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The Anatomy of Out-of-Sample Forecasting Accuracy

Abstract

We develop metrics based on Shapley values for interpreting time-series forecasting
models in macroeconomics and finance, including “black-box” models from machine
learning. Our metrics are model agnostic, so they are applicable to any model (lin-
ear or nonlinear, parametric or nonparametric). Two of the metrics, iShapley-VI and
oShapley-VI, measure the importance of individual predictors for explaining the in-
sample and out-of-sample predicted target values, respectively, in the sequence of fitted
models that generates the time-series forecasts. The third metric is the performance-
based Shapley value (PBSV), our main methodological contribution. PBSV measures
the contributions of individual predictors to the out-of-sample loss corresponding to
the time-series forecasts generated by the sequence of fitted models. In essence, PBSV
anatomizes out-of-sample forecasting accuracy. In an empirical application forecasting
US inflation with a large dataset and machine learning models, leading predictors for
improving out-of-sample forecasting accuracy according to PBSV include the price of
oil at short horizons and the medical services component of the consumer price index at
longer horizons. We also find a number of discrepancies between an individual predic-
tor’s relevance according to the in-sample iShapley-VI and the out-of-sample PBSV,
so a predictor’s in-sample importance does not necessarily capture its relevance for
out-of-sample forecasting accuracy. We created the Python package anatomy for com-
puting the out-of-sample PBSV.

Keywords: Model interpretation, Shapley value, Loss function, Machine learning, In-
flation
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1. Introduction

The use of large datasets (i.e., “big data”) and machine learning for out-of-sample time-series

forecasting in macroeconomics and finance is burgeoning. Indeed, there is growing evidence

that the combination of large datasets and machine learning significantly improves out-of-

sample performance. Macroeconomic applications include forecasting inflation, output and

employment growth, the unemployment rate, unemployment insurance initial claims, and

recessions.1 Applications in finance often involve forecasting stock returns.2 Large datasets

allow researchers to draw on a wealth of information, thereby increasing the capacity of

prediction models to incorporate relevant signals. Machine learning offers a variety of tools

for guarding against overfitting, which is vital for improving out-of-sample performance in

the presence of a large number of predictors.3 Some classes of machine learning models

(e.g., random forests, boosted trees, and neural networks) also accommodate general forms

of nonlinearities in predictive relations, further increasing the scope for improving out-of-

sample performance when nonlinearities are an important attribute of the data-generating

process.4

While researchers are certainly concerned with improving out-of-sample forecasting ac-

curacy, they are also keenly interested in interpreting fitted prediction models. For example,

1See, for example, Li and Chen (2014), Exterkate et al. (2016), Medeiros and Mendes (2016), Döpke,
Fritsche, and Pierdzioch (2017), Kim and Swanson (2018), Smeekes and Wijler (2018), Medeiros et al. (2021),
Vrontos, Galakis, and Vrontos (2021), Yousuf and Ng (2021), Borup and Schütte (2022), Goulet Coulombe
et al. (2022), Hauzenberger, Huber, and Klieber (2023), and Borup, Rapach, and Schütte (forthcoming).

2See, for example, Chinco, Clark-Joseph, and Ye (2019), Rapach et al. (2019), Freyberger, Neuhierl, and
Weber (2020), Gu, Kelly, and Xiu (2020), Kozak, Nagel, and Santosh (2020), Bryzgalova, Pelger, and Zhu
(2021), Cong et al. (2022), Dong et al. (2022), Avramov, Cheng, and Metzker (forthcoming), and Chen,
Pelger, and Zhu (forthcoming).

3Stock and Watson (2002a,b) spurred a literature that uses large datasets for macroeconomic forecasting
based on principal component regression (e.g., Stock and Watson 1999b; Bernanke and Boivin 2003; Banerjee
and Marcellino 2006). Applications in finance that forecast stock and bond returns based on large datasets
and principal component regression include Ludvigson and Ng (2007, 2009), Neely et al. (2014), Çakmaklı
and van Dijk (2016), and Dong et al. (2022).

4Earlier studies that investigate nonlinear approaches to macroeconomic modeling and forecasting include
Lee, White, and Granger (1993), Kuan and White (1994), Swanson and White (1997), Stock and Watson
(1999a), Trapletti, Leisch, and Hornik (2000), Nakamura (2005), Medeiros, Teräsvirta, and Rech (2006), and
Marcellino (2008).
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especially with a large number of predictors, it is important to identify which predictors

are the most important for determining the forecasts generated by fitted models. It is also

valuable to know how the predictors contribute to out-of-sample forecasting accuracy. Such

knowledge helps users of forecasting models to wrap their minds around the models so that

they are not simply “black boxes” that opaquely transform predictors into forecasts. By

identifying the most relevant predictors in fitted models that perform well out of sample,

researchers gain insight into empirically important economic mechanisms that can help to

guide the assessment and development of theoretical models. In a similar vein, researchers

involved in policy need to be able to interpret forecasting models to provide more compre-

hensible advice to policymakers.

An array of tools have been developed for interpreting fitted prediction models. Many

are model agnostic, so they can be applied to any model. One set of tools analyzes how the

predictions generated by fitted models vary with the individual predictors. Such methods

include partial dependence plots (Friedman 2001), Shapley values (Shapley 1953; Štrumbelj

and Kononenko 2010, 2014; Lundberg and Lee 2017), individual conditional expectation

plots (Goldstein et al. 2015), locally interpretable model-agnostic explanations (Ribeiro,

Singh, and Guestrin 2016), and accumulated local effects (Apley and Zhu 2020). A related

set of tools measures variable importance, namely, how important individual predictors are

in accounting for the predictions produced by fitted models. Variable importance metrics

include those based on partial dependence plots (Greenwell, Boehmke, and McCarthy 2018),

permutations (Fisher, Rudin, and Dominici 2019), and Shapley values (Lundberg and Lee

2017; Casalicchio, Molnar, and Bischl 2018).

Tools for interpreting fitted forecasting models are typically applied in a manner appropri-

ate for cross-sectional data. Specifically, a researcher divides the total sample of observations

into training and test samples. The researcher then fits a prediction model using data from

the training sample and uses the fitted model to generate predictions for the test sample

observations. To interpret the model that generates the forecasts, the researcher computes,
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for example, the variable importance for each predictor based on the fitted model and train-

ing data used to estimate the model. This conventional approach is eminently reasonable,

especially in a cross-sectional context.5 However, it is not necessarily appropriate in a time-

series setting. In such a setting, a researcher typically re-estimates the prediction model

each period using an expanding or rolling window of data, as they generate a sequence of

out-of-sample forecasts. Thus, instead of a single model, there is a sequence of estimated

models to interpret. The importance of the predictors in explaining the sequence of out-of-

sample forecasts is also likely to be of interest. Moreover, because researchers are concerned

with out-of-sample performance, they will be interested in understanding how the individual

predictors contribute to out-of-sample forecasting accuracy for the sequence of forecasts.

In this paper, we propose metrics for interpreting time-series forecasting models. The

metrics are based on Shapley values. Using insights from coalitional game theory, Shap-

ley values fairly allocate contributions among predictors and have attractive properties for

analyzing predictor relevance (as discussed in Section 2). The first metric is iShapley-VIp,

an in-sample variable importance measure for predictor p. This is an aggregate measure

of an individual predictor’s importance across the entire set of fitted models that generate

the sequence of out-of-sample time-series forecasts. The next metric is oShapley-VIp, which

measures the importance of predictor p for the sequence of out-of-sample forecasts.

The final metric is the performance-based Shapley value (PBSVp), our main method-

ological contribution. The iShapley-VIp and oShapley-VIp metrics do not take into account

the realized target value; in contrast, PBSVp measures the contribution of predictor p to

the out-of-sample loss for the forecast evaluation period (although it can also be computed

for any subsample of the forecast evaluation period, including for a single observation),

thereby taking into account the realized target value. In essence, PBSVp anatomizes out-of-

sample forecasting accuracy. PBSVp applies to any loss function, including the popular mean

squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE)

5For example, this approach is used on numerous occasions for the applications in the insightful textbook
by Molnar (2022).
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criteria. All of our metrics are model agnostic, so they can be applied to any forecasting

model (linear or nonlinear, parametric or nonparametric). In sum, our metrics provide an in-

formative set of tools for interpreting time-series forecasting models in macroeconomics and

finance. To facilitate their implementation, we develop computationally efficient algorithms

for computing oShapley-VIp and PBSVp.

We illustrate the use of iShapley-VIp, oShapley-VIp, and PBSVp in an empirical appli-

cation forecasting US inflation. Inflation forecasting is the subject of a sizable literature

(for a survey, see Faust and Wright 2013) and an important topic in many contexts, includ-

ing for central banks when setting monetary policy. A spate of recent studies finds that

nonlinear machine learning models, including random forests and neural networks, signifi-

cantly improve inflation forecasts (e.g., Medeiros et al. 2021; Goulet Coulombe 2022; Goulet

Coulombe et al. 2022; Hauzenberger, Huber, and Klieber 2023). We generate inflation fore-

casts using a set of approximately 120 predictors—primarily from the FRED-MD database

(McCracken and Ng 2016)—and a variety of models based on principal component regression

(PCR, Stock and Watson 2002a,b), elastic net (ENet, Zou and Hastie 2005) estimation of

a linear model, random forests (Breiman 2001), XGBoost (Chen and Guestrin 2016), and

neural networks. We also consider ensembles of individual forecasts generated by different

models. Our forecasting models consistently outperform a standard autoregressive (AR)

benchmark at horizons ranging from one to twelve months, in line with the recent literature.

Applying our metrics to the fitted forecasting models, we make a number of findings.

