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Motivation (1)
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Motivation (2)

▶ Practitioners and academics rely on large datasets to form forecasts, tailor
policies or improve decisions, often particularly relevant in problematic times

▶ Regularization-based techniques as popular way to overcome the curse of
dimensionality (Belmonte et al., 2014; Bhattacharya and Dunson, 2011;
Carvalho et al., 2010; Griffin and Brown, 2013; Huber and Pfarrhofer, 2021)

▶ However, common assumption of linearity often remains

▶ Two major questions arise:
▶ How to model the relationship between a response and a large set of

covariates?
▶ How to safeguard against overfitting?
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What we do (1)

Methodological
▶ Apply neural networks as a device for learning any function under relatively

few assumptions (Hornik et al., 1989), yet, performance of NNs in macro
forecasting rather bad (Makridakis S., 2018)

▶ Use Bayesian methods to determine the adequate network structure
▶ Allowing for either sparse or dense datasets (Giannone et al., 2021)
▶ Combining alternative activation functions (Agostinelli et al., 2014; Karlik and

Olgac, 2011)
▶ Selecting the number of neurons via shrinkage (Bhattacharya and Dunson,

2011; Carvalho et al., 2010)
▶ Introducing heteroscedasticity in the error terms (Kastner and

Frühwirth-Schnatter, 2014)
▶ Design efficient MCMC algorithm for estimation of the resulting BNN even

with large set of regressors
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What we do (2)

Empirical
▶ Show that our approach works well in simulations
▶ Apply BNNs to a set of prominent macro and finance applications
▶ Conduct a thorough forecasting exercise
▶ Explore the degree of non-linearities
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Econometric framework

A general non-linear regression

yt = x ′
tγ + f (xt) + εt , εt ∼ N (0, σ2

t )

▶ yt denotes a scalar time series,
▶ xt a set of K covariates,
▶ γ a vector of K (linear) coefficients,
▶ f : RK → R a function of unknown (non-linear) form

▶ How to specify f?
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A shallow Bayesian Neural Network

A neural network with a single hidden layer

f (xt) ≈
Q∑

q=1

βqhq(x ′
tκq + ζq)

▶ β = (β1, . . . , βQ)
′ denotes a Q × 1 vector of factor

loadings
▶ Q the number of neurons
▶ h(•) a non-linear activation function
▶ κ = (κ1, . . . ,κQ) a K × Q matrix of non-linear

coefficients
▶ ζ = (ζ1, . . . , ζQ)

′ a Q × 1 vector of bias terms
xt h(x‘t!+")

covariates hidden layer

target
yt
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From Neural Networks to Bayesian Neural Networks

xt h(x‘t!+")
covariates hidden layer

target
yt

xt h(x‘t!+")
covariates hidden layer

target
yt
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Stochastic model selection

▶ Selecting the number of neurons (Q)
▶ Multiplicative Gamma Process (MGP) prior (Bhattacharya and Dunson, 2011)

βj ∼ N (0, ϕ−1
j ), ϕj =

Q∏
q=1

δq , δ1 ∼ G(a1,1), δl ∼ G(a2,1), for q > 1

▶ Shrinking the weighting coefficients (κ)
▶ Column-wise horseshoe prior (Carvalho et al., 2010)

κqj ∼ N (0, λ2
qϕ

2
qj), λq ∼ C+(0,1), ϕqj ∼ C+(0,1)

▶ Choosing between (four) activation functions (h)
▶ Introduce latent discrete random variable δq ∈ [1,4]

Prob(δq = j) = ωqj =
1
4

▶ Shrink γ with the horseshoe prior (Carvalho et al., 2010)
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Set of activation functions

Function h(x) = Plot
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Illustration of the activation functions
Effect of money growth on inflation

convex combination linear sigmoid
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Posterior simulation

▶ Coefficients γ and β are obtained jointly from a standard multivariate
Gaussian posterior

▶ Hyperparameters for MGP prior are obtained through simple Gibbs updating
steps (Bhattacharya and Dunson, 2011)

