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Key Takeaways

•Large-scale dynamic factor models (DFM) infeasible to estimate with

direct numerical likelihood maximization.

=⇒ Expectation-Maximization (EM) algorithm provides alternative.

•However, the EM algorithm fails in a low-noise environment.

=⇒ Extremely slow convergence leading to poor estimates.

•We solve these issues with the Adaptive EM algorithm and/or with

carefully injecting artificial noise.

Low-Noise DFM

•Popular practice in macroeconomic forecasting/nowcasting with DFMs is

to allow for serial correlation in idiosyncratic component εt.

=⇒ Possible efficiency/forecasting gains.

•Use framework of Bańbura and Modugno (2014) to achieve this by includ-

ing εt in state vector and introduce artificial error term et with

small variance κ in order to apply EM in its usual form.

•Low-noise DFM with measurement equation
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with κ a small pre-fixed value (e.g., 10−4) and (V)AR dynamics for states.

Failure of EM in Low-Noise DFM

•The M-step of the factor loading matrix Λ can be written as
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• In fact, Petersen et al. (2005) show that

Λj+1 = Λj + κΛ̃j +O(κ4), (2)

highlighting that the learning rate of M-step for Λ is proportional to the

artificial noise level κ.

•This implies that if the variance of et becomes smaller (i.e., κ → 0) that

the EM parameter update stagnates (i.e., Λj+1 → Λj).

Solutions to EM failure in Low-Noise DFM

Adaptive EM

•The Adapative Overrelaxed EM (AEM) algorithm of Salakhutdinov and

Roweis (2003) boosts the parameter updates by an adaptive

factor ηj.

•The M-step of the factor loading matrix Λ in the AEM is

ΛAEM
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(
Λj+1 −ΛAEM

j

)
.

•Combining this with equation (2) gives

ΛAEM
j+1 = ΛAEM

j + ηjκΛ̃
AEM
j +O(κ4),

showing that ηj counters low noise level κ and speeds up convergence.

•Following Salakhutdinov and Roweis (2003), use ηj+1 = αηj with α = 1.1

and η1 = 1.

Careful selection of noise level κ

• Increasing κ gives more artificial noise, but also increases the learning

rate of the M-step, which could potentially speed up EM algorithm con-

vergence (see, e.g., Osoba et al., 2013).

•Carefully select amount of noise based on Monte Carlo simulations.

Monte Carlo Simulations

•Generate data from exact factor model à la Bańbura and Modugno (2014)

and estimate low-noise DFM given in equation (1).

•Use two-step (2S) approach, EM algorithm and Adaptive EM algorithm

for estimation with κ = 10−4 and κ = 10−2.

•Assess precision of parameter estimates with average RMSE and precision

of factor estimates with average trace R2 over 500 MC replications.

•Results for T = 50 and N = 10 (but similar for larger T and N):

•Extremely slow convergence of EM algorithm for estimation of Λ.

=⇒ Almost no movement from two-step (2S) initialization!

•Adaptive EM and slightly higher value of κ lead to much faster rate of

convergence and thus more accurate estimates.

•Slow convergence of loadings also influences accuracy factor estimates.

•Results persist for other model (mis-)specifications.

Empirical Application

•Construct sequence of euro area GDP nowcasts/forecasts for 2006Q1 to

2022Q4 using macroeconomic dataset based on mixed-frequency DFM with

serially correlated errors.

•Results for full-sample estimation and pseudo real-time nowcasting exercise

based on small-scale model (i.e., N = 10):

(b) Relative RMSFE of GDP nowcasts compared to
mean based on mixed-frequency DFM with κ = 10−4

2S EM AEM

Q(-1)M1 1.02 1.17 1.39

Q(-1)M2 1.02 1.11 1.01

Q(-1)M3 0.91 0.89 0.84

Q(0)M1 0.76 0.64 0.46

Q(0)M2 0.57 0.57 0.41

Q(0)M3 0.58 0.61 0.49

Q(+1)M1 0.62 0.66 0.53

Average 0.78 0.81 0.73

•AEM leads to larger increments and faster convergence of log-

likelihood than EM, especially for small noise κ = 10−4.

•AEM produces substantial nowcast gains compared to 2S and EM.
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