First, there is considerable overlap between the importance of the individual predictors

based on iShapley-VIp and oShapley-VIp. This is perhaps not surprising, as the fitted models

used in determining the importance of individual predictors for the in-sample and out-of-

sample predicted target values are the same. Similarly, for numerous predictors, we find a

relatively close correspondence between the in-sample iShapley-VIp and the out-of-sample

PBSVp, so predictors that are important in the fitted prediction model often also improve

the accuracy of the out-of-sample forecasts, which we expect for a model that forecasts well.
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However, in a number of cases, we find substantive discrepancies between the relevance of

individual predictors according to iShapley-VIp and PBSVp. Specifically, some predictors

that are among the most important according to iShapley-VIp contribute adversely to out-

of-sample forecasting accuracy according to PBSVp. The discrepancies between iShapley-VIp

and PBSVp in our empirical application serve as a warning: the in-sample importance of

a predictor in determining the predicted target values does not necessarily align with the

predictor’s role in determining out-of-sample forecasting accuracy, even when a forecasting

model performs well.

The remainder of the paper is organized as follows. Section 2 describes the iShapley-VIp,

oShapley-VIp, and PBSVp metrics for analyzing predictor relevance in a time-series context.

Section 3 presents the empirical application forecasting US inflation. Section 4 concludes. We

created the Python package anatomy to implement algorithms for computing oShapley-VIp

and PBSVp.

2. Methodology

This section describes our methodology for measuring the relevance of individual predictors

in time-series forecasting models. We begin with a discussion of Shapley values (Shapley

1953) in a time-series context, as they form the foundation for our approach. We then define

in-sample and out-of-sample variable importance measures based on Shapley values. Finally,

we propose PBSVp for analyzing the contributions of predictors to out-of-sample forecasting

accuracy.

We use the following notation in our time-series context. We index individual predictors

by p and collect the predictors in the index set S = {1, . . . , P}. The period-t P -dimensional

vector of predictor observations is denoted by xt = [ x1,t · · · xP,t ]′. The prediction model

is given by

yt+1:t+h = f(xt) + εt+1:t+h, (1)

5

https://www.python.org/
https://pypi.org/project/anatomy/


where yt+1:t+h = (1/h)
∑h

k=1 yt+k is the target, h is the forecast horizon, f is the conditional

mean (i.e., prediction) function, and εt+1:t+h is a zero-mean disturbance term.6 We denote the

fitted prediction model by f̂ , while Wi = {ti,start, . . . , ti,end} denotes the set of observations

used to train the model based on window Wi. The fitted prediction model evaluated at xt

and trained using Wi for horizon h is denoted by f̂(xt ;Wi, h).

2.1. Shapley Values in a Time-Series Context

Shapley values draw on coalitional game theory to utilize the analogy between the predic-

tors (or features) in a model and players in a cooperative game earning payoffs, where an

individual predictor’s payoff corresponds to its contribution to the model’s prediction. In a

time-series setting, the aim of a Shapley value is to quantify the marginal contribution of

predictor xp,t to the prediction f̂(xt ;Wi, h), given the presence of all of the other predic-

tors (S \ {p}). Viewed through the lens of coalitional game theory, Shapley values provide

a means for fairly allocating the contributions among predictors (even in the presence of

correlated predictors and interactions between them in the fitted model).

Adapting Štrumbelj and Kononenko (2010, 2014) to our time-series context, the Shapley

value for predictor p and instance xt for a model trained using window Wi for horizon h is

given by

φp(xt ;Wi, h) =
∑

Q⊆S\{p}

|Q|!(P − |Q| − 1)!

P !

[
ξQ∪{p}(xt ;Wi, h)− ξQ(xt ;Wi, h)

]
(2)

for p ∈ S and t ∈ Wi, where Q is a subset of predictors (i.e., a coalition), Q ⊆ S \ {p} is

the set of all possible coalitions of P − 1 predictors in S that exclude predictor p, |Q| is the

cardinality of Q, |Q|!(P − |Q| − 1)!/P ! is a combinatorial weight,

ξQ(xt ;Wi, h) = E
[
f̂
∣∣Xj,t = xj,t ∀ j ∈ Q ;Wi, h

]
(3)

6It is straightforward to extend the notation to allow for the conditional mean function in Equation (1)
to include additional lags of xt.
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is the value function, and E is the expectation operator. The value function ξQ(xt ;Wi, h) in

Equation (3) is the prediction of the fitted model conditional on the predictors in coalition

Q, so ξQ∪{p}(xt ;Wi, h) − ξQ(xt ;Wi, h) in Equation (2) measures the change in the predic-

tion, conditional on the predictors in coalition Q, when the predictor p is included in the

conditioning information set. The difference ξQ∪{p}(xt ;Wi, h) − ξQ(xt ;Wi, h) is computed

for all possible coalitions of P − 1 predictors that exclude predictor p, with each quantity

receiving the weight |Q|!(P − |Q| − 1)!/P ! in the summation in Equation (2) (the weights

sum to one). In essence, the Shapley value uses coalitions to control for the other predictors

when measuring the contribution of predictor p to the prediction corresponding to instance

xt.

The Shapley value in Equation (2) has a number of attractive properties in our time-series

context. The first is efficiency, also known as local accuracy:

∑
p∈S

φp(xt ;Wi, h) = f̂(xt ;Wi, h)− E
[
f̂ ;Wi, h

]
, (4)

where E[f̂ ;Wi, h] is the baseline prediction, which corresponds to the unconditional expec-

tation of f̂ (i.e., the prediction based on the empty coalition set). Equation (4) says that we

can exactly decompose the model prediction corresponding to instance xt (in terms of the

deviation from the baseline prediction) into the sum of the Shapley values for the individ-

ual predictors for that instance. Two additional properties, missingness and symmetry, are

intuitively appealing. Missingness is given by

∀R ⊆ S \ {p} : ξR∪{p}(xt ;Wi, h) = ξR(xt ;Wi, h)⇒ φp(xt ;Wi, h) = 0, (5)

while symmetry is given by

∀R ⊆ S \ {p, q} : ξR∪{p}(xt ;Wi, h) = ξR∪{q}(xt ;Wi, h)⇒ φp(xt ;Wi, h) = φq(xt ;Wi, h). (6)
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Finally, linearity says that for any real numbers c1 and c2 and models f̂(xt ;Wi, h) and

f̂ ′(xt ;Wi, h),

φp

(
c1

[
f̂(xt ;Wi, h) + c2f̂

′(xt ;Wi, h)
])

= c1φp

(
f̂(xt ;Wi, h)

)
+ c1c2φp

(
f̂ ′(xt ;Wi, h)

)
. (7)

Linearity is useful for computing Shapley values for ensembles of prediction models.

It is practically infeasible to compute the exact Shapley value in Equation (2) for even a

moderate number of predictors, as the prediction function has to be evaluated for all possible

coalitions both with and without predictor p. Building on the sampling-based approach of

Castro, Gómez, and Tejada (2009), Štrumbelj and Kononenko (2014) develop an algorithm

for estimating the Shapley value. We use a refined version of their algorithm. We first

express Equation (2) in the equivalent form:

φp(xt ;Wi, h) =
1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}(xt ;Wi, h)− ξPrep(O)(xt ;Wi, h)

]
(8)

for p ∈ S and t ∈ Wi, where O is an ordered permutation for the predictor indices in S, π(P )

is the set of all ordered permutations for S, and Prep(O) is the set of indices that precede p

in O.

The algorithm is based on making a random draw m with replacement for an ordered

permutation from π(P ), which we denote by Om. Using Om, we compute the following:

θp,m(xt ;Wi, h) =
1

|Wi|
∑
s∈Wi

[
f̂(xj,t : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h)−

f̂(xj,t : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h)
] (9)

for p ∈ S and t ∈ Wi, where Postp(O) is the set of indices that follow p in O. Equation (9)

approximates the effect of removing predictors not in the coalition by replacing them with

background data from the training sample (Štrumbelj and Kononenko 2014; Lundberg and

Lee 2017). “Background data” refer to the data used to integrate out the predictors not in

8



the coalition when estimating the conditional expectation in Equation (3).7 The estimate of

φp(xt ;Wi, h) in Equation (8) is then given by

φ̂p(xt ;Wi, h) =
1

2M

2M∑
m=1

θp,m(xt ;Wi, h) (10)

for p ∈ S and t ∈ Wi, where M is the number of random draws. To increase computational

efficiency, we follow Castro, Gómez, and Tejada (2009) and compute Shapley values for each

predictor p ∈ S for a randomly drawn ordered permutation from π(P ). In addition, we im-

plement antithetic sampling as a variance-reduction technique by computing θp,m(xt ;Wi, h)

in Equation (9) for the original order of a randomly drawn ordered permutation as well as

when the order is reversed (Mitchell et al. 2022). Equation (10) retains the properties in

Section 2.1, including efficiency:

∑
p∈S

φ̂p(xt ;Wi, h) = f̂(xt ;Wi, h)− ¯̂
f(Wi, h)︸ ︷︷ ︸
φ̂∅(Wi,h)

(11)

for t ∈ Wi, where
¯̂
f(Wi, h) = (1/|Wi|)

∑
t∈Wi

f̂(xt ;Wi, h) is the average in-sample prediction

for the model trained using sample Wi, which corresponds to the baseline or unconditional

forecast (i.e., the forecast based on the empty coalition set, which we denote by φ̂∅(Wi, h)).

Suppose that the prediction model is linear in the predictors: f(xt) = α +
∑P

p=1 βpxp,t;

the fitted prediction model is given by f̂(xt) = α̂ +
∑P

p=1 β̂pxp,t, where α̂, β̂1, . . . , β̂P are

estimates of α, β1, . . . , βP , respectively. In this case, the Shapley value in Equation (8) is

7Equation (9) effectively samples from the empirical marginal distribution based on the training sample
for the predictors not in the coalition, which implicitly assumes that the predictors not in the coalition are
distributed independently of those in the coalition. Because this assumption is not likely to hold in practice,
Lundberg and Lee (2017) propose sampling from the empirical conditional distribution for the predictors not
in the coalition. Using insights from Pearl (2009), however, Janzing, Minorics, and Blöbaum (2020) argue
that, to fairly allocate the contributions across the individual predictors, it is more appropriate to use the
empirical marginal distribution, as in Equation (9).
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given by

φ̂p(xt ;Wi, h) = β̂p(xp,t − x̄p) (12)

for p ∈ S and t ∈ Wi, where x̄p is the sample mean of xp,t for the training sample. Because

there are no interactions for a linear model, it is straightforward to compute Shapley values

via Equation (12).

