Slow EM Convergence in Low-Noise Dynamic Factor Models

Daan Opschoor

Econometric Institute, Erasmus University Rotterdam Tinbergen Institute

opschoor@ese.eur.nl

Key Takeaways

- Large-scale dynamic factor models (DFM) infeasible to estimate with direct numerical likelihood maximization.
- \implies Expectation-Maximization (EM) algorithm provides alternative.
- However, the **EM algorithm fails in a low-noise environment**.
- \implies Extremely slow convergence leading to poor estimates.
- We **solve** these issues with the Adaptive EM algorithm and/or with carefully injecting artificial noise.

Dick van Dijk

Econometric Institute, Erasmus University Rotterdam Tinbergen Institute

djvandijk@ese.eur.nl

Monte Carlo Simulations

- Generate data from exact factor model à la Bańbura and Modugno (2014) and estimate low-noise DFM given in equation (1).
- Use two-step (2S) approach, EM algorithm and Adaptive EM algorithm for estimation with $\kappa = 10^{-4}$ and $\kappa = 10^{-2}$.
- Assess precision of parameter estimates with average RMSE and precision of factor estimates with average trace R^2 over 500 MC replications.

• Results for T = 50 and N = 10 (but similar for larger T and N):

Low-Noise DFM

- Popular practice in macroeconomic forecasting/nowcasting with DFMs is to allow for serial correlation in idiosyncratic component ε_t . \implies Possible efficiency/forecasting gains.
- Use framework of Bańbura and Modugno (2014) to achieve this by including ε_t in state vector and introduce artificial error term e_t with **small variance** κ in order to apply EM in its usual form.
- Low-noise DFM with measurement equation

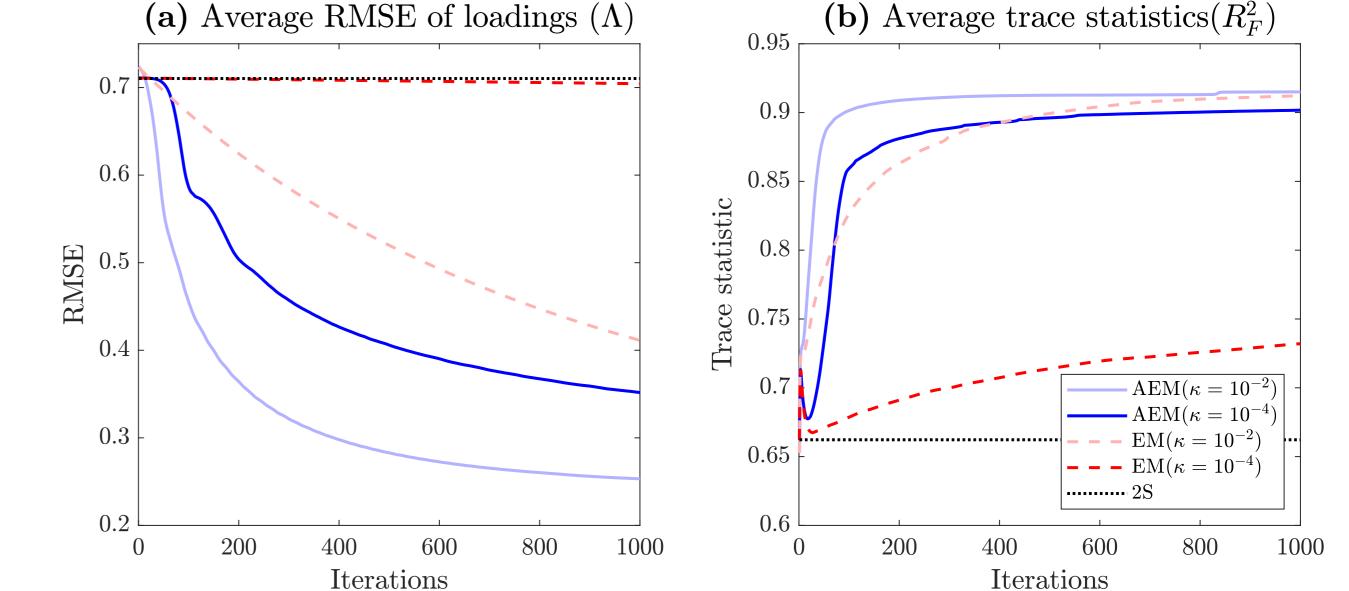
$$\boldsymbol{y}_t = \left(\boldsymbol{\Lambda} \ \boldsymbol{I}\right) \begin{pmatrix} \boldsymbol{f}_t \\ \boldsymbol{\varepsilon}_t \end{pmatrix} + \boldsymbol{e}_t, \qquad \boldsymbol{e}_t \sim \text{i.i.d. } \mathcal{N}(\boldsymbol{0}, \kappa \boldsymbol{I}), \qquad (1)$$

