whelan (2016)). The capital stock is obtained via the neoclassical law-of-motion: Kt+1 = (1 − δ)Kt + It.
Averages are taken over the time range available, 1970-2016. The series for EA12 are obtained by weighting each country
with its real GDP share in year 2000.

15They provide estimates for 14 OECD countries, of which only 8 are EA12 members (specifically: Belgium, Finland, France,
Germany, Ireland, Italy, Netherlands, Spain). Hence, the final value of ε is the GDP-weighted average on these 8 countries.
Weights are obtained from the 2000 “Gross domestic product at market prices, chain linked volumes (2005), million euro”
provided by EUROSTAT. The comparison between the value obatained for EA12, 0.895, and the one of Cardi and Restout
(2015) reported for the United States, 1.8, reveals that the United States has more labor mobility between sectors than the
euro area.
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goods is set to ηT = 6 in the T-sector and to ηN = 3 in the N-sector, which implies a steady state mark-

up of price over marginal cost in the two sectors (ηT /(ηT−1), ηN/(ηN−1)) of 1.2 and 1.5, respectively.

Table 1: Baseline calibration: parameter values

Parameter Value Note
δ 0.0761 depreciation rate of capital (target:K/Y = 2.76, I/Y = .21, source: WDI)
ψ 0.33 capital elasticity of output (in Cobb-Douglas production function, both sectors)
ε 0.895 degree of sectoral labor mobility (immobility: ε = 0). Source: Cardi and Restout (2015)
AT 1 labor-technology level in the T-sector
AN 1 labor-technology level in the N-sector
ηT 6 elasticity of demand for intermediate goods of the T-sector. Source: Gomes et al. (2012)
ηN 3 elasticity of demand for intermediate goods of the N-sector Source: Gomes et al. (2012)
J 86 terminal life-age (100). Death with certainty at age 101
jr 50 terminal working-age (64), see Kara and von Thadden (2016), Bielecki et al. (2018)
αj Figure 8 share of private consumption devoted to T-goods. Source: EUROSTAT 2010
hj Figure 9 individual life-cycle labor supply in efficiency units. Source: Domeij and Floden (2006)

γNt /γ
T
t Figure 10 relative wedge on the representative household preferences. Source: UN, see αj

Lt Figure 11 aggregate labor supply in efficiency units. Source: UN, see hj
χ 0.6511 bias towards the T-sector for labor supply choice, see Cantelmo and Melina (2017)
β 0.9847 individual discount factor (endogenous in the initial steady state)
θT 34.135 Rotemberg (1982) price adjustment cost in the T-sector, based on Gomes et al. (2012)
θN 13.654 Rotemberg (1982) price adjustment cost in the N-sector, based on Gomes et al. (2012)
Π 1.02 inflation target. Source: Gomes et al. (2012)
φπ 1.5 inflation coefficient in the Taylor rule. Source: Kara and von Thadden (2016)

There are two age-variant (time-invariant) parameters. (i) The share of private consumption devoted

to T-goods, αj , which is obtained using a cubic interpolation from EUROSTAT data (see Figure 8 where

the blue-thick line representing EA12 is the GDP-weighted average of the single countries series (thin

lines)). The same is used in Giagheddu and Papetti (2017). It can be seen that the consumption share

on T-goods is stable at about 50% till age 50, then it smoothly declines reflecting increased expenditure

in items such as health care. (ii) The individul labor supply in efficiency units, hj , which is interpolated

using the data points provided by Domeij and Floden (2006) (see Figure 9). It is assumed that individuals

enter the world as workers at age 15, all retiring at age jr+ 1 = 65 (this is why hj drops abruptly to zero

at age 65). An assumption which is standard, see Kara and von Thadden (2016), Bielecki et al. (2018)

for the euro area.

The empirical number of people, Nt,j , by single age groups (ages 15, 16, ..., 100+) in the time-range

1950-2100 is taken from UN (2017): World Population Prospects: The 2017 Revision.16 These data

multiplied with αj and hj by age j for each year t allow to identify the three exogenous time-varying

parameters in the model: γTt , γNt , Lt. The first two are depicted in Figure 10 and only their ratio (red

line, right-hand-side scale) matters to identify prices and quantities in steady state. In the initial steady

state the value of this ratio, γN/γT , is 1.0316, the empirical value in 1950. The third one instead, the

exogenous aggregate labor supply in efficiency units Lt, is not strictly necessary to characterize the

steady state once variables are considered in units of labor efficiency (see Appendix B.3). Following

Cantelmo and Melina (2017), the representative household’s bias towards the T-sector in the choice of
16Before year 1990, the number of people aged more than 80 are grouped together in the set 80+ for all countries. Therefore,

as a strategy to identify the number of people in each single age group after age 80 for years 1950-1989, the implied survival
probabilities of 1990 for those aged more than 80 have been applied backwards.
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sectoral labor supply (see (2.14)), χ, is calibrated such that in the initial steady state wage equalization

(i.e. wN = wT ) is given. This requires to determine χ endogenously in the initial steady state (see

Appendix B.3.1). Given the values of the parameters mentioned above, the initial steady state is solved

numerically in order to obtain the value of the individual discount factor β that allows to match the

targeted capital-output ratio. The obtained value of β is 0.9847 which in turn implies χ = 0.6511 and

a steady state real interest rate, 1 + r − δ, of about 1.56%.17 As shown in Appendix B.3.2, the final

steady differs from the initial one as χ remains fixed at its initial level so that any change induced by a

permanent shift of γN/γT has to be compensated by changes in relative prices.

On the nominal side of the model, the sectoral Rotemberg’s price adjustment costs, θT , θN , are set

to match a probability of optimally resetting prices à la Calvo (1983) at the quarterly frequency of (1-

0.92) in both sectors, as estimated by both Smets and Wouters (2003) and Christoffel et al. (2008) for

the euro area, used by Gomes et al. (2012), in order to have the same slope of the “New-Keynesian

Phillips Curve” in both sectors (see equations (B.25), (B.26)) given the values of ηT , ηN . This procedure

gives θT = 34.135, θN = 13.654.18 The steady state target inflation is assumed to be at the yearly 2%,

i.e. Π = 1.02, as in Gomes et al. (2012).19 The inflation coefficient in the Taylor rule (2.9), φπ, has

the standard value of 1.5 as used by Kara and von Thadden (2016) to study the impact of demographic

shocks in the euro area. Contrary to them, the inertial parameter of the nominal interest rate is set zero

in the baseline specification, in the spirit of Carvalho and Ferrero (2014).

3.2 The impact of the demographic transition on interest rates and inflation

Figure 1 and 2 summarize the main results of the transition dynamics stemming from the log-linearised

system in deviations from the initial steady state (see system of equations (B.1) – (B.26) in Appendix

B.4), where the time-varying parameters (guided by the change in the demographic age-structure, the
17The value of 1.56% for the steady state real interest rate 1 + r − δ = 1/β is smaller than what is assumed by Christoffel

et al. (2008), Gomes et al. (2012), Kara and von Thadden (2016), who have values of 2.5%, 3%, 3.9% respectively, but higher
than what assumed by Bielecki et al. (2018) who target an average real interest rate of 1.2% observed in the euro area over
the period 1999-2008. Hence, the value found is broadly in line with the literature, providing model’s predictions that are
consistent with the levels of the empirical variables the model is compared to, see section 3.2. For the calibration of χ the
closest comparison can be made in the literature is Cardi and Restout (2015), who set it to 0.4 to match a tradable content of
labor compensation of 35%. However, they do not measure labor in units of efficiency, while they assume that firms in the T-
sector are 50% more productive than in the N-sector. Hence the higher value for χ here compared to Cardi and Restout (2015)
can be connected to the fact that here labor efficiency is considered (notice that considering a relatively higher productivity in
the T-sector of 50% would give a χ = 0.4× 1.5 = 0.6 which is roughly what calibrated here).

18Gomes et al. (2012) estimate for the euro-zone a Calvo parameter at the quarterly frequency for prices of both domestic
tradables and nontradables of ξH = 0.92. To get the value at the annual frequency, consider that the Calvo probability of
resetting prices within two periods of different lengths hi 6= hj must satisfy (1 − ξH(hi))/hi = (1 − ξH(hj))/hj , see
Ahrens and Sacht (2014). Hence, if the base period is one quarter, then hj = 1, ξH(hj) = ξH and one year period in quarters
is hi = 4. Hence, the Calvo parameter at the annual frequency obtained from the quarterly frequency is ξ ≡ ξ(hi) =
1 − (hi/hj)(1 − ξH(hj)) = 1 − 4(1 − 0.92) = 0.68. The slope of the log-linearized New Keynesian Phillips Curve for
nontradables in Gomes et al. (2012) is given by (1 − βξH)(1 − ξH)/(ξH(1 + βχH)), where χH = 0.5 is the indexation
to previous quarter’s inflation. Hence, by equating this to the corresponding slope in (B.26), i.e. (ηN − 1)/θN , using yearly
values one gets θN = (ηN − 1)ξ(1 + βχ4

H)/((1 − βξ)(1 − ξ)) = 13.654. A specular procedure is applied to identify θT

given ηT .
19This assumption might be improper given that the initial steady state is calibrated with the demographics of year 1950, but it

is coherent with the focus after the 80s of the subsequent analysis.
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unique source of variation in the model, see equations (B.1) – (B.5)) have been conveniently smoothed.

Two monetary policy rules are compared.20 A policy of strict inflation targeting for each period t:

Πt = Π (3.1)

and a simplified Taylor rule:

Rt = R

(
Πt

Π

)φπ
(3.2)

where φπ is set to the standard value of 1.5.

Recall that in the standard New-Keynesian framework adopted here the central bank can stay at target

inflation in each period. Essentially, this is because it is assumed that inflation is a monetary phenomenon

such that the central bank, by changing the money supply given the money demand, can attain whatever

level of inflation (under normal circumstances, e.g. the zero lower bound on the nominal interest rate is

not binding). Thus, the equilibrium in the money market leads to a nominal interest rate which is the only

montetary policy instrument in the baseline New Keynesian framework.21 Monetary policy can have an

impact on real macroeconomic variables only if, by changing the nominal interest rate, it brings about a

change in the real interest rate. At least this is the conventional view.22 In this framework, a change in the

nominal rate implies a non-zero change in the real interest rate only if there is price rigidity. However, if

the central bank decides to stay at target inflation in each period, the implicit assumption is that there is no

price rigidity, because a non-zero cost of changing prices arises only if inflation deviates from its target.

Therefore, by following a policy of strict inflation targeting the central bank can replicate the equilibrium

allocation that would prevail with flexible prices, i.e. the equilibrium where real macro-variables are at

their “natural” level that one could attain by setting the price rigidity parameters, θT and θN , equal to

zero.23 A corollary is that under rule (3.1) the central bank sets a nominal interest rate that allows the

real interest rate to be equal to its natural level in each period.

On the contrary, suppose that inflation happens to be at target under rule (3.2). In this case, the rule

says to set the nominal interest rate equal to its steady state value. But this value might be too high or too
20See Carvalho and Ferrero (2014) for a similar comparison.
21Notice that the model is solved without any equation keeping track of the monetary developments. The underlying assumption

is that the money supply, set by the central bank, adjusts endogenously in order to bring about the desired change in the
nominal interest rate given a certain money demand, so that the money market clears. But the model can be solved with no
reference to the money market, see Gali (2015).

22For a critical assessment of the monetary transmission mechanism in New-Keynesian models see Rupert and Sustek (2019).
23Precisely, consider the standard New Keynesian Phillips curve with only one sector in log-deviations from steady state:

(θ/(1 − η))π̂t = m̂ct + (θ/(1 − η))βEtπ̂t+1, where θ is the Rotemberg’s price adjustment cost, and η is the intermediate
goods elasticity of demand. If the central bank decides to keep inflation at target in each period, π̂t = 0 ∀t, there is no
shock that creates a trade-off between inflation and marginal costs, so that marginal costs are always at steady state, m̂ct = 0
∀t. That is, a policy of strict inflation targeting attains the same allocation that would prevail with θ = 0. In the case of
two sectors analysed here, when the central bank sets the aggregate inflation (i.e. the composite of the inflations in the two
sectors) at target in each period, what happens is that any change in the inflation of one sector induced by a demographic
shock is compensated by a change in the inflation of the other sector for a magnitude such that aggregate inflation is fixed at
target. In this way, despite there being changes at the sectoral level, there are no changes at the aggregate level so that the
macro-equilibrium allocation with strict inflation targeting is the same as the one with θT = θN = 0.
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low for the effective objective of reaching target inflation in the medium-term depending on whether the

natural rate is lower or higher than its steady state value due to structural forces in the economy such as

demographics.

The line with ‘+’ in Figure 1a plots the real interest rate, 1 + rt− δ, that prevails under strict inflation

targeting, namely the natural real interest rate, as a consequence of the exogenous demographic transition

in the model. In the period 1990-2030 it is projected to decrease about 0.72 percentage points (pp) going

from 1.57% in 1990 to 0.85% in 2030. The violet-shaded area highlights the discrepancy between the

steady state and the natural values. It is labelled as a “physiological discrepancy” because the model

predicts that the forces of the demographic transition lead the real economy there, unavoidably. The line

with ‘+’ in Figure 2a shows the corresponding natural nominal interest rate, which goes from 3.59% in

1990 to 2.75% in 2030, a decrease of 0.84pp.24 Again, this decrease is physiological in the sense that

it is unavoidable: that dashed line is the path of the nominal interest rate that the central bank should

follow to have inflation at target in each period given the demographic transition.

