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Introduction
• Impulse response analysis is a widely employed tool in the field of

macroeconomics and econometrics, popularized by Sims (1980).
• Identification issues/what comes first? Koop et al. (1996) introduce

generalized impulse response functions.

We propose: Multiple shock impulse response functions, which
take into account the correlation between the shocks. Incorporates:

* Contagion between shocks
* Temporal aggregation

Multiple impulse response functions can shed light on:

• The interaction and impact of financial shocks.
• The effects of multiple uncertainty sources on economic variables.
• The transmission of shocks across countries and assessing global

macroeconomic linkages.

General Framework
Let yt be a vector with n endogenous variables, modeled by a function
of historical values of yt and variables zt, and a function of n shocks νt:

yt = f (yt−1, ...,yt−p, zt, ...,zt−q) + g(νt), (1)

where νt have mean zero and finite variances.

Impulse Response Concepts
Let yt follow a process in accordance with Equation (1).

Definition 1: Traditional impulse response functions

The traditional impulse response functions of yt+h to the s-th shock
νs,t of size δs are defined as

Ψ (h, δs,ωt−1) =E[yt+h | νs,t = δs, νj,t = 0∀j ̸= s,

νt+1 = ... = νt+h = 0,ωt−1]

− E[yt+h | νt = νt+1 = ... = νt+h = 0,ωt−1],

for horizon h = 0, 1, ..., H , where ωt−1 denotes an historical path
realization of the stochastic process that generates yt+h. This defi-
nition implies a linear function of g(·) and requires identification of
the structural relations between shocks.

Definition 2: Generalized impulse response functions

The one shock generalized impulse response functions (Koop et al.,
1996; Pesaran and Shin, 1998) of yt+h to the s-th shock νs,t of size
δs are defined as

Ψ g(h, δs, It−1) =E[yt+h | νs,t = δs, It−1]− E[yt+h | It−1],

for horizon h = 0, 1, ..., H , where It−1 denotes the information set
available at t − 1. Here, the history is treated random and does not
require identification of the structural relations.

Definition 3: Multiple shock impulse response functions

Let S be a set of indices corresponding to the 1 < m ≤ n shocks
of interest, where |S| > 1. The multiple shock impulse response
functions of yt+h to a set of shocks νS,t of size δS are defined as

ΨS(h, δS, It−1) =E[yt+h | νS,t = δS, It−1]− E[yt+h | It−1],

for horizon h = 0, 1, ..., H .

Illustration: VAR(1) process
Let yt denote the n variables of interest. The vector autoregression
(VAR) with one lag is then

yt = Byt−1 + ut, ut ∼ N(0,Σ). (2)

We assume i.i.d. residuals ut and stability of the VAR.

Impulse response functions for Equation (2)

Let σss be the (s, s)-th element of Σ, es an s-th element unit vector,
and P an n×m permutation matrix, with m unit vectors, then:

Generalized impulse response functions (GIRF) for one shock s:

Ψ g(h, δs, It−1) = BhΣes(σss)
−1δs. (3)

Multiple shock impulse response functions for m > 1 shocks:

ΨS(h, δS, It−1) = BhΣP (P ′ΣP )−1δS. (4)

Simulation
Consider a data generating process (DGP):

• DGP: n = 3 variables, Equation (2), with B =

0.4 0.1 0.1

0.1 0.4 0.1

0.2 0.2 0.4

.

• Consider 2 cases:

Σ(1) =

 1 −0.25 −0.1

−0.25 1 0.5

−0.1 0.5 1

, and Σ(2) =

 1 0.25 −0.1

0.25 1 −0.5

−0.1 −0.5 1

.

• Analyze effect of first two shocks S = {1, 2} on variable 3.

Figure: Impulse Response Functions
(a) Case 1, DGP with Σ(1) (b) Case 2, DGP with Σ(2)

The sum of the one-shock GIRFs
∑

ℓ∈S Ψ
g(h, δℓ, It−1) (dashed

red line) underestimates (case 1) or overestimates (case 2) the
total effect, ΨS(h, δS, It−1) (solid blue line).

Summary and Further Research
• Multiple shock impulse response functions are necessary to ac-

curately analyze the combined effect of shocks.
• Summing the one-shock generalized impulse response functions

can lead to either over- or underestimation of the total effect.
• Further research:

* Empirical analysis
* Non-linear specifications, second order dynamics
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