The Shapley value φ̂p(xt ;Wi, h) provides a local measure of the contribution of predictor

p to the prediction corresponding to instance xt in the training sample. A global measure

of the importance of predictor p for the training sample can be computed by taking the

average of the absolute values of the Shapley values for predictor p across the training

sample observations:

Shapley-VIp(Wi, h) =
1

|Wi|
∑
t∈Wi

∣∣∣φ̂p(xt ;Wi, h)
∣∣∣ (13)

for p ∈ S. The variable importance measure in Equation (13) is a popular metric for

assessing predictor importance in machine learning applications (e.g., Molnar 2022, Chapter

9.6). Equation (13) is based on a single training sample. Tools for interpreting fitted models

are typically applied in this manner, which is appropriate for cross-sectional data (or time-

series data if a researcher only estimates the prediction model once). The following diagram

illustrates the conventional case for cross-sectional data indexed by i = 1, . . . , n, where the

first ntrain observations comprise the training sample.

i = 1 nntrain

Shapley-VIp

In a time-series context, however, researchers typically re-estimate the model on a regular

basis over time as additional data become available, so there are multiple training samples.

In Section 2.2, we develop a variable importance metric more suited to this practice.
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2.2. In-Sample Shapley Values for Time Series

When forecasting time-series variables in macroeconomics and finance, it is common to

regularly retrain the prediction model using data available at the time of forecast formation.

For example, if we are forecasting a monthly variable at horizon h, we re-estimate the

prediction model each month as additional data become available, which is typically done

using either an expanding or rolling window, where the estimation sample becomes longer

(remains the same size) for the former (latter). Suppose that there are t = 1, . . . , T total

observations available. The initial in-sample period ends in t = Tin, while the remaining

T − Tin = D observations constitute the out-of-sample period.

Mimicking the situation of a forecaster in real time, we proceed as follows. We first use

data from t = 1 through t = Tin to fit the prediction model and generate an out-of-sample

forecast of yTin+1:Tin+h. After accounting for the forecast horizon and lag in Equation (1),

there are Tin− (h− 1)− 1 usable observations for training the prediction model for the first

out-of-sample forecast. For an expanding (rolling) window, we then use data from t = 1

(t = 2) through Tin + 1 to fit the prediction model and generate a forecast of yTin+2:Tin+h+1.

Continuing in this manner, we generate a sequence of D − (h − 1) out-of-sample forecasts,

where, for the final forecast, we use data from the first period (period T − D − (h− 1))

through T − h for an expanding (rolling) window to fit the prediction model and generate a

forecast of yT−(h−1):T . Note that we only use data available at the time of forecast formation

to train the model so that there is no “look-ahead” bias in the out-of-sample forecasts. We

denote the sequence of time-series forecasts by ŷTin+1:Tin+h, ŷTin+2:Tin+h+1, . . . , ŷT−(h−1):T .

The Shapley-based variable importance in Equation (13) corresponds to a prediction

model trained once using the observations in Wi. To accommodate the sequence of D−(h−1)

time-series forecasts for models regularly retrained with an expanding or rolling window, we

denote the set of training samples by W =
{
W1, . . . ,WD−(h−1)

}
. In this context, we define
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the in-sample Shapley-based variable importance as

iShapley-VIp(W,h) =
1

|W |
∑
i∈W

Shapley-VIp(Wi, h) (14)

for p ∈ S, which is the average of the variable importance measures for predictor p across

all of the training samples used to generate the sequence of time-series forecasts. To help

make the temporal dimension of Equation (14) clear, the following diagram shows how

iShapley-VIp(W,h) is computed in terms of the time-series observations for an expanding

window and h = 1.

t = 1 Tin Tin + 1 T − 1 T

Shapley-VIp(W1, 1)

Shapley-VIp(W2, 1)

Shapley-VIp(WD, 1)

iShapley-VIp(W, 1) =
1

D

D∑
i=1

Shapley-VIp(Wi, 1)

2.3. Out-of-Sample Shapley Values for Time Series

We are also interested in measuring variable importance for the sequence of out-of-sample

forecasts. We begin by defining the Shapley value for the fitted model and vector of predictors

used to generate an out-of-sample forecast, which corresponds to an out-of-sample version

of Equation (8):

φoutp

(
xTin+(i−1) ;Wi, h

)
=

1

P !

∑
O∈π(P )

[
ξPrep(O)∪{p}

(
xTin+(i−1) ;Wi, h

)
− ξPrep(O)

(
xTin+(i−1) ;Wi, h

)]
(15)
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for p ∈ S and i = 1, . . . , D− (h− 1), where xTin+(i−1) is the vector of predictors plugged into

the fitted prediction model trained with Wi used to generate the ith out-of-sample forecast,

which is given by ŷTin+i:Tin+h+(i−1) = f̂
(
xTin+(i−1) ;Wi, h

)
. To estimate Equation (15), we

use a suitably modified version of the algorithm in Section 2.1. For a random draw m of an

ordered permutation Om, we modify Equation (9) to

θ out
p,m

(
xTin+(i−1) ;Wi, h

)
=

1

|Wi|
∑
s∈Wi

[
f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)
−

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)]
,

(16)

while Equation (10) becomes

φ̂out
p

(
xTin+(i−1) ;Wi, h

)
=

1

2M

2M∑
m=1

θ out
p,m

(
xTin+(i−1) ;Wi, h

)
(17)

for p ∈ S and i = 1, . . . , D − (h− 1). Equation (16) continues to approximate the effect of

removing predictors not in the coalition by replacing them with background data from Wi,

as this is the sample used to train the prediction model that generates the out-of-sample

forecast; in this sense, we remain “true to the model” used for forecasting.8

The φ̂out
p

(
xTin+(i−1) ;Wi, h

)
estimate in Equation (17) continues to be characterized by

efficiency, so we can decompose the out-of-sample forecast corresponding to xTin+(i−1) as

follows:

∑
p∈S

φ̂out
p

(
xTin+(i−1) ;Wi, h

)
= f̂

(
xTin+(i−1) ;Wi, h

)
− φ̂∅(Wi, h) (18)

8“True to the model” means that we use parameter estimates from the fitted prediction model and
background data from the training sample used to fit the prediction model. In other words, we retain the
basic elements of the fitted model when estimating the Shapley value in Equation (17).
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for i = 1, . . . , D− (h− 1). For a model that is linear in the predictors, the Shapley value in

Equation (15) is given by

φ̂out
p

(
xTin+(i−1) ;Wi, h

)
= β̂p

(
xp,Tin+(i−1) − x̄p

)
(19)

for p ∈ S and i = 1, . . . , D − (h− 1), where β̂p and x̄p are again the estimate of βp and

sample mean of xp,t, respectively, based on the training sample.

Taking the absolute value of φ̂out
p

(
xTin+(i−1) ;Wi, h

)
in Equation (17) produces a Shapley-

based variable importance measure for predictor p and a particular out-of-sample forecast.

To compute the variable importance for p for the entire sequence of out-of-sample forecasts,

we proceed analogously to the in-sample Shapley-based variable importance in Equation (14)

and define the out-of-sample Shapley-based variable importance by taking the average of the

absolute values of Equation (17) across the out-of-sample forecasts:

oShapley-VIp(W,h) =
1

|W |
∑
i∈W

∣∣∣φ̂out
p

(
xTin+(i−1) ;Wi, h

)∣∣∣ (20)

for p ∈ S. The following diagram depicts how the time-series observations are incorporated

into Equation (20) for an expanding window and h = 1.

t = 1 Tin Tin + 1 Tin + 2 T − 1 T

φ̂outp

(
xTin

;W1, 1
)

φ̂outp

(
xTin+1;W2, 1

)
φ̂outp (xT−1;WD, 1)

ŷTin+1

ŷTin+2

ŷT

oShapley-VIp(W, 1) =
1

D

D∑
i=1

∣∣∣φ̂outp

(
xTin+(i−1);Wi, 1

)∣∣∣
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2.4. Performance-Based Shapley Values

Out-of-sample forecasts are typically assessed using a loss function. Accordingly, we propose

PBSVp to decompose the loss over the out-of-sample period into the components attributable

to the individual predictors p ∈ S.

The key insight for computing PBSVp is to wrap a loss function around the predictions

in Equation (16). We denote a generic loss function by

L
(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1);Wi, h

))
(21)

for i = 1, . . . , D− (h−1). To incorporate the loss function, we further modify the algorithm.

For a random draw m of an ordered permutation Om, we adjust Equation (16) as follows:

θ out
p,m

(
xTin+(i−1) ;Wi, h, L

)
=

L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑
s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)−
L

yTin+i:Tin+h+(i−1),
1

|Wi|
∑
s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)
(22)

for p ∈ S and i = 1, . . . , D − (h− 1). Equation (17) becomes

φ̂out
p

(
xTin+(i−1) ;Wi, h, L

)
=

1

2M

2M∑
m=1

θ out
p,m

(
xTin+(i−1) ;Wi, h, L

)
(23)

for p ∈ S and i = 1, . . . , D − (h− 1). The local PBSVp in Equation (23) measures the

contribution of predictor p to the loss incurred by the ith out-of-sample forecast. Like

Equation (16), Equation (22) approximates the effect of removing predictors not in the

coalition by replacing them with background data from the training sample Wi so that we

continue to remain true to the model that generates the out-of-sample forecast. Based on

the logic of Shapley values, the local PBSVp in Equation (23) fairly allocates the loss among
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the predictors for the ith out-of-sample forecast. Equation (23) is characterized by efficiency:

∑
p∈S

φ̂outp

(
xTin+(i−1) ;Wi, h, L

)
= L

(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1) ;Wi, h

))
− φ̂out∅ (Wi, h, L) (24)

for i = 1, . . . , D − (h− 1), where φ̂out
∅ (Wi, h, L) corresponds to the loss for the baseline or

unconditional prediction based on the empty coalition set.