▶ p(κq|•), for q = 1, . . . ,Q:
▶ If the corresponding scaling parameter of the MGP prior exceeds a threshold

very close to zero, we sample κq using HMC step (Neal et al., 2011)
▶ Otherwise, κq is obtained by drawing from the prior

▶ hq(x) is simulated from a multinomial distribution resulting in a mixture of
activation functions

▶ {log(σ2
t |•)}T

t=1 is simulated using the algorithm proposed in Kastner and
Frühwirth-Schnatter (2014)

Details
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Simulation study

▶ We illustrate our approach through different DGPs and vary
▶ the functional form: linear vs highly nonlinear (neural network model)
▶ the variance specification: homoskedastic vs heteroskedastic
▶ the size of the model: large (60) vs small (30) number of regressors
▶ the parameter space: sparse vs dense

▶ We show that our approach works well for both DGPs
▶ We clearly outperform the linear model for the highly nonlinear DGPs
▶ We can capture the linear DGP without overfitting
▶ Details are given in the appendix

Details Results
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Forecasting setup (1)

Dependent variable Set of predictors Sample Range - Hold-out Source

Macro A

A.1) Industrial
production
A.2) Inflation
A.3) Employment

Large
(120 economic &
financial variables)

Monthly data
for the US

1960M1 to
2020M12 one-step-ahead 2000M1 to

2020M12 McCracken and Ng (2016)

Macro B Average economic
growth rate

60 country-specific
characteristics Cross-section 90 countries randomly sampled

(100 times) 45 countries Barro and Lee (1994)

Macro C USD/GBP exchange
rate returns (qoq)

20 exchange rate
determinants

Quarterly data for
the US and UK

1990Q1 to
2019Q4

one-step- and
four-steps-ahead

2000Q1 to
2019Q4 Wright (2008); Rossi (2013)

Finance Equity premium 16 economic
& financial variables

Annual data
for the US 1948 to 2020 one-year-ahead 1965 to 2020 Welch and Goyal (2008)
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Forecasting setup (2)

▶ Set of competing models:
▶ Bayesian neural network (BNN)
▶ BNN with neuron-specific activation functions (BNN-NS)
▶ Bayesian linear regression model with the horseshoe shrinkage prior and

stochastic volatility (benchmark)
▶ Bayesian neural network by backpropagation, labeled BNN-BP (Blundell et al.,

2015) Details

▶ Bayesian additive regression trees, labeled BART (Chipman et al., 2010; Huber
et al., 2020; Huber and Rossini, 2022) Details

▶ Evaluation metrics:
▶ Root mean squared error (RMSE) for point forecasts
▶ Log predictive likelihood (LPL) for density forecasts
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Summary of findings

▶ Superior forecasting performance
▶ Our BNN offers substantial improvements in density forecasting performance
▶ We find competitive performance when interest centers on point forecasts

▶ Controlling for non-linear relations is of particular importance during
recessionary periods of the business cycle
▶ For Macro A, we see the highest gains during the Global Financial Crisis and

the COVID-19 pandemic
▶ For Macro C and Finance, the BNN yields superior density forecasting

performance during the Global Financial Crisis
▶ In the cross section, the BNN handles extraordinarily low and high growth

rates best
▶ Good performance in terms of density forecasts is often accompanied by

larger in-sample fit for extreme observations
▶ Deep BNN yields comparable results Details

Go to results tables
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Out-of-sample predictive accuracy - relative LPL
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Non-linearities in the sample

Inflation Industrial production Employment
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Effective number of neurons Q∗

Inflation Industrial production Employment
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Relationship in-sample fit and out-of-sample predictability

Inflation Industrial production Employment
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Closing remarks

▶ We have developed a non-parametric regression model based on Bayesian
Neural Networks

▶ Our framework allows to remain agnostic on the form of the network

▶ We use popular techniques from the Bayesian literature to determine the
adequate network structure

▶ In a broad set of macro and finance applications we show the superior
forecasting performance of our approach
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Deep BNN Go back

A deep BNN with L hidden layers implies that:

f (xt) ≈
(

h(L)(κ(L)′ x̂ (L−1)
t + ζ(L))

)
β, with

x̂ (l)
t =h(l)(κ(l)′ x̂ (l−1)

t + ζ(l)), for 1 ≤ l ≤ L − 1.