What happens if instead the central bank follows the Taylor rule? The continuous line in Figure 2a

shows the nominal interest rate under the Taylor rule specified in (3.2). It falls considerably more than in

the case of strict inflation targeting, decreasing overall by about 2.5pp from 1990 to 2030. Furthermore,

as shown in Figure 2b (continuous line), the inflation rate continuously decreases going from about the

target level of 2% in 1990 to a level as low as 0.37% in 2030. As also noted by Carvalho and Ferrero

(2014), the failure in the conduct of monetary policy to internalize the consequences of the demographic

transition on the natural real interest rate generates a sort of “perverse general equilibrium effect”: by

following the Taylor rule the central bank ends up in an equilibrium with systematically lower nominal

interest rates and inflation than in the case of strict inflation targeting. In other terms, by not accounting

in the monetary policy rule for a natural interest rate that declines over time due to the demographic

transition (always below its steady state value), the central bank generates a “disinflationary bias” which

is highlighted by the lightblue shaded–area in Figure 2. By following rule (3.2) it is as if the central

bank generates a contractionary monetary policy shock in each period, in partial equilibrium.25 Such

a shock generates disinflation which leads the central bank to reduce the nominal interest rate. In the

model, in general equilibrium, the nominal interest rate decreases meaning that the initial contractionary

shock is more than compensated. But not sufficiently given that disinflation is not avoided. Indeed, in

this context, disinflation is generated because the central bank does not react enough (i.e. φπ is not high

enough), as shown in the next section.

It is an interesting feature of the model that such dynamics of the nominal interest rate and inflation

occurs with almost no discrepancy between the natural and the actual real interest rate. The continuous

line in Figure 1a shows that the real interest rate generated by the model with the Taylor rule under price

rigidity, the ‘actual’ one, is almost identical to the one under strict inflation targeting (line with ‘+’),
24Notice that the nominal interest rate is Rt = (1 + rt − δ)ΠT

t+1, given that the good in the T-sector is the numeraire. The
reason why the natural Rt decreases more than the natural rt is that inflation in the T-sector under flexible prices decreases
slightly as a consequence of demographic change.

25Recall that in the standard three-equations Gali (2015)’s linear model, a negative shock to the natural real interest rate enter
the equilibrium conditions in a way equivalent to a positive (i.e. contractionary) monetary policy shock. See section 3.3.
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the ‘natural’ one, even though the composition is very different: much lower nominal interest rate and

inflation in the case of the Taylor rule. The next section will keep under scrutiny this result which is also

shared by Carvalho and Ferrero (2014) in a similar setting and points to a limited role of price rigidity in

this context.

Finally, consider the data used to have an empirical reference for the model. First, because of no

arbitrage, the model does not distinguish between risk-free rate and net return on capital which, by opti-

mal inputs utilization, is equal to the net marginal product of capital (MPK). Hence the real interest rate

generated by the demographic transition in the model is compared with the empirical net MPK. Figure

1 shows that the model (continuous line) captures some low-frequency movement of the empirical net

MPK (dotted line). Second, given the slow-moving nature of the demographic transition, inflation gen-

erated by the model under rule (3.2) is compared with “core inflation”, namely a measure of underlying

inflation that tends to exclude short-term volatility (it is obtained from the Harmonized Index of Con-

sumer Prices (HICP) excluding the items that pertain food and energy). Figure 2b shows that the model

(continuous line) captures the downward trend of core inflation found in the data since the 1990s (dotted

line)). Consistently, the reference empirical nominal interest rate is computed as the sum of the net MPK

and core inflation (see dotted line in Figure 2a). Figure 2a plots also a more conventional measure of the

nominal interest rate based on the Euribor 3-months (used e.g. in the Area-Wide model database). One

can see (dashed-dotted line) that it varies more, turning negative after year 2015, while it co-moves with

the lower-frequency measure based on the net MPK. The corresponding real interest rate (dashed-dotted

line in Figure 1b), obtained by subtracting core inflation, makes clear to what extent the MPK compares

with a more conventional measure of the real interest rate, hence the type of low-frequency variation that

the slow demographic change can capture. Clearly, according to the model, demographics alone cannot

account for the wide swings observed in the data using a measure that is not strictly related to (physical)

capital. Nonetheless, one can interpret the observed decline of core inflation as a situation where the

central bank, by following a standard Taylor rule, fails to recognize that the natural real interest rate is

time-varying because of demographic change. The demographic transition features as a slow-moving

process almost uninfluential on a year to year basis but whose continuous “glacial” movement, if failed

to be recognized, leads the economy on a disinflationary path.
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Figure 1: Real interest rate in EA12, rt − δ

Note. The Taylor rule applied is Rt = R(Πt/Π)φπ , with φπ = 1.5; under (strict) inflation targeting the central bank follows
the rule Πt = Π for all t. Data: (i) “data (MPK)” (black thin dashed-dotted line) refers to the net marginal product of
capital computed applying the first order condition (that in the model in this paper applies at the sectoral level) net of capital
depreciation δ: rt = mc(Yt/Kt)ψ − δ, where mc is computed as a weighted average of the steady state sectoral marginal
costs, i.e. mc = (η − 1)/η with η = .3ηT + (1 − .3)ηN reflecting the higher value added share that the N-sector has in the
data, while values of ηT , ηN , ψ, δ are taken from Table 1. Data for aggregate output Yt and capital stock Kt are the same used
for calibration, particularly they are “GDP (constant LCU)” for output and “Gross fixed capital formation (constant LCU)” for
investment both sourced from WDI 2017, where capital is computed as explained in footnote 14. (ii) “r data (conventional)”
(lightblue thin dotted line) refers to the difference between the nominal short term interest rate and core inflation both plotted
and explained in Figure 2.
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(a) Nominal interest rate, Rt − 1
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Figure 2: Inflation and nominal interest rate in EA12

Note. The Taylor rule applied is Rt = R(Πt/Π)φπ , with φπ = 1.5; under (strict) inflation targeting the central

bank follows the rule Πt = Π for all t. Data: (i) “core inflation” (blue thin dashed-dotted line), i.e. all–items of

HICP excluding energy and food; (ii) “conventional” (grey thin dotted line): following the convention for the “Area

Wide Model” (see https://eabcn.org/page/area-wide-model) the nominal short term interest rate is

measured with the Euribor 3-months. Both data series are sourced from sdw.ecb.europa.eu and are annual

averages on the year to year percentage change at the monthly frequency. (iii) “MPK implied” (green thin dashed-

dotted line) is obtained as the sum of core inflation and the real interest rate computed on the basis of the marginal

product of capital, see Figure 1.
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3.3 Inspecting the mechanism

To understand the mechanism through which the demographic transition impacts interest rates and in-

flation, the full model with two sectors (see (B.1)–(B.26)) is simplified to a basic one sector model with

endogenous capital and compared to the textbook three equations model by Gali (2015). In all models,

the demographic transition enters as an exogenous path of the difference between the growth rate of the

labor force and population (see the aggregate approximation of the OLG model in Appendix B) which

has the interpretation of being the natural real interest rate for the case of the Gali (2015)’s textbook three

equations model.

First consider the Gali (2015)’s textbook model. It is a log-linearised system of three equations where

variables are evaluated in log-deviations from the initial steady state:

θ

(1− θ)(1− βθ)
Π̂t =

βθ

(1− θ)(1− βθ)
EtΠ̂t+1 + ̂̃yt (3.3)

̂̃yt = Et̂̃yt+1 −
[
R̂t − EtΠ̂t+1 − r̂nt

]
(3.4)

R̂t = φπΠ̂t (3.5)

Parameters are standard: θ is the Calvo’s probability for a firm of not being able to reset prices within

a reference period, set to 0.68 to have the same slope of the Phillips curve used in the full model (see

footnote 18); β and φπ are the same as in Table 1. The variable ̂̃yt denotes the “output gap”, i.e. deviations

of output from its natural level which is not specified in this context. The natural real interest rate is

defined as the ex-ante real rate that prevails in a counterfactual economy with no price-rigidity (i.e.

θ = 0), namely when the output gap is zero. With no price rigidity, from (3.4) the ex-ante real interest

rate, R̂t − EtΠ̂t+1 is equal to r̂nt which therefore denotes the natural real interest rate and features as a

perfectly anticipated stand-in shock that captures the demographic transition:

r̂nt = l̂gt+1 − ϕ̂
g
t+1 (3.6)

In the case of one sector (see Appendix B and Jones (2018)), the demographic wedges attached to the rep-

resentative households drop to be simply the size of the population in each period (with logarithmic pref-

erences). Then, from the Euler equation, the population growth rate (denoted by ϕ̂gt+1 in log-deviation

from steady state) enters into the determination of the natural real interest rate. Furthermore, since what

matters for the determination of factor prices is the efficiency unit of each factor, variables are divided by

the exogenous labor in efficiency units (there is no other exogenous ‘technology’). In this way, from the

Euler equation, also the growth rate of labor in efficiency units (denoted by l̂gt+1 in log-deviation from

steady state) enters into the determination of the natural real interest rate. Hence, the deviations of the

natural real interest rate from steady state are captured by the exogenous variation of the “working-age

population ratio”, where the number of people in the working age is evaluated in efficiency units (i.e.

correcting for the age-varying labor productivity hj). Specifically, the two exogenous variables are (see
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Appendix B.4.1):

l̂gt+1 =

∑jr
j=0 hjNj(n̂t+1,j − n̂t,j)∑jr

j=0 hjNj

, ϕ̂gt+1 =

∑J
j=0Nj(n̂t+1,j − n̂t,j)∑J

j=0Nj

(3.7)

As explained in Papetti (2019), one can interpret the prolonged decrease of r̂nt as a negative shock to

the growth rate of total factor productivity for output per capita growth which makes the representative

agent more patient (i.e. akin to a positive discount factor shock), willing to save more and consume less,

as the number of effective workers in support of the number of total consumers (the population size)

shrinks.26 In the data, over the transition period considered, both the growth rate of the labor force and

the growth rate of population decrease but the former decreases more, so that the natural real interest

rate is on a declining pattern. The green line in Figure 3 shows the log-deviations r̂nt , while the green

line in the bottom-right panel of Figure 12 shows the level of the natural interest rate implied by those

log-deviations.27
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Figure 3: Demographic growth rates in EA12

Note. The number of people Nt,j is taken from data provided by UN (2017) World Population Prospects: The 2017

Revision for year t ∈ [1950, 2100], medium variant after year 2016 (see footnote 16). The series plotted are l̂gt+1 and

ϕ̂gt+1 in (3.7), multiplied by 100, where the log-deviations of the number of people from the initial steady state in

each age-bin j for all years t, n̂t,j , has been conveniently smoothed using a “loess” method (local regression using

weighted linear least squares and a 2nd degree polynomial model) of the smooth function in Matlab with a span

of .08, a low value to preserve the actual data but at the same time avoid kinks. Recall that l̂gt+1 = lgt+1/l
g − 1,

ϕ̂gt+1 = ϕgt+1/l
g − 1 where the steady state values lg , ϕg are both equal to 1, so that l̂gt+1, ϕ̂gt+1 are the net growth

rates of the labor force (in efficiency units) and population, respectively.

Approximately, in year 1990 both labor force and population are growing at the rate of 0.85% a year.
26Compare these considerations with equation (23) of Gali (2015)’s chapter 3.
27For the sake of comparison with the full model with endogenous capital, see later, the log-deviations are evaluated starting

from the same initial steady state. Hence, the rate plotted in Figure 12 is: rnt = (1 + r − δ) exp{r̂nt } − 1 where the
depreciation rate δ and the steady state rental rate r are the one implied by the calibration, see Table 1. Notice that r̂nt denotes
log percentage deviations of the gross rate.
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However, in year 2030 the annual growth rate of the population is about zero while that of the labor force

-1%. In levels, this discrepancy generates a natural interest rate that goes from about 1.6% in 1990 to

0.5% in 2030, a decrease of 1.1 percentage points.

With price stickiness the ex-ante real interest rate has periods in which it is either above or below its

natural counterpart (see yellow line in bottom-right panel of Figure 12). The somewhat small discrepancy

between the two is sufficient to generate a persistent non-zero output gap (see yellow line in the top-right

panel) which has a peak in year 2009, at about 0.6%, and a trough in year 2030 at about -0.9%. Indeed,

by solving forward (3.4) the output gap is proportional to the sum of current and anticipated deviations

between the ex-ante real interest rate and its natural counterpart:28

̂̃yt = −
∞∑
k=0

(
R̂t+k − EtΠ̂t+k+1 − r̂nt

)
It is interesting that the dynamics of inflation and the nominal interest rate do not differ much in the

two cases, sticky vs flexible prices, when the central bank follows rule (3.5) in both cases (compare the

green and the yellow lines in Figure 12). Notice that under flexible prices there is no trade-off between

output and inflation gaps, so that the system has a “classical dichotomy”. That is, with ̂̃yt = 0 for all

t, from (3.4) it follows R̂t − EtΠ̂t+1 = r̂nt for all t so that any pair of real numbers for current nominal

interest rate ît and expected inflation Etπ̂t+1 is an equilibrium of the system. It is common practice to

pick one special equilibrium of the infinitely many possible under flexible prices, namely the one where

inflation is always at target, i.e. Π̂t = 0 for all t which gives the implicit monetary policy rule R̂t = r̂nt .

In this case, the nominal interest rate would feature only what has been labeled before as “physiological

discrepancy” from the steady state since it would map one to one with the exogenous changes of the

natural real interest rate. Nonetheless, the paths of inflation and nominal rate are quite different when

the central bank follows rule (3.5) under flexible prices. To understand the monetary policy mechanism,

suppose in rule (3.5) there is also a monetary policy shock νt:

R̂t = φπΠ̂t + νt (3.8)

Plug this into (3.4) with ̂̃yt = 0, and solve forward to have:29

Π̂t =
1

φπ

∞∑
k=0

(
1

φπ

)k
r̂nt+k −

1

φπ

∞∑
k=0

(
1

φπ

)k
νt+k

This expression makes clear that few mechanisms are involved when the central bank follows the type

of Taylor rule (3.8) under flexible prices. First, absent monetary policy shocks (i.e. νt = 0 for all t),

inflation is determined uniquely by the path of the natural real interest rate discounted by the inverse of

the central bank’s reaction parameter φπ > 1. Second, the effect on inflation of a given path of the natural

real interest rate can be perfectly mimicked by a path of monetary policy shocks equal in magnitude and

28The result relies also on: limk→∞ ̂̃yt+k+1 = 0.
29The result relies also on limk→∞(1/φπ)kπ̂t+k = 0, with the Taylor principle φπ > 1.
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opposite in direction. That is, a prolonged decline in the natural real interest rate acts like a prolonged

tightening of monetary policy. Third, by strongly reacting to any deviation of inflation from its target

the central bank can nullify the dampening effect on inflation of a declining natural real interest rate. In

the limit (φπ →∞), inflation remains always at target while the nominal interest rate is always close to

its natural counterpart. In this case, the only problem for the central bank to maintain inflation at target

in each period would be that the prolonged exogenous decline of the natural real interest rate leads the

nominal interest rate to hit its lower bound. While these mechanisms hold exactly only in the flexible

price case, Figure 12 – compare the yellow line with the green one – suggests that the same mechanisms

are at play in the model with sticky prices.