with κ a small pre-fixed value (e.g., 10⁻⁴) and (V)AR dynamics for states.

Failure of EM in Low-Noise DFM

• The M-step of the factor loading matrix Λ can be written as

$$\boldsymbol{\Lambda}_{j+1} = \boldsymbol{\Lambda}_j + \left(\sum_{t=1}^T \mathbb{E}_{\boldsymbol{\Theta}_j} \left(\boldsymbol{e}_t \boldsymbol{f}_t' \big| \boldsymbol{Y}\right)\right) \left(\sum_{t=1}^T \mathbb{E}_{\boldsymbol{\Theta}_j} \left(\boldsymbol{f}_t \boldsymbol{f}_t' \big| \boldsymbol{Y}\right)\right)^{-1}.$$



- Extremely slow convergence of EM algorithm for estimation of $\boldsymbol{\Lambda}$. \implies Almost **no movement** from two-step (2S) initialization!
- Adaptive EM and slightly higher value of κ lead to much <u>faster</u> rate of convergence and thus <u>more accurate</u> estimates.
- Slow convergence of loadings also influences accuracy factor estimates.
- Results persist for other model (mis-)specifications.

Empirical Application

• In fact, Petersen et al. (2005) show that

$$\boldsymbol{\Lambda}_{j+1} = \boldsymbol{\Lambda}_j + \kappa \tilde{\boldsymbol{\Lambda}}_j + \mathcal{O}(\kappa^4), \qquad (2)$$

highlighting that the learning rate of M-step for Λ is proportional to the artificial noise level κ .

• This implies that if the variance of \boldsymbol{e}_t becomes smaller (i.e., $\kappa \to 0$) that the **EM parameter update stagnates** (i.e., $\Lambda_{i+1} \rightarrow \Lambda_i$).

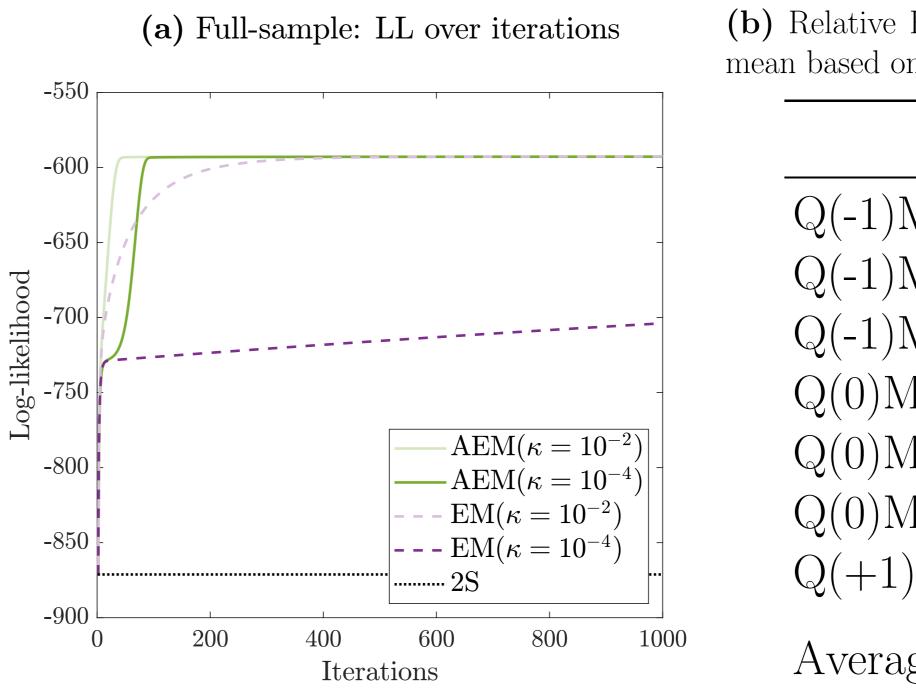
Solutions to EM failure in Low-Noise DFM

