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Paper Summary

m A lot of interest in machine learning
m Subject to “black-box” criticism — Limits use for policymaking

m Paper develops Shapley-based metrics for interpreting models

m Two metrics for importance of individual predictors for predicted
target values

m New metric (PBSV) for contribution of individual predictors for loss
in sequence of fitted models

m Empirical study of forecasting US inflation provides sensible
leading predictors (oil, components of CPI) and discrepancies
between in-sample and out-of-sample importance
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Shapley values

m Model: y;11 = f(X¢) + €141, With x; dimension P; Collect all
predictor indices inset S={1,2,..., P}
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Shapley values

m Model: y;11 = f(X¢) + €141, With x; dimension P; Collect all
predictor indices inset S={1,2,..., P}

m Shapley value of p-th predictor is comparison of all possible
models including p to all without p; in my sloppy notation:

gp= > AP (E(fQu {p}] - E[fQ))
QCS\{p}

m Paper cleverly adjusts setting for
m Dealing with large number of predictors (use sampling)
m Expanding samples (not one value; take average)
m Retraining of the samples — (i/0)Shapley-VI,
m Loss-function effects rather than predicted values — PBSV,
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1. Empirical findings (Figure 1)
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m Stability of findings (pcepi least to 2nd most important h=1to
h=6)?
m Why not more correlated results (similar series in FRED-MD)?
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2. Empirical application

m Curious to robustness regarding

m Forecasting y;.» rather than %2211 Viik
m Including predictors and moving average of predictors
m Selection of L (AR-lag) and q (MA-order)
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m Curious to robustness regarding

m Forecasting y;.» rather than %2211 Viik
m Including predictors and moving average of predictors
m Selection of L (AR-lag) and q (MA-order)

m Main benchmark is AR(k) model. Consider smaller/more targeted
model with explanatory variables, survey data, etc? Particularly
given somewhat modest (short-horizon) improvement of ML
approaches (7% for h=1;19% for h = 12)

m For PCA, possible to compare with significance?
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3. Lazy/Free-riding discussant

Overes and Van der Wel (Computational Economics; 2023) also use
Shapley values (for driving factors of sovereign credit ratings). From
referee process:

m Is iteratively omitting variables possible/useful?
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Overes and Van der Wel (Computational Economics; 2023) also use
Shapley values (for driving factors of sovereign credit ratings). From
referee process:

m Is iteratively omitting variables possible/useful?

m Can you extend the results with more machine learning
techniques? [Ensembles mentioned; Included in your work!]

m Can you take the panel nature into account? [You dol]

m Compare to scikit-learn package (which also provides
feature importance estimates)

m Closer comparison of findings with existing literature and
evaluation also of signs
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Final point and conclusion

Final point: What audience do you see for this paper?
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Final point and conclusion

Final point: What audience do you see for this paper?
m In-between ML and econometrics, currently

m If more econometric, perhaps some (small-scale!) simulation
study is possible? And further breakdown/analysis/comparison
with existing models/metrics for linear model?

In conclusion:

m Opens the black box with clever adaptations to time series setting

m Great work!
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