Next consider the Gali (2015)’s textbook three equations augmented to account for endogenous phys-

ical capital (and exogenous labor supply). This model corresponds to the one-sector version of the full

two-sector model (see (B.1)–(B.26)). The system of recursive equations is:

θ

(1− θ)(1− βθ)
Π̂t =

βθ

(1− θ)(1− βθ)
EtΠ̂t+1 + m̂ct (3.9)

̂̃ct = Et̂̃ct+1 −
[
R̂t − EtΠ̂t+1 − r̂nt

]
(3.10)

R̂t = φπΠ̂t (3.11)̂̃ct = Et̂̃ct+1 −
[

r

1 + r − δ
r̂t+1 − r̂nt

]
(3.12)

̂̃yt = ψ
̂̃
kt−1 (3.13)̂̃

kt−1 = ŵt − r̂t (3.14)

m̂ct = ψr̂t + (1− ψ)ŵt (3.15)

̂̃yt =
C̃

Ỹ
̂̃ct +

K̃

Ỹ

[
l̂gt+1 +

̂̃
kt − (1− δ)̂̃kt−1

]
(3.16)

Given that now there is also capital as input, not only labor as in the three equations model, there is the

additional parameter ψ whose value is the same as in Table 1. Furthermore, C̃/Ỹ and K̃/Ỹ have the

same values as in the full model for the sake of comparison. Notice that this model is shocked with the

exogenous path of r̂nt , the same used for the three equations model above, which enters both the Euler

equation for consumption (3.10) and the Euler equation for capital (3.12). However, it does not represent

the natural real interest rate. The reason is that consumption is not necessarily equal to output because

of the presence of investment in capital so that equation (3.10) differs from (3.4). Consequently, in case

of no price rigidity (θ = 0) the ex ante real interest rate is not necessarily equal to r̂nt which therefore

cannot be qualified as natural real interest rate. Generally, the real interest rate is established in a more

complex system of equations compared to the three equations system above. Finally, notice that since all

variables are evaluated in units of labor efficiency, in the clearing condition (3.16) the exogenous growth

of labor in efficiency units l̂gt+1 appears. So, r̂nt = l̂gt+1 − ϕ̂
g
t+1 and l̂gt+1 itself are the exogenous driving

forces.

The blue lines in Figure 12 reports the results of the full two-sector model presented already in

ECB Working Paper Series No 2382 / March 2020 25



Figures 1 and 2. The light-blue and violet lines show results of the one-sector model with endogenous

capital with and without price rigidity, respectively. Clearly the one-sector model gives results that are

strikingly close to the ones of the two-sector model and that bear basically no visual difference between

the two cases (with and without price rigidity). In comparison to the model with no capital, inflation and

interest rates remain always at a higher level. This is because a given negative shock in r̂nt (which, as

seen above, can be compared to a tightening of monetary policy) does not have to be borne entirely by

consumption. Consumption can be kept relatively smoothed by adjusting investment which makes up

only a small fraction of the capital stock and therefore by inducing a relatively small effect on the return

on capital and thus, by no arbitrage condition, on the ex-ante real interest rate.

Some conclusions can be drawn. First, if one is interested only in the aggregates, the sectoral alloca-

tions can be basically overlooked, at least with the currently specified model. Second, in comparison to

the three equations model, the model with endogenous capital produces less dramatic dynamics of inter-

est rates and inflation and has smaller discrepancies between the two cases, flexible versus sticky prices,

because the presence of investment allows for smoother responses. Still, the qualitative implications of

the demographic transition are not changed. Third, given that when the central bank follows the Taylor-

type rule there are no significant differences in the paths of inflation and interest rates between the two

cases, flexible versus sticky prices – more so with endogenous capital – there is support for the recent

claim on New-Keynesian models by Rupert and Sustek (2019) who “demonstrate that equilibrium infla-

tion is approximately determined as in a flexible-price model”. In turn, this implies that an equilibrium

where the ex-ante real interest rate is always close to its natural counterpart might not be an equilibrium

where inflation is stable, depending on the monetary policy rule in place. In other terms, observing a

positive deviation of the ex-ante real interest rate from its natural counterpart is not a necessary condition

for observing a negative deviation of inflation from its target.

3.4 Different Taylor-type rules

As shown in the above sections, when the central bank follows a “strict inflation targeting” rule, the

nominal interest rate is always equal to its natural counterpart. In this case inflation is always at target

and output is always equal to its natural counterpart (i.e. output gap is zero). Can the central bank move

close to this equilibrium by being more aggressive on inflation deviations from its target uniquely, while

still not internalizing the effect of the demographic transition on the natural real interest rate (i.e. by using

the same Taylor rule with fixed intercept)? The answer is yes. Figure 4 shows to what extent, by plotting

results under rule (3.2) (i.e. rule (3.5) in log-deviations) for different values of the reaction parameter φπ,

respecting the Taylor principle of φπ > 1. It shows that by increasing φπ the system moves closer to the

natural allocation.

What happens if the central bank has also some inertia of the nominal interest rate in his Taylor-type

rule? Figure 13 shows that as the inertia of the nominal interest rate to its previous period value increases

(i.e. φR increases) the system gets closer to the natural allocation. This is unsurprising given that the

discrepancies between the real interest rate and its natural counterpart are tiny (so that having inertia is

like partially internalizing the downward impact of demographic change on the natural interest rate). In
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Figure 4: Demographic transition: different reactions to inflation deviations from target
(φπ), Taylor rule in log-deviations: R̂t = φπΠ̂t

Note. The levels of the variables are obtained from the linear system in log-deviations from the initial steady state

(B.1)–(B.26). The output gap is defined as percentage deviation of output from its natural level, i.e. ̂̃yt − ̂̃ynt =

log{Ỹt/Ỹ nt } where Ỹt = Ỹ Tt + ZtỸ
N
t is aggregate output per unit of labor efficiency, Lt, and Ỹ nt is its natural

counterpart (output prevailing under flexible prices). Recall, see Note in Figure 12, that the real interest rate is

obtained applying: rft = (1 + r − δ) exp{(r/(1 + r − δ))r̂t} − 1.

this context, an important policy prescription is that the central bank can get close to the natural allocation

even when it does not observe the natural real interest rate by simply setting the first difference of the

policy rate close to the deviation of inflation from target in each period. Notice that the reference period

in this setting is one year. It is common in the literature to set the inertia parameter at the quarterly

frequency around 0.8. This value implies a speed of adjustment of the policy rate of about 20% per

quarter which means that over a year the speed of adjustment is about 80%. Therefore, at the annual

frequency the inertia parameter corresponding to what is common in the literature is φR = 0.2.

What if the central bank responds not only to inflation gaps but also to output gaps? To answer

this question one needs to think which output gaps to consider. In the same way as it can be argued

that the central bank does not observe the time-varying natural real interest rate, thus reacting only to

deviations of the policy rate to its steady state value, it can be argued that also the natural level of output

is an unobservable for the central bank. Hence, as a first exercise, suppose that the central bank reacts

to deviations of the output in units of labor efficiency, Ỹt, from its initial steady state value Ỹ instead

of its natural level Ỹ n
t . Notice that Ỹ would be the correct value to which output reverted in the long-

run if there were no age-varying sectoral preferences in presence of imperfect mobility of labor (see

section B.4.2). Figure 14 shows that when the central bank reacts to deviations of output from its steady

state value, it ends up being much more disinflationary than in the baseline case where it reacts only
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to deviations of inflation from its target. Both inflation and the nominal rate go in negative territory.

Demographic change leads capital per unit of labor efficiency and therefore output per unit of labor

efficiency to increase with respect to its steady state value – this impact is directly related to the decrease

of the real interest rate induced by demographic change. Hence, facing a positive deviation of output

from steady state in the period considered, the central bank tends to be tighter than in the case where it

only reacts to inflation gaps. This results in bigger discrepancies between the real interest rate and its

natural counterpart which are associated to wider output gaps. Figure 14 shows also that the central bank

would get closer to the baseline results if instead of reacting to deviations of the level of output from

steady state it reacted to deviations of output growth from steady state (i.e. from zero). The reason is that

the growth rate of output per unit of labor efficiency on a annual basis induced by demographic change

is relatively small. Nonetheless, inflation is further apart from target as compared to the baseline case.

Overall, the central bank does a worse job in terms of inflation gaps minimization when it reacts not only

to inflation gaps but also to output gaps in the period considered.

As a final exercise, assume a slightly more complex Taylor rule which entails a learning process

featured by Bielecki et al. (2018) in a similar context, in the spirit of Evans and Honkapohja (2001).

Under this learning process, the Taylor rule in log-deviations from the initial steady state is assumed to

be:

R̂t = φRR̂t−1 + (1− φR)
{
R̂et + φπΠ̂t + φ∆y

[
(ŷt − ŷt−1)− (ŷet − ŷet−1)

]}
(3.17)

In case the central bank has perfect knowledge, the perceived values (R̂et , ŷ
e
t ) are equal to their natural

values,

R̂et = R̂nt = (r/(1 + r − δ))r̂nt+1 + Π̂
T,n
t+1 (3.18)

ŷet = ŷnt

Notice two features. First, as long as the Taylor rule has output growth gaps, obviously it does not matter

whether output is defined as total, per capita, per worker or per unit of labor efficiency. So here ŷt denotes

a generic output in log-deviations from its initial steady state. Second, the natural nominal interest rate

R̂nt is the sum of the deviations of the return on capital and of expected inflation in the T-sector under

flexible prices. Usually, in a one-sector model, the natural nominal interest rate would be equal to net

return on capital multiplied by the inflation target. But in the current model there are sectoral variations

that can impact inflation and the overall aggregate allocations even in the absence of price distortions.

This is why Π̂
T,n
t+1 appears in the expression for the natural nominal interest rate denoting the level of

expected inflation in the T-sector when prices are flexible (or, which is the same, when the central bank

is at the target aggregate inflation in each period).
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In the case of imperfect knowledge the perceived values are:

R̂et = R̂et−1 + λ(R̂nt−1 − R̂et−1) (3.19)

ŷet = ŷet−1 + λ(ŷnt−1 − ŷet−1) (3.20)

where the central bank observes the true values of the natural variables only with a lag and updates

the current guess with a fraction λ of the previous forecast error. The parameter λ captures the speed

of learning by the central bank. Following the parametrization by Bielecki et al. (2018), the speed of

learning λ is in the range of an annual rate of 8% and 20%.

Figure 15 shows that under the learning scenario, the disinflationary bias is smaller throughout the

whole period than in the baseline case when the central bank does not internalize at all the impact of the

demographic transition (Taylor rule with fixed intercept). Furthermore, as the speed of learning increases

(λ goes from 0.08 to 0.2), inflation gets closer to its target, the nominal interest rate gets closer to its

natural counterpart and the output gap is more in the proximity of zero. Furthermore, Figure 15 shows

that the disinflationary bias is mostly due to the misperception of the natural nominal rate R̂n: when only

natural output ŷt is misperceived, the deflationary bias (see shaded area in the top-left panel) is relatively

small so that the remaining bigger part is explained by the misperception of R̂n when rule (3.17) is applied

with λ = 0.08. In both cases monetary policy ends up being too tight thus generating a disinflationary

bias. Notice that under the learning processes (3.19) and (3.20) the central bank overestimates the natural

rate and underestimates the natural output.

3.5 Demographic transition and sectoral developments: impact on inflation

To understand the sectoral dynamics first consider the model with flexible prices. Figure 16 shows what

happens to the relative price of N-goods and to sectoral shares over the demographic transition. As

population ages the aggregate share of consumption devoted to N-goods is projected to increase about 2

percentage points (going from about 51% to about 53%) given that older people consume relatively more

N-goods (see Figure 8). This is accompanied by a steady increase of the relative price of N-goods which

in the long run has an increase of about 4% (going from 1.237 to 1.288). This process is associated with a

reallocation of both labor and capital from the T-sector to the N-sector, with a corresponding reallocation

of production.

The dashed lines of Figure 16 show what happens when the sectoral consumption shares are constant

across ages. In this case the share of consumption devoted to N-goods remains always constant at its

steady state value (50.8%) while the impact on the relative price and sectoral shares is much smaller,

approximately halved, suggesting that about half of the long-run increase in the relative price is due to

the bias in consumption towards N-goods of relatively older cohorts; the remaining half is due to general

equilibrium effects mostly determined by the preference parameter χ which governs the optimal sectoral

mix of labor and capital given factor prices. In particular, aging leads to a progressive decrease of the

aggregate investment rate, going from about 23% of output in 1980 to 19% in 2050: as the labor force

declines it is optimal to reduce the capital stock with which workers are complemented in production.
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Since capital can be only produced using T-goods, less investment in capital means less need of labor

force employed in the T-sector. Therefore, because of full-employment, a decrease of the investment

rate goes hand in hand with a reallocation of the effective labor force from the T-sector to the N-sector

independently of whether there is a bias in consumption towards the goods of a certain sector due to

aging. Due to the assumption of imperfect labor mobility, the only way this sectoral reallocation can

happen is by offering to workers an higher relative wage of the N-sector which therefore increases along

the transition, and so does the relative price of N-goods (as workers are paid their marginal product).