Because the loss function can be nonlinear, for a prediction model that is linear in the

predictors, we do not have a simple expression analogous to Equation (12) or Equation (19)

for the local PBSVp. Nevertheless, in the special case of a linear model, we can derive an

analytical expression for the local PBSVp for a specific loss function. For example, consider

the squared error loss for the ith out-of-sample forecast:

L
(
yTin+i:Tin+h+(i−1), ŷTin+i:Tin+h+(i−1)

)
=
(
yTin+i:Tin+h+(i−1) − ŷTin+i:Tin+h+(i−1)

)2
. (25)

For a linear model and Equation (25), the local PBSVp can be expressed as

φ̂outp

(
xTin+(i−1) ;Wi, h,SE

)
= β̂p

(
xp,Tin+(i−1) − x̄p

)︸ ︷︷ ︸
φ̂outp (xTin+(i−1);Wi,h)

[(
ŷTin+i:Tin+h+(i−1) − yTin+i:Tin+h+(i−1)

)

−
(
yTin+i:Tin+h+(i−1) − φ̂∅(Wi, h)

)]
,

(26)

where φ̂out
p

(
xTin+(i−1) ;Wi, h

)
= β̂p

(
xp,Tin+(i−1) − x̄p

)
is from Equation (19). We can view

φ̂∅(Wi, h) in Equation (26) as a näıve forecast that ignores the information in the predictors

and simply uses the sample mean of the target for the training sample as the prediction.

For squared error loss, the local PBSVp measures the contribution of predictor p to the

squared error for the forecast that incorporates the information in the predictors relative

to the squared error for the näıve forecast that ignores the information. In the special case

of a linear model, Equation (26) says that φ̂out
p

(
xTin+(i−1) ;Wi, h, SE

)
is proportional to the

error for the forecast based on the set of predictors—after adjusting for the näıve forecast

error—where the factor of proportionality is given by β̂p
(
xp,Tin+(i−1) − x̄p

)
(i.e., the Shapley
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value for predictor p and instance xTin+(i−1) for a linear model). Furthermore, the sign of

φ̂out
p

(
xTin+(i−1) ;Wi, h, SE

)
in Equation (26) depends on the signs of β̂p

(
xp,Tin+(i−1) − x̄p

)
and

the term in brackets.

To gain some intuition for Equation (26), suppose that the linear model forecast is perfect

(ŷTin+i:Tin+h+(i−1) = yTin+i:Tin+h+(i−1)); in addition, assume that the realized target value is

greater than the näıve forecast (yTin+i:Tin+h+(i−1) > φ̂∅(Wi, h)), so the term in brackets in

Equation (26) is negative. If β̂p
(
xp,Tin+(i−1) − x̄p

)
> 0, then φ̂out

p

(
xTin+(i−1) ;Wi, h, SE

)
< 0.

In this case, predictor p contributes to the forecast being higher than the näıve forecast—

since β̂p
(
xp,Tin+(i−1) − x̄p

)
> 0—which is in line with the realized target value being greater

than the näıve forecast; accordingly, the local PBSVp in Equation (26) deems that predictor

p contributes to lowering the squared error vis-à-vis the näıve forecast.9

We are primarily interested in the performance of the entire sequence of out-of-sample

forecasts, so we also define a global PBSVp. To obtain the global PBSVp, we again modify

the algorithm. Specifically, we expand Equation (22) to reflect the average loss for the

out-of-sample period:

θ out
p,m(W,h,L) =

1

|W |
∑
i∈W

L

(
yTin+i:Tin+h+(i−1),

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

))
−

1

|W |
∑
i∈W

L

(
yTin+i:Tin+h+(i−1),

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

))
(27)

for p ∈ S. To remain true to the model, Equation (27) continues to approximate the effect

of removing predictors not in the coalition by replacing them with background data from

9Conversely, if β̂p
(
xp,Tin+(i−1) − x̄p

)
< 0, then φ̂outp

(
xTin+(i−1) ;Wi, h,SE

)
> 0. In this case, although

the linear model forecast is perfect, the local PBSVp deems that predictor p increases the squared error
vis-à-vis the näıve forecast, as p contributes to the forecast being below the näıve forecast, while the realized
target value is above the näıve forecast. A perfect forecast together with yTin+i:Tin+h+(i−1) > φ̂∅(Wi, h)

and β̂p
(
xp,Tin+(i−1) − x̄p

)
< 0 imply that there are one or more other predictors q 6= p for which

β̂q
(
xp,Tin+(i−1) − x̄p

)
> 0 and φ̂outq

(
xTin+(i−1) ;Wi, h,SE

)
< 0, as the other predictors contribute to the

forecast being higher than the näıve forecast, ultimately producing the perfect forecast.
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the training sample. Equation (23) is now given by

φ̂out
p (W,h, L) =

1

2M

2M∑
m=1

θ out
p,m(W,h, L) (28)

for p ∈ S. The global PBSVp in Equation (28) allows us to decompose the average loss for a

sequence of out-of-sample forecasts into the contributions of each of the P predictors. In this

way, we anatomize out-of-sample performance by fairly assessing how the individual predic-

tors contribute to out-of-sample forecasting accuracy. Equation (28) is again characterized

by efficiency:

∑
p∈S

φ̂outp (W,h,L) =
1

|W |
∑
i∈W

L
(
yTin+i:Tin+h+(i−1), f̂

(
xTin+(i−1);Wi, h

))
− φ̂out∅ (W,h,L), (29)

where φ̂out
∅ (W,h, L) corresponds to the average loss for the sequence of baseline forecasts

based on the empty coalition set.10

Our PBSVp bears some resemblance to the Shapley feature importance (SFIMP) metric in

Casalicchio, Molnar, and Bischl (2018), as both measures are computed using a loss function

for the out-of-sample observations. However, there are important differences between PBSVp

and SFIMP. SFIMP assumes that the prediction model is estimated only once, which is more

appropriate for cross-sectional data, while PBSVp is explicitly designed for time-series data

when the out-of-sample forecasts are generated by a sequence of fitted models based on an

expanding or rolling window. Furthermore, there are substantive differences in the algorithms

used to compute PBSVp and SFIMP (beyond the fact that the former is based on a sequence

of fitted models, while the latter is not). For example, SFIMP uses background data from

the test sample to control for predictors not in the coalition when computing Shapley values;

in contrast, Equation (27) always uses background data from the training sample so that

10In addition to the entire out-of-sample period, PBSVp in Equation (28) can be computed for any subsam-
ple of the forecast evaluation period; for an example, see Figure 4 for the empirical application in Section 3.
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we remain true to the fitted models that generate the out-of-sample forecasts.11 In sum,

PBSVp provides a means for fairly allocating the out-of-sample loss for a sequence of time-

series forecasts across the individual predictors, thereby shedding light on the anatomy of

out-of-sample forecasting accuracy.

As an example of computing PBSVp for a specific loss function, consider the RMSE

criterion:

RMSE =

{
1

|W |
∑
i∈W

[
yTin+i:Tin+h+(i−1) − f̂

(
xTin+(i−1) ;Wi, h

)]2}0.5

. (30)

To obtain the global PBSVp for the RMSE using the algorithm, we use the following version

of Equation (27):

θ out
p,m(W,h,RMSE) = 1

|W |
∑
i∈W

[
yTin+i:Tin+h+(i−1) −

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om) ∪ {p}, xk,s : k ∈ Postp(Om) ;Wi, h

)]2
0.5

−

 1

|W |
∑
i∈W

[
yTin+i:Tin+h+(i−1) −

1

|Wi|
∑

s∈Wi

f̂
(
xj,Tin+(i−1) : j ∈ Prep(Om), xk,s : k ∈ Postp(Om) ∪ {p} ;Wi, h

)]2
0.5

.

(31)

for p ∈ S. Equation (28) is then given by

φ̂out
p (W,h,RMSE) =

1

2M

2M∑
m=1

θ out
p,m(W,h,RMSE) (32)

for p ∈ S.12 According to the efficiency property,

∑
p∈S

φ̂out
p (W,h,RMSE) = RMSE− φ̂out

∅ (W,h,RMSE). (33)

11PBSVp has a different focus from the “Shapley regressions” proposed by Joseph (2021). Shapley re-
gressions relate the realized target values to Shapley values for the out-of-sample observations in a linear
regression framework.

12We use M = 500 for the algorithms when computing iShapley-VIp, oShapley-VIp, and PBSVp for the
empirical application in Section 3.
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2.5. Algorithm

We created the Python package anatomy to implement the algorithms for computing

oShapley-VIp and PBSVp. The algorithms divide the estimation procedure into two steps:

(1) evaluate the fitted models using coalitions of predictors from the sampled permuted

orders and store the forecasts; (2) compute the Shapley-based metrics from the stored fore-

casts. After the models are evaluated in the computationally expensive first step, arbitrary

combinations of models and transformations of the forecasts can be evaluated inexpensively

in the second step to compute the desired metric. Algorithm 1 provides the structure for

the first step. Using the results from the first step, any metric can be computed inexpen-

sively in the second step without the need to rerun the first step. Section A.1 of the Online

Appendix provides examples of how to compute oShapley-VIp in Equation (20), the local

PBSVp for the squared error loss in Equation (23), and the global PBSVp for the RMSE in

Equation (32) from the output of Algorithm 1.