Adaptive EM

- The Adapative Overrelaxed EM (AEM) algorithm of Salakhutdinov and Roweis (2003) boosts the parameter updates by an adaptive factor η_i .
- The M-step of the factor loading matrix $\boldsymbol{\Lambda}$ in the AEM is

 $\boldsymbol{\Lambda}_{j+1}^{AEM} = \boldsymbol{\Lambda}_{j}^{AEM} + \eta_{j} \Big(\boldsymbol{\Lambda}_{j+1} - \boldsymbol{\Lambda}_{j}^{AEM} \Big).$

- Construct sequence of euro area GDP nowcasts/forecasts for 2006Q1 to 2022Q4 using macroeconomic dataset based on mixed-frequency DFM with serially correlated errors.
- Results for full-sample estimation and pseudo real-time nowcasting exercise based on small-scale model (i.e., N = 10):



(b) Relative RMSFE of GDP nowcasts compared to mean based on mixed-frequency DFM with $\kappa = 10^{-4}$

	2S	$\mathbf{E}\mathbf{M}$	AEM
Q(-1)M1	1.02	1.17	1.39
Q(-1)M2	1.02	1.11	1.01
Q(-1)M3	0.91	0.89	0.84
Q(0)M1	0.76	0.64	0.46
Q(0)M2	0.57	0.57	0.41
Q(0)M3	0.58	0.61	0.49
Q(+1)M1	0.62	0.66	0.53
Average	0.78	0.81	0.73

• AEM leads to **larger increments** and **faster convergence** of loglikelihood than EM, especially for small noise $\kappa = 10^{-4}$.

• Combining this with equation (2) gives

 $\boldsymbol{\Lambda}_{j+1}^{AEM} = \boldsymbol{\Lambda}_{j}^{AEM} + \eta_{j} \kappa \tilde{\boldsymbol{\Lambda}}_{j}^{AEM} + \mathcal{O}(\kappa^{4}),$

showing that η_i counters low noise level κ and speeds up convergence. • Following Salakhutdinov and Roweis (2003), use $\eta_{i+1} = \alpha \eta_i$ with $\alpha = 1.1$ and $\eta_1 = 1$.

Careful selection of noise level κ

• Increasing κ gives more artificial noise, but also increases the learning rate of the M-step, which could potentially speed up EM algorithm convergence (see, e.g., Osoba et al., 2013).

• Carefully select amount of noise based on Monte Carlo simulations.

• AEM produces substantial **nowcast gains** compared to 2S and EM.

References

BANBURA, M. AND M. MODUGNO (2014): "Maximum Likelihood Estimation of Factor Models on Datasets with Arbitrary Pattern of Missing Data," Journal of Applied *Econometrics*, 29, 133–160.

OSOBA, O., S. MITAIM, AND B. KOSKO (2013): "The Noisy Expectation-Maximization" Algorithm," Fluctuation and Noise Letters, 12, 1350012.

PETERSEN, K. B., O. WINTHER, AND L. K. HANSEN (2005): "On the Slow Convergence of EM and VBEM in Low-Noise Linear Models," Neural Computation, 17, 1921 - 1926.

SALAKHUTDINOV, R. AND S. ROWEIS (2003): "Adaptive overrelaxed bound optimization methods," in Proceedings of the Twentieth International Conference on International Conference on Machine Learning, Washington, DC, USA: AAAI Press, ICML'03, 664-671.