Finally, Figure 16 shows the dynamics resulting from the model when additionally there is perfect

labor mobility between sectors (i.e. when the parameter ε is set at a value which proxies infinity and still

the consumption shares are constant over the ages). Unsurprisingly, there is no effect on the relative price

which stays always at its steady state value (1.25). Indeed, the way the model generates an impact of the

evolving demand composition on the relative price is via imperfect labor mobility. As more N-goods are

demanded firms need to attract more labor-input in the N-sector. The only way to do so is to increase

the real wage in the N-sector. If there was perfect labor mobility the real wage would increase 1 to 1

so to have wage equalization between sectors. Instead, with imperfect mobility, the relative wage of the

N-sector needs to increase accommodating the permanent preference of the representative household to

work in either sector. The increase in the relative wage is directly related to the increase of the relative

price (see section B.4.2). In Figure 16 it can be seen (red dotted line) that with perfect labor mobility the

share of labor employed in the N-sector is higher or lower than in the case with imperfect labor mobility

depending on whether the relative price was higher or lower than its steady state value. That is, with

imperfect labor mobility only part of the level of labor in the N-sector that would prevail with perfect

labor mobility is attained. This discrepancy is a mirror image of the deviation of the relative price from

its steady state value. The figure also shows that whether labor can perfectly move or not between sectors

has only a limited impact on the evolution of the share of capital employed in the two sectors.

To understand how the sectoral developments impact monetary policy and its objective of staying

at target inflation, consider the case when the central bank sets the deviation from steady state of the

nominal interest rate equal to the deviations of the natural real interest rate:

R̂t = (r/(1 + r − δ))r̂nt+1 (3.21)

This rule would allow to attain target inflation in each period if it was a one-sector model. However,

there are sectoral developments induced by the demographic transition that can lead inflation in the two

sectors to diverge. As shown in the previous section, the central bank would be at target inflation by

following rule (3.18), i.e. by setting R̂t = R̂nt = (r/(1 + r− δ))r̂nt+1 + Π̂
T,n
t+1. In other terms, by following

(3.21) thus omitting developments of inflation in the T-sector Π̂T,nt+1, the central bank is not internalizing

the sectoral developments induced by the demographic transition which, as discussed just above, are in

part due to the consumption bias towards N-goods of the elderly and in part due to general equilibrium

effects in presence of imperfect labor mobility between sectors. Figure 5 shows that when the central
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bank does not internalize the sectoral developments there is an inflationary bias.30 By following rule

(3.21) the central bank is closely targeting inflation in the T-sector (see dotted line) disregarding the fact

that due to aging there is a sectoral reallocation that leads the relative price of N-goods on an increasing

path. Inflation in the N-sector increases accordingly (see starred line). Aggregate inflation, given that

it is a convex combination of sectoral inflations, is on an intermediate path between the two inflations

(see continuous line). However, the magnitude of its increase is small: between 1990 and 2030 inflation

increases less than 0.1 percentage points from target. The associated output gap is small too.
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T

π
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inflationary bias

Figure 5: Demographic transition: impact on inflation when the central bank does not
internalize sectoral developments, i.e. sets R̂t = (r/(1 + r − δ))r̂nt+1.

Note. Results from the baseline model when the central bank follows rule (3.21) instead of the Taylor rule (3.2).

4 Conclusion

The ongoing demographic transition – in Europe as well as in most advanced economies – carries impor-

tant implications for inflation and possible challenges for monetary policy. Even though the impact of the

demographic transition on inflation seems to be negligible for the short- to medium-term horizon, which

is relevant for monetary policy-making, its slow-moving nature seems to have been prone to generating

a disinflationary bias in the euro area in the last two decades at least in the model set-up brought forward

in this paper. Based on our analysis, monetary policy rules that do not internalize the downward impact

of aging on the natural interest rate may end up being tighter than intended thus generating a downward

trend of inflation. For the euro area and using the structure of a two-sector overlapping generations model
30see Figure 17 for the corresponding dynamics of output gap, nominal and real interest rate.
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embedded in a New-Keynesian framework with price frictions we have quantified a sizable “disinflation-

ary bias” since 1990 explained by this channel. This bias occurs in our model when the central bank

follows a monetary policy rule setting the policy rate only in reaction to inflation deviation from target

with a fixed natural interest rate. This bias may be fortified if the central bank also reacts to deviations

of the output level from its steady state value in addition to the inflation gap. In this model the bias can

be reduced applying a less naive monetary policy rule where the central bank adjusts regularly but with

a delay to the natural level of the real economic variables. Finally, the disinflationary bias is not sig-

nificantly counteracted by the inflationary pressures associated with the old-age consumption propensity

towards non-tradable goods and services such as healthcare expenditures.

Based on our analysis, the presence of a persistently declining natural interest rate, even if perfectly

internalized in the conduct of monetary policy, would require the policy rate to move downwards too, to

be consistent with the inflation objective. Therefore, the demographic transition – projected to intensify

in the incoming years till 2030 – is likely to increase the probability of hitting the zero-lower bound

(ZLB) for the policy rate.

Of course, important research questions that connect demographic change to monetary policy remain

open and still need to be addressed. One of such questions is how the relationship between the optimal

inflation target and the natural interest rate might be affected by demographic change.
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5 Additional figures
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Figure 6: Demographic transition in Europe

Note. The indicator in panel 6a is the number of people aged 15 over the number of people aged more than 15. The

indicator in panel 6b is computed by first retrieving the implied unconditional survival probabilities πt,j applying the

recursive formula Nt+j,j = πt+j,jNt,0 using data for the cohort size Nt,j for each year t and age-bin j (with Nt,0
corresponding to the incoming cohort size, those aged 15); then, by averaging across cohorts for each year so that the

indicator is ζt =
∑
j πt,j(Nt,j/Nt) with population size Nt =

∑
j Nt,j . Data from UN (2017) World Population

Prospects: The 2017 Revision, medium variant after year 2016 (see footnote 16). The following groups of countries

hold. EA19: Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Lithuania,

Luxembourg, Malta, Netherland, Portugal, Slovakia, Slovenia, Spain; EA12 is EA19 excluding Cyprus, Estonia,

Latvia, Lithuania, Malta, Slovakia, Slovenia; EA5: France, Germany, Italy, Netherlands, Spain; EU28 comprises

EA19 and the following non-EA members: Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Sweden,

Denmark and United Kingdom.
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Figure 7: Old dependency ratio in Europe

Note. The indicator in the figure is the the number of people aged more than 64 over the number of people aged

between 15 and 64. Data source and groups as in Figure 6a.
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Figure 8: Age dependent tradable shares of (private) consumption expenditure in EA12,
αj

Note. Data source: EUROSTAT, 2010 series name: “Structure of consumption expenditure by age of the refer-

ence person (COICOP level 2) (1 000) [hbs str t225]” in year 2010, which is the (average) private consumption

expenditure (measured in euro/PPS). The following sectors are categorized as tradable: food, clothing, furniture

and equipment, transports, communications; as nontradable: housing, health, culture and entertainment, education,

restaurants and accommodation. The age classes available from which a (cubic) interpolation is obtained are: 0-29,

30-44, 45-59, 60+. The EA12 profile (blue thick line) is obtained as weighted average of the of single countries’

profiles, using as weights the shares of GDP (Source: EUROSTAT, Gross domestic product at market prices, Chain

linked volumes (2005), million euro). See Giagheddu and Papetti (2017).
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Figure 9: Age dependent labor supply in efficiency units, hj
Note. The profile is obtained with a cubic interpolation (for age 15 to 70) on the data points provided in Domeij and

Floden (2006). These data points are the product of participation rates provided by Fullerton (1999) and productivity

provided by Hansen (1993). Lacking data, for j ≥ 70 the profile is obtained from the following logistic function:

C/(1 +Ae−Bj), with A = .49, C = 50, B = (1/70) log [h70A/(C − h70)]. The blue continuous line denotes the

baseline profile with exogenous retirement age at jr + 1 = 65. The dashed line denotes the part of the profile which

is not binding in the baseline.
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Figure 10: Time-varying parameters (EA12): γTt ,γNt
Note. The time-varying parameters γTt , γNt are the exogenous wedges on the representative household’s preferences,

see (2.11). They are: γTt =
∑J
j=0 αjNt,j , γ

N
t =

∑J
j=0(1 − αj)Nt,j , where the number of people Nt,j is taken

from data provided by the United Nations World Population Prospects: The 2017 Revision for year t ∈ [1950, 2100],

medium variant after year 2016 (see footnote 16), and αj is in Figure 8. Notice that γTt +γN identifies the population

size in the economy for each year t, where population in the model refers to those aged more than 15, given that j = 0

corresponds to age 15.
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Figure 11: Aggregate labor supply in efficiency units in EA12, Lt

Note. The exogenous time-varying aggregate labor supply in efficiency units is: Lt =
∑jr
j=0 hjNt,j with jr = 50

which corresponds to age 64. Individuals enter the world as workers at age j = 0 which corresponds to age 15. The

number of people Nt,j is taken from data provided by the United Nations World Population Prospects: The 2017

Revision for year t ∈ [1950, 2100], medium variant after year 2016 (see footnote 16), hj is in Figure 9.
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Figure 12: Demographic transition: comparison of three models, flexible vs sticky prices

Note. The figure shows the results from three models where the sole exogenous change is demographics over time as

captured by l̂gt+1 and ϕ̂gt+1 with r̂nt = l̂gt+1 − ϕ̂
g
t+1. “Full 2 sectors” is the system (B.1)–(B.26); “1 sector capital”

is the system (3.9)–(3.16); “Gali” is the system (3.3)–(3.5). “Flex” identifies the model with flexible prices obtained

by setting θ to zero. Otherwise θ = .68. Notice that the systems have log-linearized variables in deviations from

the initial steady state. To make the comparison in levels, it is assumed that all variables start at the same initial

value across models. What it is plot in the bottom-down panel is the risk-free real interest rate, denote it by rft ,

equal to rt − δ by no arbitrage condition between return on capital and bonds. By equating (3.10) with (3.12),

it results: R̂t − EtΠ̂t+1 = (r/(1 + r − δ))r̂t. It follows that to get the level of the real risk-free rate, whose

gross value in steady state is (1 + r − δ), from the log-deviations of the return on capital r̂t one needs to apply:

rft = (1 + r − δ) exp{(r/(1 + r − δ))r̂t} − 1.
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Figure 13: Demographic transition: different interest rate inertia (φR), Taylor rule in
log-deviations: R̂t = φRR̂t−1 + φπΠ̂t

Note. See Note of Figure 4.
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Figure 14: Demographic transition: central bank responding to output gap (φy > 0),
Taylor rule in log-deviations: R̂t = φRR̂t−1 + (1− φR)(φπΠ̂t + φŷ̃yt + φ∆y(̂̃yt − ̂̃yt−1))

Note. See Note of Figure 4.
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Figure 15: Demographic transition: Taylor rule with learning process

Note. See Note of Figure 4. See section 3.4 for the specification of the Taylor rule.
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Figure 16: Demographic transition: sectoral developments

Note. Results from the baseline model (B.1)–(B.26) with flexible prices. The scenario no age-varying sectoral shares assumes that

αj = α for all j, which implies the following new exogenous inputs for the log-linearized model: γ̂Nt − γ̂Tt = 0,At = 0, γ̂T,gt+1 =

ϕ̂gt+1 for all t, where the last term denotes that the consumption wedge in the Euler equation for the representative household is the

growth rate of the population (people between age 15 and 100+), see section B.4. The scenario perfect labor mobility is obtained

by setting the parameter ε at a value that proxies infinity given the no age-varying sectoral shares parametrization.
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Figure 17: Demographic transition: impact when the central bank does not internalize
sectoral developments, i.e. sets R̂t = (r/(1 + r − δ))r̂nt+1.

Note. Results from the baseline model when the central bank follows rule (3.21) instead of the Taylor rule (3.2).
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Appendix

A Aggregate representation of the OLG model with demographic wedges

A.1 Consumption

Following Jones (2018), the derivation of the aggregate wedges that allow to represent the life-cycle

(finite-life) individuals’ problem in the OLG model (i.e. a problem where the heterogeneity across in-

dividuals is given by the age) of section 2.1 as a problem of an infinitely-lived representative agent

problem proceeds in three steps. First, rewriting the individual’s life-cycle problem as an infinite horizon

one, it is shown that under complete markets (namely, under the assumption of “perfect annuities market”

for unintentional bequest, see footnote 6) there exist welfare weights attached to each individual utility

function in the social planner’s problem that allow to equate the planner’s solution to the decentralized

equilibrium. Second, by solving the social planner’s dynamic problem of optimizing aggregate sectoral

consumption and savings over time, the decentralized equilibrium is related to the planner’s solution.

Third, by solving the social planner’s static problem of choosing sectoral consumption for each indi-

vidual in each cohort to maximize the sum of individuals utilities weighted by the welfare weights, an

expression for the aggregate demographic wedge attached to aggregate consumption is derived.

1. Consider in the OLG model of section 2.1 an individual i belonging to the cohort born in period s.

Rewrite his life-cycle problem as an infinite-horizon problem, to solve for each time-period t from the

period he is born in s onwards (till infinity), in the following way:31

max
{cT,i,st ,cN,i,st ,ai,st+1}

∞∑
t=s

βtπt,sφ
i,s
t us(c

T,i,s
t , cN,i,st )

s.t. ai,st+1 =
ai,st (1 + rt)

si,st
− cT,i,st − ZtcN,i,st + yi,st

where πt,s denotes the unconditional survival probability in period t for an individual born in period s;

as in Jones (2018), φi,st is a “preference process that proxies for the life-cycle” which takes value “one

when the individual is alive and zero otherwise”.32 Write the Lagrangian:

L =
∞∑
t=s

βtπt,s

{
φi,st us(c

T,i,s
t , cN,i,st )− λi,st

[
ai,st (1 + rt)

sst
− cT,i,st − ZtcN,i,st + yi,st − a

i,s
t+1

]}

where the individual’s Lagrangian multiplier λi,st has been conveniently multiplied by πt,s. The first

31The problem of choosing sectoral hours to work is omitted since in the setting of section 2.1 the total hours to work are
exogenous, thus not entering the utility function.

