Discussion on:
 Dynamic sparse predictive regressions Mauro Bernardi, Daniele Bianchi, Nicolas Bianco

Anna Simoni (CREST, CNRS, École Polytechnique, ENSAE)

Summary. I

Very interesting paper.
I've enjoyed reading it.
Aim:

- Predicting the dynamics of economic variables (e.g. forecasting inflation, asset returns);
- large number of predictors;
- the relevance of the predictors may change over time, hence sparsity potentially varying over time.

Summary. II

Prediction is based on a Gaussian time-varying parameter regression model: for $t=1, \ldots, n$,

$$
\begin{equation*}
y_{t}=x_{t}^{\prime} \widetilde{\beta}_{t}+\epsilon_{t}, \quad \epsilon_{t} \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right) \tag{1}
\end{equation*}
$$

where x_{t} and $\widetilde{\beta}_{t}$ are p-dimensional, $\widetilde{\beta}_{t}$ is sparse, and p might be large compared with n (high-dimension).

High-dimension is dealt with by assuming sparsity and time-varying sparsity is induced through the following prior:

1) reparametrization:
$\widetilde{\beta}_{t}=\Gamma_{t} \beta_{t}$
$\Gamma_{t}=\operatorname{diag}\left(\gamma_{j, t}\right), \quad\left\{\gamma_{j, t}\right\} \in\{0,1\}^{p n}, \quad$ where $j=1, \ldots, p, t=1, \ldots, n ;$
2) prior: Bernoulli-Gaussian (BG) dynamics
2.1 Random walk for $\beta_{j, t}$: for every $j=1, \ldots, p$

$$
\beta_{j, t}=\beta_{j, t-1}+v_{j, t}, \quad v_{j, t} \sim \mathcal{N}\left(0, \eta_{j}^{2}\right)
$$

and $\beta_{j, 0} \sim \mathcal{N}\left(0, \kappa_{0} \eta_{j}^{2}\right)$ (in vector form $\beta_{j} \sim \mathcal{N}_{n+1}\left(0, \eta^{2}, Q^{-1}\right)$ with Q tridiagonal);
2.2 stochastic volatility: $h_{t}=\log \left(\sigma_{t}^{2}\right)$ and

$$
h:=\left(h_{0}, \ldots, h_{n}\right) \sim \mathcal{N}_{n+1}\left(0, \nu^{2} Q^{-1}\right) .
$$

(Alternative: homoskedasticity (BGH)).

Summary. IV

2.3 Persistent stochastic process for $P\left(\gamma_{j, t}=1\right)$:

$$
\gamma_{j, t} \mid \omega_{j, t} \stackrel{i n d}{\sim} \mathcal{B} e\left(p_{j, t}\right), \quad \omega_{j, t}=\frac{p_{j, t}}{1-p_{j, t}}
$$

and $\omega_{j}:=\left(\omega_{j, 0}, \ldots, \omega_{j, T}\right) \sim \mathcal{N}_{n+1}\left(0, \xi_{j}^{2} Q^{-1}\right)$. The components
$\left(\gamma_{j, 1}, \ldots, \gamma_{j, n}\right)$ are correlated with respect to the marginal prior, given ξ_{j}^{2}, Q.
2.4 Priors on hyperparameters.
3) semi-parametric Variational Bayes algorithm based on two assumptions on the set of approximating densities:

- mean-field factorisation,
- parametric approximation for the density of h and the probability of $\gamma_{j, t}$ (to have smooth sequence of posterior inclusion probabilities).

Comments and questions. I

The main novelty of this prior w.r.t. existing literature is the prior of $\gamma_{j, t}$ which allows persistency through correlation (in the marginal).

Question. Can $\gamma_{j, 0}$ be zero? not clear from the text.
Remark. Probabilistic structure of this prior. Is it useful to write the BG prior as a spike-and-slab prior?

$$
\widetilde{\beta}_{j, t} \mid \beta_{j, t-1}, \gamma_{j, t} \sim \gamma_{j, t} \mathcal{N}\left(\beta_{j, t-1}, \eta_{j}^{2}\right)+\left(1-\gamma_{j, t}\right) \delta_{0}\left(\widetilde{\beta}_{j, t}\right)
$$

under the assumption $\widetilde{\beta}_{j, t} \underline{\|} \gamma_{j, t-1} \mid \beta_{j, t-1}, \gamma_{j, t}$.