3. Forecasting Inflation

In this section, we use the time-series metrics developed in Section 2 to analyze out-of-sample

forecasts of US inflation. Inflation forecasting is an important topic for, among others, poli-

cymakers, business managers, and investors. Recent evidence shows that traditional inflation

benchmark forecasts can be outperformed by the use of big data in conjunction with machine

learning methods and that the outperformance is largely attributable to nonlinearities, espe-

cially at long horizons (e.g., Medeiros et al. 2021; Goulet Coulombe 2022; Goulet Coulombe

et al. 2022; Hauzenberger, Huber, and Klieber 2023). We forecast inflation using a large

dataset and a variety of models.
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Algorithm 1: Forecast Evaluation of Permuted Orders of Predictors

Result: Ŷ : T ×K × P × 2M × 2 array of forecasts for T out-of-sample periods and K models

evaluated over coalitions of P predictors deactivated and activated in M forward and

reversed permuted orders; Ȳ : T ×K matrix of näıve forecasts (i.e., model evaluations

with empty predictor coalitions)

Input: F̂ : T ×K matrix of forecast functions; X: T training data matrices of sizes Tt × P for

t = 1, . . . , T ; X : P × T out-of-sample data matrix; M : number of ordered permutations to

draw from π(P )

Generate permutation matrix O of size M × P containing M permutations of {1, . . . , P}
for t = 1 to T do // loop over out-of-sample periods

for k = 1 to K do // loop over models

Store forecast with all predictors deactivated (näıve forecast): Ȳt,k = 1
Tt
∑Tt

s=1 F̂t,k

(
X

(t)
s,·

)
for m = 1 to M do // loop over permutations

Copy order to preserve it across runs: o = {o1, . . . , oP } = Om,·

for i ∈ {0, 1} do // original and reverse order

Copy training data to preserve it across runs: X(m) = X(t)

Initialize previous activation as näıve forecast: ŷpre = Ȳt,k

for p ∈ {o1, . . . , oP } do // loop over predictors

Store forecast with previously activated predictors: Ŷ
(o)
t,k,p,iM+m,1 = ŷpre

Activate predictor p in X(m) by setting all elements of column p to X p,t:

X
(m)
·,p = X p,t

Store forecast with p and previously activated predictors:

Ŷ
(o)
t,k,p,iM+m,2 = 1

Tt
∑Tt

s=1 F̂t,k

(
X

(m)
s,·

)
Update previous activation for next iteration: ŷpre = Ŷ

(o)
t,k,p,iM+m,2

end

Reverse o for antithetic sampling

end

end

end

end

3.1. Forecasting Models

Consider the following general prediction model for inflation:

πt+1:t+h = f
(
πAR
t−L:t,wt,w

MA(q)
t︸ ︷︷ ︸

xt

)
+ εt+1:t+h, (34)

where πt+1:t+h = (1/h)
∑h

k=1 πt+k, πt = log(CPIt) − log(CPIt−1), CPIt is the month-t US

consumer price index (CPI), πAR
t−L:t = [ πt · · · πt−L ]′ captures the AR component in
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inflation, wt is a vector of predictors, and w
MA(q)
t = (1/q)

∑q
k=1wt−(k−1) is a vector of

moving averages (MAs) of order q for the predictors in wt. We collect the entire set of

predictors in the P -dimensional vector xt = [ πAR
t−L:t

′
w′t w

MA(q) ′
t

]′. The inclusion of MAs

of the predictors is motivated by Goulet Coulombe et al. (2021), who find that MAs of

predictors provide substantive out-of-sample gains for forecasting macroeconomic variables.

We set q = 3, which allows predictors up to a quarter in the past to affect the prediction.

In terms of the AR component, we set L = 11, corresponding to twelve lags of inflation in

Equation (34). Based on Equation (34), the forecast of πt+1:t+h is given by

π̂t+1:t+h = f̂(xt), (35)

where f̂ is the fitted prediction function based on data through t.

A natural starting point for generating an inflation forecast based on xt is a linear pre-

dictive regression:

πt+1:t+h = α + x′t β︸ ︷︷ ︸
f(xt)

+ εt+1:t+h, (36)

where α is the intercept, and β = [ β1 · · · βP ]′ is a P -dimensional vector of slope coef-

ficients. It is straightforward to estimate Equation (36) via ordinary least squares (OLS),

leading to the forecast:

π̂OLS
t+1:t+h = α̂OLS + x′t β̂

OLS, (37)

where α̂OLS and β̂OLS are the OLS estimates of α and β, respectively, in Equation (36) based

on data through t. Although straightforward to compute, the forecast in Equation (37) tends

to perform poorly in practice. By construction, OLS maximizes the fit of the model over

the training sample, which can result in in-sample overfitting and thus poor out-of-sample

performance. Because inflation contains a sizable unpredictable component, the signal-to-
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noise ratio is limited, so the forecast in Equation (37) is likely to perform poorly, especially

when P is large and the predictors are correlated.

3.1.1. Principal Component Regression

Based on Stock and Watson (2002a,b), an ample literature employs PCR as a dimension-

reduction technique for large datasets to forecast macroeconomic variables, including infla-

tion (e.g., Stock and Watson 1999b; Bernanke and Boivin 2003; Banerjee and Marcellino

2006). Let zt = [ z1,t · · · zC,t ]′ denote the vector containing the first C principal compo-

nents corresponding to xt, where C � P . The PCR specification can be expressed as

πt+1:t+h = αz + z′t βz + εt+1:t+h, (38)

where βz = [ βz,1 · · · βz,C ]′ is a C-dimensional vector of slope coefficients. The forecast

corresponding to Equation (38) is given by

π̂PCR
t+1:t+h = α̂OLS

z + ẑ′t β̂
OLS
z , (39)

where α̂OLS
z and β̂OLS

z are the OLS estimates of αz and βz, respectively, in Equation (38),

and ẑt is the C-dimensional vector of the first C principal components computed from xt,

all of which are based on data through t. Because the principal components are linear

combinations of the underlying predictors in xt, the PCR forecast itself is linear in the

predictors. Intuitively, we extract a limited set of principal components from xt to estimate

the key latent variables that underlie the comovements among the entire set of predictors;

the principal components then serve as predictors in a low-dimensional predictive regression

with uncorrelated explanatory variables.13 We select L in πAR
t−L:t and C by choosing the

combination that maximizes the adjusted R2 for the training sample (allowing for maximum

values of eleven and ten for L and C, respectively).

13The principal components are uncorrelated by construction. Following convention, we standardize the
predictors (using data through t) before computing the principal components.
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3.1.2. Elastic Net

Next, we use the ENet (Zou and Hastie 2005) to estimate the linear predictive regression

in Equation (36). The ENet is a refinement of the least absolute shrinkage and selection

operator (LASSO, Tibshirani 1996), a seminal machine-learning device for implementing

shrinkage. The LASSO and ENet employ penalized regression to shrink the estimated slope

coefficients toward zero to guard against overfitting, and there is evidence that penalized

regression helps to improve inflation forecasts (e.g., Li and Chen 2014; Medeiros and Mendes

2016; Smeekes and Wijler 2018). The LASSO relies on the `1 norm in its penalty term,

so it can shrink slope coefficients to exactly zero, thereby performing variable selection. A

potential drawback to the LASSO is that it tends to arbitrarily select a single predictor

from a group of highly correlated predictors. The ENet mitigates this tendency by including

both `1 and `2 components in its penalty term; the latter is from ridge regression (Hoerl and

Kennard 1970).

The objective function for ENet estimation of Equation (36) can be expressed as

arg min
α,β

1

2[t− (h− 1)− 1]


t−(h−1)−1∑

s=1

[πs+1:s+h − (α + x′s β)]
2

+ λPδ(β), (40)

where

Pδ(β) = 0.5(1− δ)‖β‖22 + δ‖β‖1; (41)

λ ≥ 0 is a hyperparameter that governs the degree of shrinkage; ‖·‖1 and ‖·‖2 are the `1

and `2 norms, respectively; and 0 ≤ δ ≤ 1 is a hyperparameter for blending the `1 and

`2 components in the penalty term.14 We follow the recommendation of Hastie, Qian, and

Tay (2023) and set δ = 0.5, which they point out results in a stronger tendency to select

highly correlated predictors as a group. To tune λ, we use a walk-forward cross-validation

14The ENet objective function in Equation (40) reduces to that for OLS when λ = 0. If δ = 1 (δ = 0),
then Equation (40) corresponds to the LASSO (ridge) objective function.
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procedure designed for a time-series context. The ENet forecast based on Equation (36) is

given by

π̂ENet
t+1:t+h = α̂ENet + x′t β̂

ENet, (42)

where α̂ENet and β̂ENet are the ENet estimates of α and β, respectively, in Equation (36)

based on data through t.

3.1.3. Random Forest

Our third strategy employs a random forest (Breiman 2001), a nonlinear machine-learning

technique with a strong track record in macroeconomic forecasting (e.g., Medeiros et al. 2021;

Borup and Schütte 2022; Goulet Coulombe et al. 2022). Random forests build on regression

trees, machine-learning devices for incorporating nonlinearities in a flexible manner via multi-

way interactions and higher-order effects of the predictors. A regression tree is constructed

by sequentially splitting the predictor space into regions, with the final set of regions referred

to as “terminal nodes” or “leaves.” The prediction is the average value of the target in a

given leaf. We can express the forecast corresponding to a regression tree with U leaves as

π̂RT
t+1:t+h =

U∑
u=1

π̄u1u(xt ;ηu), (43)

where the indicator function 1u(xt ;ηu) = 1 if xt ∈ Ru(ηu) for the uth region denoted by

Ru (which is determined by the parameter vector ηu) and 0 otherwise, and π̄u is the average

value of the target observations in Ru for the training sample based on data through t.