32In other terms, the problem is still a finite life one, because for each t greater than the terminal life period (J in the notation
of section 2.1) φi,st is equal to zero in the problem above. But this ‘fiction’ serves to derive the result later.
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order conditions are:

φi,st us,1(cT,i,st , cN,i,st ) = λi,st

φi,st us,2(cT,i,st , cN,i,st ) = Ztλ
i,s
t

λi,st = β(1 + rt+1)λi,st+1

where the assumption of perfect annuities market gives the last equation, i.e. the standard Euler equation

(independent of survival probabilities), given that πt+1,s

πt,s
= sst+1. Consider a different individual i′ born

in a different period s′. It follows for all i, i′, i 6= i′:

λi,st

λi
′,s′

t

=
λi,st+1

λi
′,s′

t+1

=
λi,st+2

λi
′,s′

t+2

= · · · = λi,s

λi′,s′
for all t

that is, the ratio of the marginal utilities of any two consumers is constant over time (which is a standard

result under complete markets). This allows to represent the individual Lagrangian multipliers in the

form λi,st = λt
λi,s

, where λt is the Lagrangian multiplier on the aggregate budget constraint (which is

identified later) and thus to map the social planner’s solution to the decentralized equilibrium. Hence:

λi,sφi,st u1(cT,i,st , cN,i,st ) = λt

λi,sφi,st u2(cT,i,st , cN,i,st ) = Ztλt

These two equations together with the each individual’s budget constraint and aggregate definitions char-

acterize the decentralized equilibrium.

2. Consider the social planner’s dynamic problem of optimizing aggregate sectoral consumption and

savings over time:

max
CTt ,C

N
t ,Kt

∞∑
t=0

βtU(CTt , C
N
t )

s.t CTt + ZtC
N
t = · · ·+ (1 + rt)Kt−1 −Kt

Letting λt denoting the Lagrangian multiplier on the aggregate budget constraint, the first order condi-

tions of this problem are the aggregate equivalent of those in the decentralised equilibrium:

U1(CTt , C
N
t ) = λt

U2(CTt , C
N
t ) = Ztλt

λt = β(1 + rt)λt+1

3. Consider the social planner’s static problem of choosing sectoral consumption for each individual in
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each cohort to maximize the sum of individuals utilities weighted by the welfare weights.

U(CTt , C
N
t ) = max

cTt,s,c
N
t,s

{∑
s

∫
λi,sφi,st u(cT,i,st , cN,i,st )di

}

s.t.
∑
s

∫
cT,i,st di+ Zt

∑
s

∫
cN,i,st di = CTt + ZtC

N
t

Recall that in the OLG model individuals within each cohort are identical. Moreover, within each cohort

it is assumed that the mass of identical individuals is Nt,s which denotes the (exogenous) number of

people of age s at time t. It follows that each individual chooses cT,i,st ≡ cTt,s, c
N,i,s
t ≡ cNt,s for all i.

Hence, the social planner’s problem becomes:

U(CTt , C
N
t ) = max

cTt,s,c
N
t,s

{∑
s

Nt,sλ
i,sφi,st u(cTt,s, c

N
t,s)

}
s.t.

∑
s

Nt,sc
T
t,s + Zt

∑
s

Nt,sc
N
t,s = CTt + ZtC

N
t

With the functional forms assumed in the model presented in section 2:

us(c
T
t,s, c

N
t,s) =

(
(cTt,s)

αs(cNt,s)
1−αs

)1−σ
1− σ

the Lagrangian for this static problem (with Lagrangian multiplier µt) is:

L =
∑
s

Nt,sλ
i,sφi,st

(
(cTt,s)

αs(cNt,s)
1−αs

)1−σ
1− σ

+ µt

[
CTt + ZtC

N
t −

∑
s

Nt,sc
T
t,s − Zt

∑
s

cNt,s

]

The optimal choice of both cTt,s and cNt,s leads to the first order conditions:

λi,sφi,st
(
(cTt,s)

αs(cNt,s)
1−αs)1−σ αs

cTt,s
= µt

λi,sφi,st
(
(cTt,s)

αs(cNt,s)
1−αs)1−σ (1− αs)

cNt,s
= Ztµt

while the envelope conditions are: U1(CTt , C
N
t ) = µt;U2(CTt , C

N
t ) = Ztµt. Combining the two ex-

pressions above, the system becomes:

cTt,s =
αs

1− αs
Ztc

N
t,s (A.1)

µt = λi,sφi,st
(
(cTt,s)

αs(cNt,s)
1−αs)1−σ αs

cTt,s
(A.2)
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Managing (A.2) it results:

cNt,s =

[
µt

αsλi,sφ
i,s
t (cTi,s)

αs(1−σ)−1

] 1
(1−αs)(1−σ)

Plug the last expression into (A.1) to have:

cTt,s =
αs

1− αs
Zt

[
µt

αsλi,sφ
i,s
t (cTi,s)

αs(1−σ)−1

] 1
(1−αs)(1−σ)

i.e.

cTt,s =

(
(1− αs)
Ztαs

) (1−αs)(1−σ)
σ

(
αsλ

i,sφi,st
µt

) 1
σ

The goal now is to find a utility function for the representative agent to let him choose only aggregate

sectoral consumptions. The goal is thus to find those (time-varying exogenous) parameters attached to

each sectoral aggregate consumption that captures the change of the age structure in the economy. To

this end, first consider aggregate consumption in the T-sector:

CTt =
∑
s

Nt,sc
T
t,s = µ

− 1
σ

t

∑
s

Nt,s

(
(1− αs)
Ztαs

) (1−αs)(1−σ)
σ

(αsλ
i,sφi,st )

1
σ

By plugging (A.2) into this expression one gets:

CTt =

[
λi,sφi,st

(
(cTt,s)

αs(cNt,s)
1−αs)1−σ αs

cTt,s

]− 1
σ ∑

s

Nt,s

(
(1− αs)
Ztαs

) (1−αs)(1−σ)
σ

(αsλ
i,sφi,st )

1
σ

i.e.

CTt =
(cTt,s)

1
σ[

αsλi,sφ
i,s
t

(
(cTt,s)

αs(cNt,s)
1−αs

)1−σ] 1
σ

∑
s

Nt,s

(
(1− αs)
Ztαs

) (1−αs)(1−σ)
σ

(αsλ
i,sφi,st )

1
σ (A.3)

Similarly, the aggregate consumption of N-goods (recall (A.1)) reads:

CNt =
∑
s

Nt,sc
N
t,s =

1

Zt

∑
s

Nt,s
(1− αs)
αs

cTt,s =
µ
− 1
σ

t

Zt

∑
s

Nt,s
(1− αs)
αs

(
(1− αs)
Ztαs

) (1−αs)(1−σ)
σ

(αsλ
i,sφi,st )

1
σ

with (A.2) into this expression and re-managing, it results:

CNt =
(cTt,s)

1
σ[

αsλi,sφ
i,s
t

(
(cTt,s)

αs(cNt,s)
1−αs

)1−σ] 1
σ

∑
s

Nt,s

(
(1− αs)
Ztαs

)1+
(1−αs)(1−σ)

σ

(αsλ
i,sφi,st )

1
σ (A.4)

ECB Working Paper Series No 2382 / March 2020 48



Consider the special case of logarithmic preferences, namely σ = 1 . In this case, (A.3) and (A.4)

reduce to:

cTt,s =
αsλ

i,sφi,st∑
sNt,sαsλi,sφ

i,s
t

CTt

cTt,s
Zt

=
αsλ

i,sφi,st∑
sNt,s(1− αs)λi,sφi,st

CNt

that, inserted into the objective function of the representative agent under logarithmic preferences, gives:

∑
s

Nt,sλ
i,sφi,st us(c

T
t,s, c

N
t,s) =

∑
s

Nt,sλ
i,sφi,st log

[
(cTt,s)

αs (cNt,s)
1−αs

]

=
∑
s

Nt,sλ
i,sφi,st log

(cTt,s)
αs

(
cTt,s

Zt

1− αs
αs

)1−αs


=
∑
s

Nt,sλ
i,sφi,st log

( αsλi,sφ
i,s
t∑

sNt,sαsλ
i,sφi,st

CTt

)αs (
αsλi,sφ

i,s
t∑

sNt,s(1− αs)λi,sφ
i,s
t

CNt
1− αs
αs

)1−αs


=
∑
s

Nt,sλ
i,sφi,st log

(CTt )αs (CNt )1−αs

(
1−αs
αs

)1−αs
αsλi,sφ

i,s
t(∑

sNt,sαsλ
i,sφi,st

)αs (∑
sNt,s(1− αs)λi,sφ

i,s
t

)1−αs


=
∑
s

Nt,sλ
i,sφi,st

{
log
[
(CTt )αs (CNt )1−αs

]
+ vt,s

}
=

∑
s

Nt,sλ
i,sφi,st log

[
(CTt )αs (CNt )1−αs

]
+ Vt

= log
[
(CTt )

∑
s Nt,sλ

i,sφ
i,s
t αs (CNt )

∑
s Nt,sλ

i,sφ
i,s
t (1−αs)

]
+ Vt

where vt,s = log

[ (
1−αs
αs

)1−αs
αsλi,sφ

i,s
t

(
∑
sNt,sαsλ

i,sφi,st )
αs(

∑
sNt,s(1−αs)λi,sφ

i,s
t )

1−αs

]
and Vt =

∑
sNt,sλ

i,sφi,st vt,s. The

latter is a time-varying exogenous intercept in the objective function, as such it will not enter the first

order conditions of the representative agent’s maximization problem. Following Jones (2018), φi,st is

always equal to 1 and the Pareto weights attached to each individual, λi,s, are the same for each individ-

ual. Without loss of generality, I will assume that λi,s is equal to 1 for all individuals. Hence the final

representation is:33

∑
s

Nt,sλ
i,sφi,st us(c

T
t,s, c

N
t,s) = log

[
(CTt )γ

T
t (CNt )γ

N
t

]
+ Vt

33Notice that this case with two types of goods encompasses easily the case of one composite good considered by Jones (2018).
Suppose there are only T-goods, hence set αs = 1 ∀s (the term Vt disappears with a unique first order condition). Then:∑

s

Nt,sλ
i,sφi,st us(c

T
t,s) =

∑
s

Nt,s logCTt

which is the case considered by Jones (2018) when σ = 1.
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where

γTt =
∑
s

Nt,sαs

γNt =
∑
s

Nt,s(1− αs)

Hence, using the tractable case of logarithmic preferences (σ = 1), in the aggregate representation of the

model the representative household subject to the aggregate resource constraint solves, with respect to

consumption:

max
{CTt ,CNt }∞t=0

E0

∞∑
t=0

βt
{

log
[
(CTt )γ

T
t (CNt )γ

N
t

]
+ Vt

}
s.t. CTt + ZtC

N
t = · · ·

Finally, it is possible to back up the consumption aggregator, Ct (to which a proper price index must

be associated).34 Consider the individual’s problem seen above (point 1.) with logarithmic utility

us(c
T
t,s, c

N
t,s) = log[(cTt,s)

αs(cNt,s)
1−αs ]. Then, from the first order conditions it results:

cTt,s =
λi,sφi,st αs

λt

cNt,s =
λi,sφi,st (1− αs)

Ztλt

Hence:

Ct =
∑
s

Nt,s

(
cTt,s
)αs (

cNt,s
)1−αs

=
∑
s

Nt,s

(
λi,sφi,st αs

λt

)αs (
λi,sφi,st (1− αs)

Ztλt

)1−αs

=
1

λt

∑
s

Nt,sλ
i,sφi,st α

αs
s

(
1− αs
Zt

)1−αs

Using the consumption aggregator inflation can be identified from the identity:

PtCt = P Tt C
T
t + PNt C

N
t

from which it follows:

P t ≡
Pt

P Tt
=
CTt + ZtC

N
t

Ct

34This is necessary in order to identify the price index Pt
PTt

in the model and hence inflation: Πt = Pt
Pt−1

as it is explained in
the main text.
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Now consider the definition of gross inflation in the T-sector:

ΠT
t ≡

P Tt
P Tt−1

=
P Tt
P Tt−1

Pt
Pt

Pt−1

Pt−1
=
P t−1

P t
Πt

Hence, the gross inflation relevant for monetary policy is:

Πt =
P t

P t−1

ΠT
t

Since the first order conditions for the aggregate problem gives:

CTt =
∑
s

Nt,sc
T
t,s =

∑
sNt,sαsλ

i,sφi,st
λt

CNt =
∑
s

Nt,sc
N
t,s =

∑
sNt,s(1− αs)λi,sφi,st

Ztλt

Hence:

P t =

∑
sNt,sαsλ

i,sφi,st
λt

+ Zt
∑
sNt,s(1−αs)λi,sφ

i,s
t

Ztλt

1
λt

∑
sNt,sλi,sφ

i,s
t α

αs
s

(
1−αs
Zt

)1−αs
λi,s=φi,st =1

=

∑
sNt,s∑

sNt,sα
αs
s

(
1−αs
Zt

)1−αs

which gives:35

Πt ≡
P t

P t−1

=

∑
sNt,s∑
sNt−1,s

∑
sNt−1,sα

αs
s

(
1−αs
Zt−1

)1−αs

∑
sNt,sα

αs
s

(
1−αs
Zt

)1−αs

A.2 Labor

The social planner (i.e. the representative infinitely lived agent) needs to choose also the aggregate

sectoral hours to work in the economy. The static optimal problem considering also the choice of sectoral
35Notice that in the special case of age-invariant consumption shares αj = α ∀j it results:

P t

P t−1

=

∑
sNt,s

αα(1− α)1−α
(

1
Zt

)1−α∑
sNt,s

αα(1− α)1−α
(

1
Zt−1

)1−α∑
sNt−1,s∑

sNt−1,s
=

(
Zt
Zt−1

)1−α
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working hours is:

U(CTt , C
N
t , L

T
t , L

N
t ) = max

cTt,s,c
N
t,s,h

T
t,s,h

N
t,s

{∑
s

Nt,sλ
i,sφi,st u(cTt,s, c

N
t,s)

}
s.t.