- The spike part does not depend on $\beta_{j, t-1}$;
- The slab part is persistent and depends on $\beta_{j, t}$ not on $\widetilde{\beta}_{j, t}$, so the past sparsity pattern affects the value of $\widetilde{\beta}_{j, t}$ only through $\gamma_{j, t}$;

Comments and questions. II

- the conditional marginal is

$$
\pi\left(\widetilde{\beta}_{j, t} \mid \beta_{j, t-1}, p_{j, t}\right) \sim p_{j, t} \mathcal{N}\left(\beta_{j, t-1}, \eta_{j}^{2}\right)+\left(1-p_{j, t}\right) \delta_{0}\left(\widetilde{\beta}_{j, t}\right)
$$

and then we can integrate out $p_{j, t-1}$.

Comments and questions. III

This priors competes with the following state-of-the-art priors:

- Koop \& Korobilis (2022):
- soft-spike-and-slab prior with two normals, one of them with variance $\rightarrow 0$
- the variance of $\widetilde{\beta}_{j, t}$ vary over time.
- Rockova \& McAlinn (2021): soft-spike-and-slab prior

$$
\widetilde{\beta}_{j, t} \mid \widetilde{\beta}_{j, t-1}, \gamma_{j, t} \sim \gamma_{j, t} \psi_{1}\left(\mu_{j, t}, \eta_{j}^{2}\right)+\left(1-\gamma_{j, t}\right) \psi_{0}\left(\lambda_{0}\right)
$$

where

- $\mu_{t}=\phi_{0}+\phi_{1}\left(\widetilde{\beta}_{t-1}-\phi_{0}\right)$ with $\left|\phi_{1}\right|<1 \Rightarrow$ motivation to take $\phi_{1}=1$;
- ψ_{0} could be Laplace density.
- The probability of $\gamma_{j, t}$ depends on $\widetilde{\beta}_{j, t-1}$ explicitly.

Question. Comparison of the persistency of the sparsity through time induced by the two priors?

Comments and questions. IV

Other questions:

- $\gamma_{j t} \sim \operatorname{Bern}\left(p_{j t}\right), \frac{p_{j t}}{1-p_{j t}}=\omega_{j t}$ and $\omega_{j} \sim \mathcal{N}_{n+1}\left(0, \xi_{j}^{2} Q^{-1}\right)$. Motivation for this prior? Could you for instance consider $p_{j t}=p_{j}$ with $p_{j} \sim \mathcal{B}$ eta? This would also give correlated components.
- Small number of hyperparameters compared to competitor priors but persistency. What if persistency is not satisfied by the true $\widetilde{\beta}_{t}$?
- Simulations: try $\operatorname{AR}(1)$ with less persistency ($\phi_{1}=0.98$ currently) for the active coefficients.
- How large n can be? interesting to see the effect of n in the simulations.
- Correlation between predictors?

Reinterpretation. I

We can re-interpret this model in terms of groups, where

- the components of each group show dependency structure
- sparsity among groups and within group \Rightarrow bi-level sparsity.
- In the paper: sparsity at one level.

Every covariates j defines a group:

$$
\widetilde{\beta}_{j}:=\left(\widetilde{\beta}_{j, 0}, \ldots, \widetilde{\beta}_{j, n}\right)=\Gamma_{j} \beta_{j}
$$

with $\Gamma_{j}=\operatorname{diag}\left(\gamma_{j, t}\right), t=0, \ldots, n$ and β_{j} is $(n+1)$-vector. Here $\gamma_{j, t}$ are standard deviations, not binary variables.

- There are p (potentially active) groups;
- each group has $n+1$ (potentially active) components.

Reinterpretation. II

The group structure is useful:

- to reduce dimension;
- if one believes there are predictors that are never relevant.

Then, one can for instance extend Mogliani \& Simoni (2023, wp) to allow for temporal dependence inside each group.

- Mogliani \& Simoni (2023, wp) consider a double spike-and-slab prior.
- Comparison of the two priors would be interesting.

In practice: extend your GMRF prior for β_{j} to a hard-spike-and-slab (with a Dirac at 0). That is, there is a non-zero probability that a group is inactive.

Question. suppose some predictors are never relevant (as in your simulation), what is the computational cost?