A large (or “deep”) regression tree is typically able to capture complex nonlinear relations

in the data. However, in light of the bias-variance trade-off, it is susceptible to overfitting due

to the high variance of the tree. A random forest reduces the variance by averaging forecasts

across many deep regression trees, where each tree is constructed based on a bootstrap

sample of the original data using a randomly selected subset of the predictors for each split.
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By using a randomly selected subset of the predictors, we “decorrelate” the trees to further

reduce the variance. Indexing the bootstrap samples by b, the random forest forecast is given

by

π̂RF
t+1:t+h =

1

B

B∑
b=1

[
U∑
u=1

π̄(b)
u 1(b)

u (xt ;ηu)

]
, (44)

where B is the number of bootstrap samples, and π̄
(b)
u and 1

(b)
u (xt ;ηu) are the counterparts

to π̄u and 1u(xt ;ηu), respectively, in Equation (43) for the bth bootstrap sample. We set

B = 500 and let each tree grow fully deep. The proportion of predictors randomly selected

for each split is tuned via a walk-forward cross-validation procedure.

3.1.4. XGBoost

Another strategy for forecasting with a regression tree is a boosted tree, which is based

on gradient boosting (Breiman 1997; Friedman 2001), a sequential ensemble method for

improving out-of-sample prediction. The basic idea is to fit a prediction function additively:

f̂(xt ; η̂) =
J∑
j=1

f̂j(xt ; η̂j). (45)

Each function f̂j(xt ; η̂j) on the right-hand-side of Equation (45) is a “weak” learner (i.e.,

a relatively simple model); for a boosted tree, f̂j(xt ; η̂j) corresponds to a fitted tree with

a forecast of the form in Equation (43). Relatively simple models help to guard against

overfitting; however, they are more likely to be exhibit substantive bias and thus poor fit.

Boosting improves the fit by adding another tree that is trained using the residuals from

the previous function in the sequence. In sum, boosting entails constructing a sequence

of relatively “shallow” trees, which are then combined into an ensemble. While a random

forest starts with a deep tree with low bias and uses bagging across a large number of trees

to reduce the variance, a boosted tree starts with a shallow tree with low variance and refines

the tree to reduce the bias.
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Friedman (2002) proposes stochastic gradient boosting to make boosting more robust.

Instead of basing each f̂j(xt ; η̂j) in Equation (45) on all of the training data, each element

is based on a randomly drawn (without replacement) subsample of the data. We fit boosted

trees via stochastic gradient boosting using the popular XGBoost algorithm (Chen and

Guestrin 2016), where we tune the hyperparameters for the algorithm using a walk-forward

cross-validation procedure.

3.1.5. Neural Network

Our final forecasting model is a feedforward neural network. Neural networks are flexible

and powerful machine learning devices that permit general forms of nonlinearities. A neural

network contains multiple layers. The first is the input layer, which is comprised of the set of

predictors, followed by L ≥ 1 hidden layers. Each hidden layer l contains Pl neurons, where

each neuron takes signals from the neurons in the previous layer to generate a subsequent

signal via a nonlinear activation function:

h(l)m = g

(
ω
(l)
m,0 +

Pl−1∑
j=1

ω
(l)
m,jh

(l−1)
j

)
(46)

for m = 1, . . . , Pl and l = 1, . . . , L, where h
(l)
m is the signal corresponding to the mth neuron in

the lth hidden layer15; ω
(l)
m,0, ω

(l)
m,1, . . . , ω

(l)
m,Pl−1

are weights; and g(·) is the activation function.

The output layer is the final layer. It takes the signals from the last hidden layer and converts

them into a prediction:

π̂NN
t+1:t+h = ω

(L+1)
0 +

PL∑
j=1

ω
(L+1)
j h

(L)
j . (47)

The activation function determines the strength of the signal passed through the network.

For the activation function, we use the popular rectified linear unit (ReLU) function: g(x) =

15For the first hidden layer, h
(0)
j = xj,t for j = 1, . . . , P .
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max{x, 0}. The interactions in the network and activation function permit complex nonlin-

earities as the inputs feed through to the hidden layers and finally to the output layer.

Theoretically, a single hidden layer is sufficient for approximating any smooth function

(Cybenko 1989; Funahashi 1989; Hornik, Stinchcombe, and White 1989; Hornik 1991; Bar-

ron 1994); however, there are potential advantages to including multiple hidden layers in

neural networks (Goodfellow, Bengio, and Courville 2016; Rolnick and Tegmark 2018). De-

termining the neural network architecture (i.e., the number of hidden layers and the number

of neurons in each layer) for a given application is largely an empirical matter, and we can-

not know that the optimal architecture has been selected (Goodfellow, Bengio, and Courville

2016). Accordingly, we choose an equal-weighted ensemble of two different architectures: a

“shallow” neural network with one hidden layer and a “deep” neural network with three

hidden layers. We follow a conventional geometric pyramid rule (Masters 1993) in setting

the number of neurons in the hidden layers, so the shallow neural network has d
√
P e neurons

in its hidden layer, while the deep neural network has dP 3/4e, dP 2/4e, and dP 1/4e in its first,

second, and third hidden layers, respectively.

We fit the neural networks (i.e., estimate the weights) by minimizing the training sample

MSE using the Adam stochastic gradient descent algorithm (Kingma and Ba 2015). To

reduce the influence of the random number generator in the initialization of the weights

when fitting the neural networks, we fit each model 199 times with a different seed each time

and use the median of the predictions.16

16Although the Adam algorithm is a powerful optimizer, it is our experience that neural networks at
times get stuck near local minima. Using the median of 199 fitted neural networks substantially reduces the
influence of local minima in computing the prediction. We fit the neural networks using the scikit-learn

package in Python. We augment the objective function with an `2 penalty term and set the hyperparameter
for the `2 penalty term to 0.0001 in the MPLregressor function. The batch size and number of epochs are
set to 32 and 1,000, respectively.
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3.1.6. Ensembles

We also consider ensembles of models, which are popular in the machine-learning literature.

An ensemble forecast can be straightforwardly computed as a simple average of the forecasts

generated by the models in the ensemble.17 We construct three ensembles:

Ensemble-linear Average of the PCR and ENet forecasts.

Ensemble-nonlinear Average of the random forest, XGBoost, and neural network fore-

casts.

Ensemble-all Average of the PCR, ENet, random forest, XGBoost, and neural network

forecasts.

3.2. Data

We measure inflation based on the US CPI. CPI data are from the FRED database at the

Federal Reserve Bank of St. Louis (ticker CPIAUCSL). The predictors are from two data

sources. We use a set of 118 predictors from the FRED-MD database (McCracken and Ng

2016), which is employed by a number of recent macroeconomic forecasting studies (e.g.,

Kotchoni, Leroux, and Stevanovic 2019; Medeiros et al. 2021; Borup and Schütte 2022;

Goulet Coulombe et al. 2022; Hauzenberger, Huber, and Klieber 2023). We also include

three predictors from the University of Michigan Survey of Consumers.18 The sample period

covers 1960:01 to 2022:12. We specify 1960:01 to 1989:12 as the initial in-sample period and

compute out-of-sample forecasts for 1990:01 to 2022:12. As in Medeiros et al. (2021), among

others, we generate out-of-sample inflation forecasts using a rolling estimation window.

17The algorithm for computing PBSVp straightforwardly accommodates ensemble forecasts (as shown in
Section A.1 of the Online Appendix), including those that use data-driven methods to select the combining
weights (e.g., Gospodinov and Maasoumi 2021).

18Section A.2 of the Online Appendix provides a complete list of the inflation predictors.
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3.3. Results

An AR model of order k serves as the benchmark, where we determine k recursively using

the Bayesian information criterion (BIC, Schwarz 1978), considering a maximum value of

twelve. Like the models in Section 3.1, we estimate the AR benchmark model via a rolling

window. The AR model is a standard benchmark in the macroeconomic forecasting liter-

ature, including for inflation (e.g., Kotchoni, Leroux, and Stevanovic 2019; Medeiros et al.

2021). It is designed to account for the evident persistence in inflation.

Table 1. Out-of-Sample Forecasting Results

The table reports the root mean squared error (RMSE) for an autoregressive benchmark forecast
and RSME ratios for the competing forecasts in Section 3.1 vis-à-vis the autoregressive benchmark
forecast for inflation for the 1990:01 to 2022:12 out-of-sample period and the forecast horizon (h) in
the column heading. The Diebold and Mariano (1995) and West (1996) statistic is used to test the
null hypothesis that the benchmark forecast MSE is less than or equal to the competing forecast
MSE against the (one-sided, upper tail) alternative hypothesis that the benchmark forecast MSE
is greater than the competing forecast MSE; ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%,
and 1% levels, respectively.

(1) (2) (3) (4) (5)

Forecast h = 1 h = 3 h = 6 h = 12

Autoregressive benchmark RMSE 0.26% 0.23% 0.20% 0.16%

Principal component regression 1.08 1.01 0.96 0.92∗∗

Elastic net 0.93∗∗ 0.95∗ 0.96 0.94

Random forest 0.96 0.97 0.92∗ 0.82∗∗∗

XGBoost 1.00 0.98 0.91∗∗ 0.85∗∗∗

Neural network 0.94∗∗ 0.93∗∗ 0.94 0.83∗∗∗

Ensemble-linear 0.96 0.96 0.93∗ 0.90∗∗

Ensemble-nonlinear 0.93∗∗ 0.93∗∗ 0.90∗∗ 0.81∗∗∗

Ensemble-all 0.93∗∗ 0.93∗∗ 0.90∗∗ 0.84∗∗∗

We evaluate the forecasts using the RMSE criterion. Table 1 reports results for the

accuracy of the inflation forecasts for horizons of one, three, six, and twelve months. The

table provides the RMSE for the AR benchmark forecast as well as the RMSE ratio for each

of the competing models in Section 3.1 vis-à-vis the AR benchmark. We use the Diebold

and Mariano (1995) and West (1996) statistic to test the null hypothesis that the MSE (in
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population) for the AR benchmark forecast is less than or equal to that for the competing

forecast against the (one-sided, upper-tail) alternative that the AR forecast MSE is greater

than the competing forecast MSE.19

The RMSE for the AR benchmark forecast decreases monotonically with the horizon

from 0.26% (h = 1) to 0.16% (h = 12) in Table 1. At the one-month horizon in the second

column, six of the eight competing forecasts deliver a lower RMSE than the AR benchmark

(the exceptions are PCR and XGBoost), and the improvement in forecasting accuracy is

statistically significant for the ENet, neural network, ensemble-nonlinear, and ensemble-all

forecasts. The ENet, ensemble-nonlinear, and ensemble-all forecasts provide the largest

improvements in accuracy, each with an RMSE ratio of 0.93. Seven of the eight competing

forecasts outperform the AR benchmark at the three-month horizon in the third column.