∑
s

Nt,sc
T
t,s + Zt

∑
s

Nt,sc
N
t,s = (1− τt)[wTt LTt + wNt L

N
t ] + · · ·

∑
s

[
χ−

1
ε (hTt,s)

ε+1
ε + (1− χ)−

1
ε (hNt,s)

ε+1
ε

] ε
ε+1︸ ︷︷ ︸

hs

Nt,s = Lt

LTt =
∑
s

hTt,sNt,s

LNt =
∑
s

hNt,sNt,s

The first order conditions with respect to hTt,s, h
N
t,s are (exactly equal to those in the decentralized equi-

librium):

hTt,s = χhs

(
wTt
wt

)ε
hNt,s = (1− χ)hs

(
wNt
wt

)ε
where

wt =
[
χ(wTt )1+ε + (1− χ)(wNt )1+ε

] 1
1+ε

The goal now is to prove that the following holds:

Lt =
∑
s

[
χ−

1
ε (hTt,s)

ε+1
ε + (1− χ)−

1
ε (hNt,s)

ε+1
ε

] ε
ε+1

Nt,s =
[
χ−

1
ε (LTt )

ε+1
ε + (1− χ)−

1
ε (LNt )

ε+1
ε

] ε
ε+1

where LTt =
∑

s h
T
t,sNt,s, LNt =

∑
s h

N
t,sNt,s, namely to prove that choosing the individual sectoral

hours (hTt,s, h
N
t,s) is equivalent to choose the aggregate hours (LTt , LNt ) under that CES aggregator for the

social planner. To prove it, start from the definition of aggregate hours, plugging into the individual’s

first order conditions:

LTt =
∑
s

hTt,sNt,s = χ

(
wTt
wt

)ε∑
s

hsNt,s

LNt =
∑
s

hNt,sNt,s = (1− χ)

(
wNt
wt

)ε∑
s

hsNt,s
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that imply:

wTt =

(
LTt

χ
∑

s hsNt,s

) 1
ε

wNt =

(
LNt

(1− χ)
∑

s hsNt,s

) 1
ε

plug the last two expressions into the expression for the wage (which is implied by the individual’s

problem), wt =
[
χ(wTt )1+ε + (1− χ)(wNt )1+ε

] 1
1+ε , to have:

Lt =
∑
s

hsNt,s =
[
χ−

1
ε (LTt )

ε+1
ε + (1− χ)−

1
ε (LNt )

ε+1
ε

] ε
ε+1

�

B Solving the model with demographic wedges

B.1 Optimal conditions

In this section it is presented the derivation of the optimal conditions for the model of section 2.3.

Household. Have, as in the previous section, : γTt =
∑J

j=0Nt,jαj , γ
N
t =

∑J
j=0Nt,j(1 − αj) The

Lagrangian for the representative household’s problem is:

L = E0

∞∑
t=0

βt log
[
(CTt )γ

T
t (CNt )γ

N
t

]
+

+

∞∑
t=0

βtλt

[
(1− τt)(wTt LTt + wNt L

N
t ) + rtKt−1 +Rt−1

Bt−1

PTt
−Kt + (1− δ)Kt−1 + Tt − CTt − ZtCNt −

Bt
PTt

]
+

+

∞∑
t=0

βtλtνt

{
Lt −

[
χ−

1
ε (LTt )

ε+1
ε + (1− χ)−

1
ε (LNt )

ε+1
ε

] ε
ε+1

}

where λt and λtνt are the two Lagrangian multipliers associated with the two constraints. The first order

conditions for sectoral consumptions, capital and nominal bonds are:

ECB Working Paper Series No 2382 / March 2020 53



CTt :
γTt
CTt

= λt

CNt :
γNt
CNt

= Ztλt

Kt : β(1− δ + rt+1)λt+1 = λt

Bt : βEt

[
Rt

ΠT
t+1

λt+1

]
= λt

The first order conditions for sectoral hours worked read:

LTt : (1− τt)wTt = νtL
− 1
ε

t χ−
1
ε (LTt )

1
ε

LNt : (1− τt)wNt = νtL
− 1
ε

t (1− χ)−
1
ε (LNt )

1
ε

νt : Lt =
[
χ−

1
ε (LTt )

ε+1
ε + (1− χ)−

1
ε (LNt )

ε+1
ε

] ε
ε+1

where the following result has been used:

[
χ
− 1
ε (L

T
t )

ε+1
ε + (1− χ)−

1
ε (L

N
t )

ε+1
ε

] ε
ε+1

−1

=

[
χ
− 1
ε (L

T
t )

ε+1
ε + (1− χ)−

1
ε (L

N
t )

ε+1
ε

] ε
ε+1

[
χ
− 1
ε (L

T
t )

ε+1
ε + (1− χ)−

1
ε (L

N
t )

ε+1
ε

] ε
ε+1

−(ε+1)
ε

= LtL
− ε+1

ε
t = L

− 1
ε

t

From the ratio of the first two conditions:

LNt
LTt

=
1− χ
χ

(
wNt
wTt

)ε
By using this condition one can derive an expression for the aggregate real wage (wt) as a composite of

the two sectors real wage by imposing the identity:

wTt L
T
t + wNt L

N
t = wt

[
χ−

1
ε (LTt )

ε+1
ε + (1− χ)−

1
ε (LNt )

ε+1
ε

] ε
ε+1

i.e. wTt + wNt
LNt
LTt

= wt

[
χ−

1
ε + (1− χ)−

1
ε

(
LNt
LTt

) ε+1
ε

] ε
ε+1

By plugging into the relationship between the hours worked in the two sectors found above, it results:

wTt + wNt
1− χ
χ

(
wNt
wTt

)ε
= wt

χ− 1
ε + (1− χ)−

1
ε

(
1− χ
χ

(
wNt
wTt

)ε) ε+1
ε

 ε
ε+1
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simplifying:

1 +
1− χ
χ

(
wNt
wTt

)ε+1

=

(
wt

wTt

)ε+1

i.e.

wt =
[
χ(wTt )ε+1 + (1− χ)(wNt )ε+1

] 1
ε+1

Given this representation, that is: wTt L
T
t +wNt L

N
t = wtLt withwt =

[
χ(wTt )ε+1 + (1− χ)(wNt )ε+1

] 1
ε+1 ,

from the Lagrangian above it must be:

νt = (1− τt)wt

Hence, from the first order conditions above:

LTt = χLt

(
wTt
wt

)ε
LNt = (1− χ)Lt

(
wNt
wt

)ε
wt =

[
χ(wTt )ε+1 + (1− χ)(wNt )ε+1)

] 1
ε+1

where Lt is exogenous and given the choice of sectoral hours worked above is such that:

Lt =
[
χ−

1
ε (LTt )

ε+1
ε + (1− χ)−

1
ε (LNt )

ε+1
ε

] ε
ε+1

Firms. Under monopolistic competition, each intermediate good producer i ∈ [0, 1] for each sector

s ∈ {T,N} chooses the price level P sit in order to maximize expected discounted nominal profits:

max
P sit

{
E0

∞∑
t=0

Λ0,t

[
(P sit −MCst )Y s

it −
θs
2

(
P sit

ΠsP sit−1

− 1

)2

P st Y
s
t

]}

s.t. Y s
it =

(
P sit
P st

)−ηs
Y s
t

Namely:

max
P sit

{
E0

∞∑
t=0

Λ0,t

[
(P sit −MCst )

(
P sit
P st

)−ηs
Y s
t −

θs
2

(
P sit

ΠsP sit−1

− 1

)2

P st Y
s
t

]}
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In real terms, given that it has been chosen to express all real variables in terms of the price of T-goods:

max
P sit

{
E0

∞∑
t=0

Λ0,t

[
(P sit −MCst )

(
P sit
P st

)−ηs Y s
t

P Tt
− θs

2

(
P sit

ΠsP sit−1

− 1

)2

P st
Y s
t

P Tt

]}

The first order condition of this problem reads:

Λt,t(1− ηs)
(P sit)

−ηs

(P st )−ηs
Y st
PTt
− Λt,t(−ηs)MCst

(P sit)
−ηs−1

(P st )−ηs
Y st
PTt
− θsΛt,t

(
P sit

ΠsP sit−1

− 1

)
P st

ΠsP sit−1

Y st
PTt

−θsEtΛt,t+1

(
P sit+1

ΠsP sit
− 1

)
(−1)

P sit+1P
s
t+1Y

s
t+1

ΠsP sitP
s
itP

T
t+1

= 0

The contemporaneous discount factor Λt,t = 1, while Λt,t+1 = β λt+1

λt
. Considering the symmetric

equilibrium where P sit = P st for all i, the above first order condition reads:

(1− ηs) Y
s
t

PTt
+ ηs

MCst
P st

Y st
PTt
− θs

(
P st

ΠsP st−1

− 1

)
P st

ΠsP st−1

Y st
PTt
− θsEtΛt,t+1

(
P st+1

ΠsP st
− 1

)
(−1)

P st+1P
s
t+1Y

s
t+1

ΠsP st P
s
t P

T
t+1

= 0

or

(1− ηs) + ηsmcst − θs
(

P st
ΠsP st−1

− 1

)
P st

ΠsP st−1

Y st
PTt

+ θsEtΛt,t+1

(
P st+1

ΠsP st
− 1

)
P st+1P

s
t+1P

T
t Y

s
t+1

ΠsP st P
s
t P

T
t+1Y

s
t

= 0

where mcst ≡
MCst
P st

. Using the gross inflation definition: Πs
t ≡

P st
P st−1

it results:

(1− ηs) + ηsmcst − θs
(

Πs
t

Πs
− 1

)
Πs
t

Πs
+ θsEtΛt,t+1

(
Πs
t+1

Πs
− 1

)
Πs
t+1

Πs

P st+1P
T
t Y

s
t+1

P st P
T
t+1Y

s
t

= 0

Hence, in the two sectors the first order conditions read:

(1− ηT ) + ηTmcTt − θT
(

ΠT
t

ΠT
− 1

)
ΠT
t

ΠT
+ θTEtΛt,t+1

(
ΠT
t+1

ΠT
− 1

)
ΠT
t+1

ΠT

Y T
t+1

Y T
t

= 0

(1− ηN ) + ηNmcNt − θN
(

ΠN
t

ΠN
− 1

)
ΠN
t

ΠN
+ θNEtΛt,t+1

(
ΠN
t+1

ΠN
− 1

)
ΠN
t+1

ΠN

Zt+1Y
N
t+1

ZtY N
t

= 0

where Zt ≡ PNt
PTt

, λt,t+1 = β λt+1

λt
and mcss =

MCst
P st

is identified immediately below.

Each monopolistically competitive intermediate firm i in each sector s needs to minimise total nominal

cost subject to the production function taking prices as given:

max
Lsit,K

s
it

−W s
t L

s
it − P Tt rtKs

it +MCsit[(K
s
it)
ψ(AstL

s
it)

1−ψ − Y s
it]
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where rt is the real capital rental rate in T-goods unit and MCsit is the Lagrangian multiplier which

coincides with the nominal marginal cost. The first order conditions of this problem read:

W s
t = MCsit(1− ψ)

(
Ks
it

Lsit

)ψ
(Ast )

1−ψ

P Tt rt = MCsitψ

(
Lsit
Ks
it

)1−ψ
(Ast )

1−ψ

Y s
it = (Ks

it)
ψ(AstL

s
it)

1−ψ

i.e.

MCsit =
W s
t

(1− ψ)(Ast )
1−ψ

(
Lsit
Ks
it

)ψ
P Tt rt =

W s
t ψ

(1− ψ)

(
Lsit
Ks
it

)
Y s
it = (Ks

it)
ψ(AstL

s
it)

1−ψ

i.e.

MCsit =
W s
t

(1− ψ)(Ast )
1−ψ

(
P Tt rt(1− ψ)

W s
t ψ

)ψ
Lsit
Ks
it

=
P Tt rt(1− ψ)

W s
t ψ

Y s
it = (Ks

it)
ψ(AstL

s
it)

1−ψ

Notice that all firms i face the same nominal marginal cost since labor and capital inputs are supplied by

homogeneous factor markets. Notice also that all firms use the same capital-output ratio. Hence it can

be written: MCst ≡ MCsit, L
s
it ≡ Lst , K

s
t ≡ Ks

it, Y
s
t ≡ Y s

it . By further defining the sectoral real wage

as wst ≡
W s
t

PTt
the above conditions can be rewritten as:

MCsit
P Tt

=

W s
t

PTt

(1− ψ)(Ast )
1−ψ

rt(1− ψ)
W s
t

PTt
ψ

ψ

Lst
Ks
t

=
rt(1− ψ)

W s
t

PTt
ψ

Y s
t = (Ks

t )ψ(AstL
s
t )

1−ψ
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i.e

MCst = P Tt

(
wst

(1− ψ)Ast

)1−ψ (rt
ψ

)ψ
Ks
it =

wstψ

rt(1− ψ)
Lsit

Y s
t = (Ks

t )ψ(AstL
s
t )

1−ψ

Now, the relevant real marginal cost entering the boxed first order conditions above for each sector s is:

mcst ≡
MCst
P st

It follows that the first order conditions in the two sectors are:

mcTt ≡ MCTt
P Tt

=

(
wTt

(1− ψ)ATt

)1−ψ (
rt
ψ

)ψ
mcNt ≡ MCNt

PNt
=

1

Zt

(
wNt

(1− ψ)ANt

)1−ψ (
rt
ψ

)ψ
KT
t =

wTt ψ

rt(1− ψ)
LTt

KN
t =

wNt ψ

rt(1− ψ)
LNt

Y T
t = (KT

t )ψ(ATt L
T
t )1−ψ

Y N
t = (KN

t )ψ(ANt L
N
t )1−ψ

B.2 Optimal conditions in units of labor efficiency

Recall that the the exogenous labor supply in units of efficiency is:

Lt =

J∑
j=0

hjNt,j

where the individual’s households labor supply in efficiency units hj varies with age but is constant over

time. Since the size of each demographic cohort varies with time, so that in the new long-run steady

state the labor-supply is different from the one in the initial steady state, it is convenient to measure all

variables relative to Lt for each t. For each variableXt, have X̃t ≡ Xt
Lt

. The exception is capital, because

of its predetermined nature it will be K̃t−1 = Kt−1

Lt
. The representative household’s first order conditions
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with respect to sectoral consumptions, capital and bond holdings result:

γTt

C̃Tt
= Ltλt

γNt

C̃Nt
= ZtLtλt

β(1− δ + rt+1)λt+1 = λt

βEt

[
Rt

ΠT
t+1

λt+1

]
= λt

By subsequent substitutions:

γT

C̃Tt
= Ltλt

C̃Nt =
γNt C̃

T
t

γTt Zt

βEt

[
(1− δ + rt+1)

γTt+1

Lt+1C̃Tt+1

]
=

γTt

LtC̃Tt

Et

[
Rt

ΠT
t+1

]
= 1− δ + rt+1

The Euler equation can be also written as:

1 = βEt

[
γT,gt+1

Lgt+1

(1− δ + rt+1)
C̃Tt

C̃Tt+1

]

where:

γT,gt+1 ≡
γTt+1

γTt

Lgt+1 ≡ Lt+1

Lt

Hence, the first order conditions result:
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γTt

C̃Tt
= Ltλt

C̃Nt =
γNt C̃

T
t

γTt Zt

1 = βEt

[
γT,gt+1

Lgt+1

(1− δ + rt+1)
C̃Tt

C̃Tt+1

]

Et

[
Rt

ΠT
t+1

]
= 1− δ + rt+1

L̃Tt = χ

(
wTt
wt

)ε
L̃Nt = (1− χ)

(
wNt
wt

)ε
wt =

[
χ(wTt )ε+1 + (1− χ)(wNt )ε+1)

] 1
ε+1

mcTt =

(
wTt

(1− ψ)ATt

)1−ψ (
rt
ψ

)ψ
mcNt =

1

Zt

(
wNt

(1− ψ)ANt

)1−ψ (
rt
ψ

)ψ
K̃T
t =

wTt ψ

rt(1− ψ)
L̃Tt

K̃N
t =

wNt ψ

rt(1− ψ)
L̃Nt

Ỹ T
t = (K̃T

t )ψ(ATt L̃
T
t )1−ψ

Ỹ N
t = (K̃N

t )ψ(ANt L̃
N
t )1−ψ

θT

(
ΠT
t

ΠT
− 1

)
ΠT
t

ΠT
= (1− ηT ) + ηTmcTt + θTEt

[
Λt,t+1

(
ΠT
t+1

ΠT
− 1

)
ΠT
t+1

ΠT

Ỹ T
t+1

Ỹ T
t

Lgt+1

]

θN

(
ΠN
t

ΠN
− 1

)
ΠN
t

ΠN
= (1− ηN ) + ηNmcNt + θNEt

[
Λt,t+1

(
ΠN
t+1

ΠN
− 1

)
ΠN
t+1

ΠN

Zt+1Ỹ
N
t+1

ZtỸ N
t

Lgt+1

]
K̃t−1 = K̃N

t + K̃T
t

C̃Nt = Ỹ N
t −

θN
2

(
ΠN
t

ΠN
− 1

)2

Ỹ N
t

C̃Tt + Lgt+1K̃t = (1− δ)K̃t−1 + Ỹ T
t −

θT
2

(
ΠT
t

ΠT
− 1

)2

Ỹ T
t

Λt,t+1 ≡ β
λt+1

λt
=

1

1− δ + rt+1
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ΠN
t =

Zt
Zt−1

ΠT
t

Πt =

∑
j Nt,j∑
sNt−1,j

∑
j Nt−1,jα

αj
j

(
1−αj
Zt−1

)1−αj

∑
j Nt,jα

αj
j

(
1−αj
Zt

)1−αj

Πt = ΠtΠ
T
t

Rt =

(
Rt
R

)φR (Πt

Π

)φπ(1−φR)

Notice that the presence of age-varying sectoral consumption shares generates non-trivial dynamics in

inflation (Πt) as captured by variation in Πt ≡ P t
P t−1

as a consequence of varying age-structure and rel-

ative price of N-goods. Therefore, it is not obvious how, for example, a decrease of the same magnitude

in both sectoral inflations (ΠN
t ,Π

T
t ) translates into variations of aggregate inflation (Πt). Instead, more

obvious the case when the sectoral consumption share is constant across the ages:

αj = α, ∀j

In this case (see footnote 35):

Πt ≡
P t

P t−1

=

(
Zt
Zt−1

)1−α

Hence, since Zt
Zt−1

=
ΠNt
ΠTt

it follows that:

Πt =

(
ΠN
t

ΠT
t

)1−α

ΠT
t = (ΠT

t )α(ΠN
t )1−α

which is the usual way of aggregating sectoral inflations when sectoral consumption shares are constant.

B.3 Steady states

The ultimate goal is to study a transition from an initial to a final steady state where the (all exogenous)

demographic variables permanently set at a different level from the initial one. A steady state here is

such that for each variable Xt, Xt = X for all t given the permanent level of demographic variables.

Hence, the valueX might differ in the two steady states depending on the level exogenously taken by the

demographic variables. Both the initial and the final steady state are such that the demographic variables

do not change:

γT,gt = γN,gt = Lgt = 1, ∀t
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and the central bank hits always target inflation Π∗ such that:

Πt = ΠT
t = ΠN

t = Π∗, ∀t

The level of the demographic variables will be different in the two steady states: γTt , γNt , Lt will all have

a different value in the final steady state as compared to the initial one (unless in the data it is found the

contrary). As a consequence of this demographic change, for example, the relative price of N -goods, Zt,

might differ in the final steady state. But this will not prevent sectoral inflations to be always at target

level. Finally, to fully isolate the effect of demographic change it is further assumed that the productivity

parameters are always constant (both in the initial and final steady state): ATt = AT , ANt = AN for all

t. It is convenient to consider the initial and the final steady state separately.

B.3.1 Initial steady state

Following Cantelmo and Melina (2017), it is assumed that in the initial steady state χ = LT

L = L̃T ,

namely that real wages are equalized across sectors (wN = wT = w). In this way, χ results a variable to

be determined in the initial steady state which thus has an analytical solution, here derived. The optimal

conditions in the previous section, in steady state read:
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r =
1

β
− (1− δ)

ΠT = Π∗

ΠN = ΠT

Π = ΠT

R =
ΠT

β

mcT =
ηT − 1

ηT

mcN =
ηN − 1

ηN

wT = (mcT )
1

1−ψ

(
r

ψ

)− ψ
1−ψ

(1− ψ)AT

wN = wT

w = wT

Z =
mcT

mcN

(
AT

AN

)1−ψ

L̃T = χ

L̃N = (1− χ)

K̃T =
wTψ

r(1− ψ)
L̃T

K̃N =
wNψ

r(1− ψ)
L̃N

Ỹ T = (K̃T )ψ(AT L̃T )1−ψ

Ỹ N = (K̃N )ψ(AN L̃N )1−ψ

K̃ = K̃N + K̃T

C̃T =
γT

Lλ

C̃N =
γN C̃T

γTZ

To have an analytical solution of the steady state, the two missing expressions above are the ones for λ

and χ that can be retrieved from the clearing conditions in steady state:

C̃N = Ỹ N

C̃T + δK̃ = Ỹ T
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First notice that the capital-labor ratio is easily identified:

K̃ = K̃N + K̃T =
wψ

r(1− ψ)
(1− χ) +

wψ

r(1− ψ)
χ =

wψ

r(1− ψ)

Hence:

K̃T = K̃χ

K̃N = K̃(1− χ)

Ỹ T = χK̃ψ(AT )1−ψ

Ỹ N = (1− χ)K̃ψ(AN )1−ψ

Then, using the first clearing condition, it results:

γN γT

Lλ

γTZ
= (1− χ)K̃ψ(AN )1−ψ

i.e.

λ =
γN

ZL(1− χ)K̃ψ(AN )1−ψ

From the second clearing condition:

γT

Lλ
+ δK̃ = χK̃ψ(AT )1−ψ

i.e.

λ =
γT

L(χK̃ψ(AT )1−ψ − δK̃)

Equating the two found expressions for λ:

γN

ZL(1− χ)K̃ψ(AN )1−ψ
=

γT

L(χK̃ψ(AT )1−ψ − δK̃)

i.e.

γN (χK̃ψ(AT )1−ψ − δK̃) = γTZ(1− χ)K̃ψ(AN )1−ψ

i.e.

χγNK̃ψ(AT )1−ψ − γNδK̃ = γTZK̃ψ(AN )1−ψ − χγTZK̃ψ(AN )1−ψ

i.e.
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χ =

γN

γT
δK̃1−ψ + Z(AN )1−ψ

γN

γT
(AT )1−ψ + Z(AN )1−ψ

λ =
γN

ZL(1− χ)K̃ψ(AN )1−ψ

These expressions make clear that one does not need values for labor in efficiency units, L, to identify

prices and variables expressed in units of labor efficiency in steady state. Indeed, by substituting the

found expression for λ into the above expression for C̃T (the only expression where λ and L appear) it

results:

C̃T =
γTZ(1− χ)K̃ψ(AN )1−ψ

γN

namely, L cancels out. That is, the exogenous labor supply (in efficiency units) does not matter to

determine prices in the initial steady state. An higher labor supply would only lead quantities to adjust

to their constant value in units of labor supply determined by relative prices (which in turn depend only

on structural parameters such as production function parameters, ψ,AT , AN preferences parameters,

β, ηT , ηN , depreciation δ).

Apart from L, the other way demographics enter into the steady state is via the ratio of the two

parameters γN/γT which measures how much demand is biased relatively more on N-goods due to age-

varying consumption preferences. Suppose an economy has an older age-structure which gives an higher

γN/γT . How will the initial steady state of such an economy be characterized? The relative consumption

of N-goods will be higher:

CN

CT
=
C̃N

C̃T
=

γN

γTZ

as the relative price of N-goods, Z, is only determined by the relative labor productivity parameter,

(AT /AN )(1 − ψ), and by the relative real marginal costs, mcT /mcN , which in turn depends only on

the constant price markup (i.e. on the constant demand elasticity of substitution between differentiated

intermediate goods in each sector, ηT , ηN ). This must be met by an higher relative production of N-

goods which in the initial steady state is reached by an increase in the parameter χ. Indeed, it can be

seen from the framed expression for χ above that

∂χ

∂ γ
N

γT

< 0⇐⇒ δK̃1−ψ < (AT )1−ψ

which is always satisfied.36 Hence, an older economy will lead to a higher fraction of the labor force to
36It is equivalent to δK̃ < K̃ψ(AT )1−ψ: depreciated capital needs to be smaller than output of T-goods, Ỹ Tt = χK̃ψ(AT )1−ψ ,
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be employed in the N-sector as older cohorts tend to consume relatively more N-goods.

Finally, the expression for steady state aggregate output (in T-goods units) is:

Ỹ = Ỹ T + ZỸ N = χK̃ψ(AT )1−ψ + Z(1− χ)LK̃ψ(AN )1−ψ

= K̃ψ
[
χ(AT )1−ψ + Z(1− χ)(AN )1−ψ

]
B.3.2 Final steady state

The final steady state is the result of a demographic transition after which the demographic variables (the

only source of exogenous variation in the model) remain at the same level reached at that point forever.

The three demographic variables that are allowed to change in level in the final steady state as compared

to the initial one are: Lt, γTt and γNt . It has already been shown in the previous section thatLt is irrelevant

for the determination of prices in steady state. Instead, the ratio γN/γT is relevant. Furthermore, the

final steady state will differ from the initial one because wage equalization is not imposed any more, i.e.

the parameter χ is the same of the initial steady state.37 Hence, potential changes in relative consumption

induced by the change in γN/γT will need to be compensated by changes in relative prices. In the final

steady state nominal variables are at their initial level: both aggregate and sectoral inflations are at the

target level Π∗, the gross nominal interest rate is at Π∗/β. Real variables can have a different value due

to permanent demographic change. While variables in the initial steady state are denoted by no subscript,

(as long as one admits that consumption C̃T is positive), as the clearing on T-market requires C̃Tt + δK̃ = χK̃ψ(AT )1−ψ ,
i.e. δK̃ < χK̃ψ(AT )1−ψ . Hence, a fortiori, given 0 < χ < 1: δK̃ < K̃ψ(AT )1−ψ . �

37Notice that this is a direct consequence of how imperfect labor mobility is modelled in this context: for given relative wage,
the representative household has a fixed preference to work into either the T-sector or the N-sector which depends on the
parameters χ and ε.

ECB Working Paper Series No 2382 / March 2020 66



denote the final steady state with the subscript f . The following system identifies the final steady state:

mcTf = mcT =
ηT − 1

ηT

mcNf = mcN =
ηN − 1

ηN

rf = r =
1

β
− (1− δ)

wTf = wT = w = (mcT )
1

1−ψ (1− ψ)AT
(
r

ψ

)− ψ
1−ψ

Zf =
mcT

mcN

(
wNf
wT

AT

AN

)1−ψ

L̃Tf = χ

(
wT

wf

)ε
L̃Nf = (1− χ)

(
wNf
wf

)ε
K̃T
f =

wTψ

r(1− ψ)
L̃Tf

K̃N
f =

wNf ψ

r(1− ψ)
L̃Nf

Ỹ T
f = (K̃T

f )ψ(AT L̃Tf )1−ψ

Ỹ N
f = (K̃N

f )ψ(AN L̃Nf )1−ψ

wf =
[
χ(wT )ε+1 + (1− χ)(wNf )ε+1

] 1
ε+1

K̃f = K̃T
f + K̃N

f

C̃Tf = Ỹ T
f − δK̃f

C̃Nf =
γNf

γTf

C̃Tf
Zf

By recursively substituting the above equation into one another, the clearing condition in the N-goods

market:

C̃Nf = Ỹ N
f

is 1 equation in 1 unknown, say the real wage in the N-sectorwNf , which can be easily solved numerically.
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B.4 Log-linearized model

The goal is to set-up a log-linearized version of the model in order to study the transition dynamics

from the initial steady state to the final one. To do so, the approach used here is to log-linearize the

model around the initial steady state. This means that the final steady state will be modelled in terms of

permanent deviations from the initial one. Have the following notation for each variableXt whose initial

steady state value is X:

x̂t ≡
Xt −X
X

≈ log

(
Xt

X

)
Consider a perfect foresight equilibrium so that the expectation operator is dropped. The log-linearization

of most of the equations of section B.2 is somewhat standard (the algebra is reported in the following

subsection B.4.1). Start by considering the exogenous time-varying demographic variables, once log-

linearized they are:

γ̂Tt =

∑
j αjNjn̂t,j∑
j αjNj

(B.1)

γ̂Nt =

∑
j(1− αj)Njn̂t,j∑
j(1− αj)Nj

(B.2)

γ̂T,gt =

∑
j αjNj(n̂t,j − n̂t−1,j)∑

j αjNj
(B.3)

l̂gt =

∑
j hjNj(n̂t,j − n̂t−1,j)∑

j hjNj
(B.4)

At =

∑J
j=0Nj(n̂t − n̂t−1)∑J

j=0Nj

−

∑J
j=0 α

αj
j

(
1−αj
Z

)1−αj
Nj(n̂t,j − n̂t−1,j)∑J

j=0 α
αj
j

(
1−αj
Z

)1−αj
Nj

(B.5)

where

n̂t,j =
Nt,j

Nj
− 1

is the percentage deviation of the number of people in cohort j in period t from the initial steady state.