The improvements are again significant for the ENet, neural network, ensemble-nonlinear,

and ensemble-all forecasts. The biggest gain is accuracy is for the neural network, ensemble-

nonlinear, and ensemble-all forecasts (RMSE ratio of 0.93 for each). The results are fairly

similar for the six-month horizon in the fourth column, although now all of the competing

forecasts outperform the AR benchmark, and the improvement is significant in five cases

(random forest, XGBoost, ensemble-linear, ensemble-nonlinear, and ensemble-all).

The best overall results are for the twelve-month horizon in the last column of Table 1.

All eight of the competing forecasts outperform the AR benchmark, and seven of the im-

provements are significant (the exception is the ENet). The nonlinear forecasts perform very

well for h = 12, which RMSE reductions of 18%, 15%, and 17% vis-à-vis the AR benchmark

for the random forest, XGBoost, and neural network forecasts, respectively. This pattern is

consistent with the recent literature that finds that nonlinear machine learning models are

particularly useful for forecasting inflation at longer horizons. The ensemble forecasts also

perform well in the last column, as each delivers a significant improvement in forecasting ac-

19We use a robust standard error (Newey and West 1987) to compute the Diebold and Mariano (1995)
and West (1996) statistic, which accounts for the autocorrelation induced by overlapping observations when
h > 1.
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curacy. Reiterating the strong performance of the nonlinear models, the ensemble-nonlinear

forecast performs the best at the 12-month horizon, reducing the RMSE by 19% relative to

the AR benchmark.

The results in Table 1 show that large datasets and machine learning are an effective

combination for improving inflation forecasts, especially at longer horizons. Next, we use

the time-series metrics developed in Section 2 to examine the relevance of the predictors

in the fitted prediction models, thereby aiding in the interpretation of the models. We are

especially interested in the global PBSVp, as it measures the contribution of a predictor to

forecasting accuracy, so we can identify predictors that are most responsible for improvements

(as well as deteriorations) in out-of-sample performance.

Figure 1 depicts the iShapley-VIp in Equation (14), oShapley-VIp in Equation (20), and

PBSVp based on the RMSE in Equation (32) for the ENet forecast, an example of a linear

model. The different panels display results for the different horizons. The predictors on

the horizontal axis in each panel are ordered according to iShapley-VIp. The red bars and

black lines correspond to iShapley-VIp and oShapley-VIp, respectively, while the green bars

correspond to φ̂out
p (W,h,RMSE) in Equation (32).20 To conserve space, the horizontal axis

shows the 25 most important and the five least important predictors in descending order

based on iShapley-VIp. The numbers associated with the green bars are rankings for the

contributions of the predictors to out-of-sample forecasting accuracy, where predictors with

a positive (negative) ranking contribute negatively (positively) to RMSE over the out-of-

sample period; for example, a ranking of 1 (−1) signifies the predictor that contributes the

most in a positive (negative) sense to out-of-sample forecasting accuracy.21

Comparing the red bars with the black lines in Figure 1, there is generally a close corre-

spondence between in-sample and out-of-sample variable importance according to iShapley-VIp

and oShapley-VIp, respectively. This is perhaps not surprising, as the in-sample and out-

20In Figure 1, we sum the Shapley values for each predictor and its corresponding MA(q) term. We also
sum the Shapley values for the twelve lags of inflation.

21By a positive (negative) contribution to out-of-sample forecasting accuracy, we mean a decrease (increase)
in loss.
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Figure 1. Variable importance and PBSV: ENet. The figure shows iShapley-VI (left axis),
oShapley-VI (left axis), and PBSV (right axis) for the ENet inflation forecast for the 1990:01 to
2022:12 out-of-sample period. The predictors on the horizontal axis are the top 25 and the bottom
five predictors ordered according to their importance based on iShapley-VI. The numbers associated
with the green bars are rankings of predictors according to PBSV; a positive (negative) ranking
indicates predictors that improve (decrease) out-of-sample forecasting accuracy.

of-sample predicted target values are based on the same fitted models when determining

the importance of individual predictors. Comparing the red to the green bars, we also

see considerable accord across the in-sample iShapley-VIp and the out-of-sample PBSVp.

This is especially evident for the AR component (ar), which is the most relevant predictor
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according to both iShapley-VIp and PBSVp at horizons of three, six, and twelve months;

at the one-month horizon, the AR component is the second most relevant predictor based

on iShapley-VIp and PBSVp. Another leading example is the price of oil (oilpricex) at

the one-month horizon, which is the most important predictor based on both iShapley-VIp

and PBSVp; it is also the fourth (third) most relevant predictor according to iShapley-VIp

(PBSVp) at the three-month horizon. Other predictors that appear relatively important

based on both iShapley-VIp and PBSVp at various horizons include the durables component

of the CPI (cusr0000sad), the index of consumer expectations (soc_ice), the durable goods

component of the personal consumption expenditures price index, (ddurrg3m086sbea), the

the medical services component of the CPI (cpimedsl), and an interest-rate spread (baaffm).

However, there are also major points of discord between the in-sample iShapley-VIp and

the out-of-sample PBSVp in Figure 1. For example, at the one-month horizon, although

real personal income (rpi) and the materials component of industrial production (ipmat)

are among the top 25 predictors based based on the in-sample iShapley-VIp, they are the

fourth and first predictors, respectively, most responsible for increasing the out-of-sample loss

based on PBSVp. Other similar discrepancies at the one-month horizon are the nonrevolv-

ing consumer credit to personal income ratio (conspi) and the fuels component of industrial

production (ipfuels). At the three-month horizon, the total reserves of depository insti-

tutions (totresns), real personal income, new housing permits in the West (permitw), and

the business equipment component of industrial production (ipbuseq) are among the top 25

predictors according to iShapley-VIp, but they are the four predictors most responsible for

increasing the out-of-sample loss according to PBSVp. Similar disparities are also evident

between iShapley-VIp and PBSVp for the business equipment component of industrial pro-

duction and new housing permits in the West at the six-month horizon, along with housing

starts in the Midwest and West (houstmw and houstw, respectively) and real estate loans

(realln). Finally, at the twelve-month horizon, notable discrepancies exist for housing starts

in the Midwest, new housing permits in the West, real manufacturing and trade industries
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sales (dpcera3m086sbea), the fuels component of industrial production, and the intermedi-

ate materials component of the producer price index (wpsid61). Figure A.1 in the Online

Appendix provides iShapley-VIp, oShapley-VIp, and PBSVp for the linear PCR forecast.

Overall, the results are similar to those in Figure 1, although the discrepancies between

oShapley-VIp, and PBSVp are typically more muted than those for the ENet forecast.
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Figure 2. Variable importance and PBSV: neural network. See the notes to Figure 1 with
“neural network” replacing “ENet.”

Next, we examine iShapley-VIp, oShapley-VIp, and PBSVp for the neural network, a

nonlinear model that performs well overall in Table 1. The results are shown in Figure 2.

35



Overall, the results are reminiscent of those for the ENet in Figure 1. First, iShapley-VIp

and oShapley-VIp align relatively closely in Figure 2, so there is substantive agreement

between the in-sample and out-of-sample measures of variable importance. Second, there

is considerable correspondence between the in-sample iShapley-VIp and the out-of-sample

PBSVp for many predictors. Examples at various horizons include the AR component, the

price of oil, the durables component of the CPI, average weekly hours in manufacturing

(awhman), and the medical services component of the CPI. Third, a number of predictors

that appear important according to iShapley-VIp are nevertheless responsible for decreases

in out-of-sample forecasting accuracy according to PBSVp. Such divergences at sundry hori-

zons in Figure 2 include housing starts in the South and Northeast (housts and houstne,

respectively), a pair of interest rate spreads (tb3smffm and tb6smffm), the Japanese yen-US

dollar exchange rate (exjpusx), the number of unemployed for 5–14 weeks (uemp5to14), and

the index of consumer confidence (soc_icc). Figures A.2 and A.3 in the Online Appendix

report iShapley-VIp, oShapley-VIp, and PBSVp for the nonlinear random forest and XG-

Boost forecasts, respectively. The pattern of results is similar to that in Figure 2, especially

for XGBoost. For the random forest, the agreement between oShapley-VIp and PBSVp is

stronger than that for the neural network.

Figure 3 depicts iShapley-VIp, oShapley-VIp, and PBSVp for the ensemble-all forecast.

Like Figures 1 and 2, iShapley-VIp and oShapley-VIp match up quite closely. Relative to Fig-

ures 1 and 2, there is generally greater alignment between oShapley-VIp and PBSVp. There

are still a few noteworthy disparities, including housing starts in the West at the one- and

six-month horizons, the Japanese yen-US dollar exchange rate at the three-month horizon,

and the index of consumer confidence and housing starts in the Midwest at the six-month

horizon. Figures A.4 and A.5 in the Online Appendix present iShapley-VIp, oShapley-VIp,

and PBSVp for the ensemble-linear and ensemble-nonlinear forecasts, respectively. The re-

sults are similar to those in Figure 3.
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Figure 3. Variable importance and PBSV: ensemble-all. See the notes to Figure 1 with
“ensemble-all” replacing “ENet.”