Furthermore, this additional time-invariant parameter is necessary:

B =

∑J
j=0 α

αj
j

(
1−αj
Z

)1−αj
Nj(1− αj)∑J

j=0 α
αj
j

(
1−αj
Z

)1−αj
Nj

Given the above exogenous variables, the following system of equations holds for each period t:
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̂̃cNt = ̂̃cTt − ẑt + γ̂Nt − γ̂Tt (B.6)̂̃cTt = ̂̃cTt+1 −
r

1− δ + r
r̂t+1 − γ̂T,gt+1 + l̂gt+1 (B.7)

̂̃cTt = ̂̃cTt+1 − (R̂t − Π̂Tt+1)− γ̂T,gt+1 + l̂gt+1 (B.8)̂̃
l
T

t = εω̂Tt − εω̂t (B.9)̂̃
l
N

t = εω̂Nt − εω̂t (B.10)

ω̂t = χω̂Tt + (1− χ)ω̂Nt (B.11)

m̂c
T
t = (1− ψ)ω̂Tt + ψr̂t − (1− ψ)âTt (B.12)

m̂c
N
t = (1− ψ)ω̂Nt + ψr̂t − ẑt − (1− ψ)âNt (B.13)̂̃
k
T

t = ω̂Tt − r̂t +
̂̃
l
T

t (B.14)̂̃
k
N

t = ω̂Nt − r̂t +
̂̃
l
N

t (B.15)̂̃yTt = ψ
̂̃
k
T

t + (1− ψ)̂l̃
T

t + (1− ψ)âTt (B.16)

̂̃yNt = ψ
̂̃
k
N

t + (1− ψ)̂l̃
N

t + (1− ψ)âNt (B.17)̂̃
kt−1 = χ

̂̃
k
T

t + (1− χ)
̂̃
k
N

t (B.18)̂̃cNt = ̂̃yNt (B.19)

̂̃yTt =
C̃T

Ỹ T
̂̃cTt +

K̃

Ỹ T

[
l̂gt+1 +

̂̃
kt − (1− δ)̂̃kt−1

]
(B.20)

Π̂Nt = ẑt − ẑt−1 + Π̂T
t (B.21)

Π̂t = Π̂t + Π̂Tt (B.22)

Π̂t = At +B(Π̂Nt − Π̂Tt ) (B.23)

R̂t = φRR̂t−1 + φπΠ̂t (B.24)
θT

ηT − 1
Π̂Tt = m̂c

T
t +

θT
ηT − 1

βΠ̂Tt+1 (B.25)

θN
ηN − 1

Π̂Nt = m̂c
N
t +

θN
ηN − 1

βΠ̂Nt+1 (B.26)

Additionally, one would need exogenous processes for the sectoral labor productivities. To isolate the

effect of demographics, in this paper it will be assumed that âTt = âNt = 0, ∀t. Then, the above system

is composed by 21 equations in 21 endogenous variables:{̂
l̃
T

t ,
̂̃
l
N

t ,
̂̃
k
T

t ,
̂̃
k
N

t ,
̂̃
kt, ̂̃yTt , ̂̃yNt , ̂̃cNt , ̂̃cTt , ŵTt , ŵNt , ŵt, r̂t, m̂cTt , m̂cNt , ẑt, Π̂Tt , Π̂Nt , Π̂t, R̂t, Π̂t}

that can be studied in a deterministic transition from period 0 (the initial steady state) to infinity (an

arbitrary point sufficiently far in the future when the demographic transition is assumed to stop) where

the exogenous variation of the demographic variables above ({γ̂Tt , γ̂Nt , γ̂
T,g
t , l̂gt , At}∞t=0) is perfectly an-
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ticipated by the agents in the model.

B.4.1 Some log-linearization algebra

Take a first-order Taylor expansion of the natural logarithm of the optimal conditions in section B.2

around the initial steady state. First, consider the exogenous time-varying demographic variable:

γTt =
∑
j

αjNt,j

which is linear already. Hence, in percentage deviations from the initial steady state:

γTt − γT

γT
=

α0N0∑
j αjNj

(Nt,0 −N0)

N0
+

α1N1∑
j αjNj

(Nt,1 −N1)

N1
+ · · ·+ αJNJ∑

j αjNj

(Nt,J −NJ)

NJ

i.e., using the hat-notation introduced above:

γ̂Tt =
α0N0∑
j αjNj

n̂t,0 +
α1N1∑
j αjNj

n̂t,1 + · · ·+ αJNJ∑
j αjNj

n̂t,J

i.e., more compactly:

γ̂Tt =

∑
j αjNjn̂t,j∑
j αjNj

(B.27)

It follows immediately that the growth rate of this variable in percentage deviation is simply:

γ̂T,gt = γ̂Tt − γ̂Tt−1 =

∑
j αjNj(n̂t,j − n̂t−1,j)∑

j αjNj
(B.28)

Symmetrically:

γ̂Nt =

∑
j(1− αj)Njn̂t,j∑
j(1− αj)Nj

(B.29)

The case of the exogenous labor supply in efficiency units, Lt =
∑

j hjNt,j , is equivalent:

l̂t =

∑
j hjNjn̂t,j∑
j hjNj

so that:

l̂gt = l̂t − l̂t−1 =

∑
j hjNj(n̂t,j − n̂t−1,j)∑

j hjNj
(B.30)
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Notice that the total number of people in the economy in each period t can be obtained by adding the

two:

ϕt ≡ γTt + γNt =
∑
j

Nt,jαj +
∑
j

Nt,j(1− αj) =
∑
j

Nt,j (B.31)

Hence:

ϕ̂t =

∑
j Njn̂t,j∑
j Nj

=
γT

γT + γN
γ̂Tt +

γN

γT + γN
γ̂Nt

and its growth rate:

ϕ̂gt =

∑
j Nj(n̂t,j − n̂t−1,j)∑

j Nj
(B.32)

Notice that in the case of age-invariant consumption shares, i.e. αj = α for all j, γTt = γNt = ϕt, so that

γ̂T,gt = ϕ̂gt is the growth rate of the population.

Next, consider:

P t =

∑
j Nt,j∑

j Nt,jα
αj
j

(
1−αj
Zt

)1−αj

Taking the natural logarithm:

logP t = log
∑
j

Nt,j − log
∑
j

Nt,jα
αj
j

(
1− αj
Zt

)1−αj

Hence, the first order Taylor expansion reads:

P t − P
P

=
N0∑
j Nj

(Nt,0 −N0)

N0
+ · · ·+

NJ∑
j Nj

(Nt,J −NJ )

NJ
+

−
N0α

α0
0

(
1−α0
Z

)1−α0

∑
j Njα

αj
j

(
1−αj
Z

)1−αj (Nt,0 −N0)

N0
− · · · −

NJα
αJ
J

(
1−αJ
Z

)1−αJ
∑
j Njα

αj
j

(
1−αj
Z

)1−αj (Nt,J −NJ )

NJ

−

−(1− α0)Z−(1−α0)−1N0α
α0
0 (1− α0)1−α0∑

j α
αj
j

(
1−αj
Z

)1−αj (Zt − Z) + · · ·+
−(1− αJ )Z−(1−αJ )−1NJα

αJ
J (1− αJ )1−αJ∑

j α
αj
j

(
1−αj
Z

)1−αj (Zt − Z)


i.e.

p̂t =

∑
j Njn̂t,j∑
j Nj

−

∑
j Njα

αj
j

(
1−αj
Z

)1−αj
n̂t,j∑

j Njα
αj
j

(
1−αj
Z

)1−αj +

∑
j(1− αj)Njα

αj
j

(
1−αj
Z

)1−αj

∑
j α

αj
j

(
1−αj
Z

)1−αj ẑt
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It follows:

Π̂t = p̂t − p̂t−1 =

∑
j Nj(n̂t,j − n̂t−1,j)∑

j Nj
−

∑
j Njα

αj
j

(
1−αj
Z

)1−αj
(n̂t,j − n̂t−1,j)∑

j Njα
αj
j

(
1−αj
Z

)1−αj︸ ︷︷ ︸
≡At

+ (ẑt − ẑt−1)

∑
j(1− αj)Njα

αj
j

(
1−αj
Z

)1−αj

∑
j α

αj
j

(
1−αj
Z

)1−αj︸ ︷︷ ︸
≡B

(B.33)

Hence, aggregate inflation results:

Π̂t = Π̂t + Π̂Tt = At + (Π̂Nt − Π̂Tt )B + Π̂Tt = At + (1−B)Π̂Tt +BΠ̂Nt

an expression which shows that a deviation of aggregate inflation from its target is not only a convex

combination of deviations of sectoral inflations from their target ((1−B)Π̂Tt +BΠ̂Nt ) but depends also on a

time-varying intercept (At) which captures deviations of the aggregate sectoral consumption shares from

the case of age-invariant sectoral consumption shares due to (exogenously) time-varying age structure.

To see this, notice that when the sectoral consumption shares are age-invariant, i.e. αj = α,∀j, then:

At =

∑J
j=0Nj(n̂t − n̂t−1)∑J

j=0Nj

−
αα
(

1−α
Z

)1−α
αα
(

1−α
Z

)1−α
∑J

j=0Nj(n̂t,j − n̂t−1,j)∑J
j=0Nj

= 0 ∀t

B = (1− α)
αα
(

1−α
Z

)1−α
αα
(

1−α
Z

)1−α
∑J

j=0Nj∑J
j=0Nj

= (1− α)

so that the first component of aggregate inflation simplifies to:

Π̂t = (Π̂Nt − Π̂Tt )(1− α)

which in turn implies:

Π̂t = Π̂t + Π̂Tt = (ẑt − ẑt−1)(1− α) + Π̂Tt = (Π̂Nt − Π̂Tt )(1− α) + Π̂Tt = αΠ̂Tt + (1− α)Π̂Nt

that is, in this case, a deviation of aggregate inflation from its target is simply a convex combination

of deviations of sectoral inflations from their target with weights given by the respective age-invariant

consumption share.

B.4.2 Steady states of the log-linearized system

Given that all variables are expressed in deviation from the initial steady state, the log-linearized variables

will all have zero value at the initial steady state. Instead, variables in the final steady state are expressed
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in terms of permanent deviations from the initial steady state, i.e. for each log-variable xt in deviation

from the initial steady state x̂t, the final steady state is such that:

x̂t = x̂, ∀t

One can find these permanent deviations analytically (these values will be used to check that the transition

leads the economy to the right steady state when the model is solved numerically). Denote with f the

time of the final steady state (no subscript for the initial steady state). The only source of exogenous

variation that makes the final steady state different from the initial one is the assumption that at a certain

point in the future the number of people in each cohort remain at the level reached there forever:

n̂t,j = n̂f,j , ∀t ≥ f, j

As a consequence, none of the demographic variables grows in the final steady state:

γ̂T,gf = l̂gf = At = 0

and the only parameters that differ in the final steady state are the sectoral consumption wedges:

γ̂Tf =
γTf
γT
− 1, γ̂Nf =

γNf
γN
− 1

The constancy of consumption coupled with γ̂T,gf = l̂gf = 0 implies that in the final steady state the real

interest rate is at its initial level:

r̂f = 0

There is no long-run variation in the nominal variables:

Π̂Tf = Π̂Nf = Π̂f = R̂f = Π̂f = 0

which implies, together with the assumption of no technology growth (âTt = âNt = 0,∀t) that in the final

steady state the sectoral real marginal costs as well as the real wage in the T-sector are at their initial

level:

m̂cTf = m̂cNf = ω̂Tf = 0

To have a reduced-form expression for the other variable, one needs to solve, for example, for the real

wage of the N-sector, ω̂Nf . From the system above, it results:

ω̂f = (1− χ)ω̂Nf
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which, plugged into the expressions for sectoral hours worked, gives:

̂̃
l
T

f = −ε(1− χ)ω̂Nf̂̃
l
N

f = εχω̂Nf

Then:

̂̃
k
T

f = ̂̃yTf =
̂̃
l
T

f̂̃
k
N

f = (1 + χε)ω̂Nf

which imply:

̂̃
kf = (1− χ)ω̂Nf

Plug the expressions for ̂̃kf and ̂̃yTf into the clearing condition in the T-goods market to have

̂̃cTf = −(1− χ)ω̂Nf

[
ε
Ỹ T

C̃T
+ δε

K̃

C̃T

]

then, given that the relative price is:

ẑf = (1− ψ)ω̂Nf

from the intra-temporal condition:

̂̃cNf = γ̂Nf − γ̂Tf −

[
(1− ψ) + (1− χ)

(
ε
Ỹ T

C̃T
+ δ

K̃

C̃T

)]
ω̂Nf

Hence, finally, from the cleating condition in the N-goods market (̂c̃
N

f = ̂̃yNf ) the reduced-form expres-

sion for ω̂Nf is:

ω̂Nf =
γ̂Nf − γ̂Tf[

1 + χε+ (1− χ)
(
ε Ỹ

T

C̃T
+ δ K̃

C̃T

)]
So, as the economy in the long-run shifts to a distribution with permanently more elderly, in comparison

to the initial steady state, there will be a consumption bias towards N-goods: γ̂Nf − γ̂Tf > 0. This will

induce an increase of the relative wage of the N-sector, ω̂Nf > 0, in order to drain some hours worked

in the N-sector, necessary to meet the new relative demand of N-goods. How much the relative wage

increases in the long run depends on the representative household’s preferences to work in either sector,

as captured by the parameters χ, ε. Accordingly, the relative price of N-goods will be higher, ẑf > 0.
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