In sum, PBSVp quantifies the contributions of predictors to the accuracy of CPI infla-

tion forecasts for the 1990:01 to 2022:12 out-of-sample period. Specifically, it allows us to

pinpoint the predictors that play leading roles in accounting for the out-of-sample gains in

forecasting accuracy provided by the different models. It also allows us to identify which

predictors detract from out-of-sample forecasting accuracy. In a number of cases, we find

that predictors that appear important according to the iShapley-VIp and oShapley-VIp vari-

able importance measures—which do not take account of the realized target value—actually
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lead to increases in the out-of-sample loss. By taking into account both the forecasts and

the realized target values embodied in the loss function, PBSVp allows us to anatomize the

out-of-sample forecasting performance of different models in terms of the underlying predic-

tors. As illustrated by our application, it provides a warning to researchers: predictors that

appear relevant according to variable importance measures do not necessarily contribute to

improvements in out-of-sample forecasting accuracy.
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Figure 4. Cumulative difference in squared errors: ensemble-all. The figure shows the
cumulative difference in squared errors for a näıve forecast that ignores the information in the
predictors vis-à-vis the ensemble-all forecast for the 1990:01 to 2022:12 out-of-sample period. Shifts
to the right (left) imply an improvement (deterioration) in forecasting accuracy relative to the näıve
forecast. The figure also shows the top (bottom) contributor to the improvement (deterioration)
in forecasting performance for non-overlapping twelve-month subsamples; a green (red) color for
the predictor indicates that the subsample is associated with an improvement (deterioration) in
performance. Horizontal gray bars indicate twelve-month subsamples that contain an NBER-dated
recession.
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Finally, we illustrate how PBSVp can shed light on the most relevant predictors with

respect to forecasting accuracy for subsamples of the entire sequence of time-series forecasts.

This provides a sense of the contributions of predictors to forecasting accuracy over time.

Figure 4 plots the cumulative difference in squared errors (CDSE, Goyal and Welch 2008)

between a näıve forecast that ignores the information in the predictors and the ensemble-all

forecast. To conserve space, we report results for horizons of one, six, and twelve months.

The CDSE provides a convenient and informative graphical device for ascertaining whether

a competing forecast is more accurate than the näıve forecast for any subsample of the

out-of-sample period. In terms of Figure 4, we compare the CDSE at the beginning and

end of the interval corresponding to a subsample. If the curve lies more to the right (left)

at the end of the interval relative to the beginning, then the ensemble-all (näıve) forecast

is more accurate in terms of MSE for the subsample. In addition, we use our procedure in

Section 2.4 to compute PBSVp for the ensemble-all forecast for non-overlapping twelve-month

rolling subsamples. The abbreviation to the right (left) of the curve in Figure 4 indicates the

predictor that contributes the most to positive (negative) performance during a subsample. A

predictor in green (red) to the right (left) of the curve indicates that the ensemble-all forecast

delivers a lower (higher) MSE than the näıve forecast for the subsample. The horizontal gray

bars indicate twelve-month subsamples that contain an NBER-dated recession.

The CDSE plots in Figure 4 are consistently positively sloped (when viewed from top to

bottom), so the ensemble-all forecast outperforms the näıve forecast on a consistent basis

over time. For numerous twelve-month periods before the Great Recession in 2008, the

AR component is the predictor most responsible for the outperformance of the ensemble-all

forecast, consistent with the top and bottom two panels of Figure 3. This highlights the

relevance of accounting for inflation persistence when forecasting inflation. Consistent with

the top panel of Figure 3, for the one-month horizon in the left panel of Figure 4, there are

eleven twelve-month periods for which the price of oil is the predictor most responsible for

the outperformance of the ensemble-all forecast, including during the Great Recession and
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the recent recession corresponding to the advent of COVID-19 as well as the inflation surge

starting in mid 2021. This is consistent with the important influence of energy prices on

short-run CPI fluctuations.

The medical services component of the CPI is the leading predictor in terms of the

outperformance of the ensemble-all forecast for six and five of the twelve-month subsamples

at the six- and twelve-month horizons in the middle and right panels, respectively, of Figure 4.

This is consistent with the bottom two panels of Figure 3. Economically, it aligns with Bils

and Klenow (2004) and Bryan and Meyer (2010), who rank medical care among the stickiest

components of the CPI (in terms of its low frequency of price adjustment), and it is an

important component in the Federal Reserve Bank of Atlanta’s Sticky-Price CPI. Consistent

with the discrepancies between iShapley-VIp and PBSVp for the index of consumer confidence

in the third row of Figure 3, there are multiple cases in the second column of Figure 4 for

which the index of consumer confidence is the predictor that contributes the most to negative

performance (i.e., lies to the left of the curve) during a twelve-month period.22

4. Conclusion

As large datasets and machine learning become more popular in macroeconomics and finance,

researchers are increasingly concerned with interpreting forecasting models fitted with time-

series data. While the literature provides a variety of informative tools for interpreting fitted

prediction models, existing tools are typically more appropriate for models estimated with

cross-sectional data. We develop metrics based on Shapley values for interpreting time-series

forecasting models. The metrics recognize that forecasting models are refitted on a regular

basis as additional data become available over time. Our iShapley-VIp and oShapley-VIp

metrics measure the importance of a predictor for explaining the in- and out-of-sample

predicted target values, respectively, corresponding to a sequence of fitted prediction models.

Our primary methodological contribution is PBSVp, which measures the contribution of a

22Figures A6 to A12 in the Online Appendix show CDSE plots for the other forecasts, which are similar
to Figure 4.
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predictor to the out-of-sample loss. By computing PBSVp for the set of predictors used

to generate a sequence of time-series forecasts, we anatomize the model’s out-of-sample

forecasting accuracy. Our metrics are flexible: they are model agnostic, so they can be

applied to any prediction model (or ensembles of models), and PBSVp can be applied to any

loss function.

We use our metrics to interpret fitted machine learning models used to forecast US infla-

tion based on a large dataset. In line with the recent literature, we find that large datasets

in conjunction with machine learning generate significant out-of-sample gains for forecasting

inflation. When it comes to model interpretation, iShapley-VIp and oShapley-VIp generally

paint the same picture in terms of the importance of individual predictors in accounting for

the in- and out-of-sample predicted target values, respectively, produced by the sequence

of fitted models. The in-sample iShapley-VIp and the out-of-sample PBSVp measures also

identify similar predictors as being relevant (e.g., the price of oil at short horizons). However,

iShapley-VIp and PBSVp also detect a number of substantial differences in the rankings of

predictors, providing evidence that predictors that are important for determining a model’s

predicted values are not necessarily those that are primarily responsible for the model’s out-

of-sample forecasting accuracy. In sum, PBSVp allows researchers to quantify the roles of

predictors in time-series forecasting models along perhaps the most relevant dimension—

namely, their contributions to out-of-sample forecasting accuracy.
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Medeiros, M. C., G. F. R. Vasconcelos, Á. Veiga, and E. Zilberman (2021). Forecasting In-

flation in a Data-Rich Environment: The Benefits of Machine Learning Methods. Journal

of Business & Economic Statistics 39:1, 98–119.

Mitchell, R., J. Cooper, E. Frank, and G. Holmes (2022). Sampling Permutations for Shapley

Value Estimation. Journal of Machine Learning Research 23:43, 1–46.

Molnar, C. (2022). Interpretable Machine Learning: A Guide for Making Black Box Models

Explainable. Independently published.

Nakamura, E. (2005). Inflation Forecasting Using a Neural Network. Economics Letters 86:3,

373–378.

Neely, C. J., D. E. Rapach, J. Tu, and G. Zhou (2014). Forecasting the Equity Risk Premium:

The Role of Technical Indicators. Management Science 60:7, 1772–1791.

Newey, W. K. and K. D. West (1987). A Simple, Positive Semi-Definite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix. Econometrica 55:3, 703–708.

Pearl, J. (2009). Causality. Second Edition. Cambridge: Cambridge University Press.

Rapach, D. E., J. K. Strauss, J. Tu, and G. Zhou (2019). Industry Return Predictability: A

Machine Learning Approach. Journal of Financial Data Science 1:3, 9–28.

Ribeiro, M. T., S. Singh, and C. Guestrin (2016). “Why Should I Trust You?” Explaining the

Predictions of Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pp. 1135–1144.

Rolnick, D. and M. Tegmark (2018). The Power of Deeper Networks for Expressing Natural

Functions. In: Sixth Annual International Conference on Learning Representations.

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics 6:2, 461–464.

Shapley, L. S. (1953). A Value for n-Person Games. Contributions to the Theory of Games

2:28, 307–317.

Smeekes, S. and E. Wijler (2018). Macroeconomic Forecasting Using Penalized Regression

Methods. International Journal of Forecasting 34:3, 408–430.

47



Stock, J. H. and M. W. Watson (1999a). A Comparison of Linear and Nonlinear Univariate

Models for Forecasting Macroeconomic Time Series. In: R. F. Engle and H. White, eds.

Cointegration, Causality and Forecasting: A Festschrift for Clive W. J. Granger. Oxford:

Oxford University Press, pp. 1–44.

Stock, J. H. and M. W. Watson (1999b). Forecasting Inflation. Journal of Monetary Eco-

nomics 44:2, 293–335.

Stock, J. H. and M. W. Watson (2002a). Forecasting Using Principal Components From

a Large Number of Predictors. Journal of the American Statistical Association 97:460,

1167–1179.

Stock, J. H. and M. W. Watson (2002b). Macroeconomic Forecasting Using Diffusion Indexes.

Journal of Business & Economic Statistics 20:2, 147–162.
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