▶ l = {1, . . . ,L} denotes the number of layers
▶ h(l)(•) refers to a layer-specific (nonlinear) activation function common to all

neurons κ(l) and bias terms ζ(l) in the respective layer
▶ x̂ (0)

t = x̂t for the first layer (i.e., l = 1)
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Results for the Deep BNN

Application Deep BNN
with 3 hidden layers

Macro A
Inflation
Industrial production
Employment

0.00
-0.02
0.03

Macro B -0.38

Macro C 0.02

Finance -0.02

Note: The table shows log predictive likelihoods (LPLs) relative to the best per-
forming shallow BNN. Results are averaged across the hold-out.
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Simulation study Go back

yt =f (x ′
tκtrue)

′βtrue + vt , vt ∼ N (0, σ2
t ,true), κtrue = IK ,

xjt ∼N (0,1), for j = 1, . . . ,K and K ∈ [30,60],

▶ βj,true ∼ N(0, c2)
▶ sparse DGP with 10 % active neurons: c = 0.52

▶ dense DGP with 90 % active neurons: c = 0.04
▶ 2 different variance specifications:

▶ homoskedastic: σ2
t,true = 0.1 for all t

▶ heteroskedastic: σ2
t,true = 0.1exp(ηt), ηt ∼ N (0,0.12)

▶ f : RK 7→ RQ defined as
▶ linear
▶ a shallow neural network with a single hidden layer and a randomly selected

activation function for each neuron
29



Synthetic: Forecast performance for 100 hold-out
observations (estimated with SV) Go back

K Sparsity Noise Non-linear DGP Linear DGP
BNN BNN-NS Linear model BNN BNN-NS Linear model

30 Dense hetero 1.00 0.93 0.51 1.01 1.01 0.43
homo 0.99 0.86 0.41 1.02 1.02 0.32

Sparse hetero 0.99 0.80 0.98 0.99 0.99 0.49
homo 0.98 0.72 1.00 1.01 1.01 0.35

60 Dense hetero 1.00 0.89 0.61 1.00 1.00 0.42
homo 1.01 0.84 0.54 1.01 1.01 0.33

Sparse hetero 0.99 0.92 1.48 0.98 0.99 0.51
homo 1.00 0.94 1.37 1.01 1.00 0.38

Note: The table shows root mean squared errors (RMSEs) relative to the benchmark linear model. In bold we mark the best performing model for each
case. The grey shaded area gives the actual RMSE scores of the benchmark. Results are averaged across the hold-out.
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Synthetic: Forecast performance for 100 hold-out
observations (estimated without SV) Go back

K Sparsity Noise Non-linear DGP Linear DGP
BNN BNN-NS Linear model BNN BNN-NS Linear model

30 Dense hetero 1.01 0.94 0.51 1.02 1.02 0.43
homo 0.98 0.84 0.41 1.02 1.02 0.32

Sparse hetero 1.01 0.84 0.98 1.02 1.01 0.49
homo 1.02 0.72 1.01 1.00 1.00 0.35

60 Dense hetero 1.01 0.87 0.61 1.02 1.02 0.43
homo 1.01 0.85 0.53 1.01 1.01 0.33

Sparse hetero 1.00 0.93 1.48 1.01 1.01 0.51
homo 1.01 0.95 1.38 1.01 1.01 0.38

Note: The table shows root mean squared errors (RMSEs) relative to the benchmark linear model. In bold we mark the best performing model for each
case. The grey shaded area gives the actual RMSE scores of the benchmark. Results are averaged across the hold-out.
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Macro A: Forecast performance across 252 hold-out
observations Go back

Covariates Model
BART BNN BNN-NS BNN-BP Linear model

Inflation
Large 0.97 0.94*** 0.94*** 1.03 0.94***

(-0.03) (0.09***) (0.08***) (-0.12***) (0.08***)
PCA 1.07** 1.00 1.01 1.04* 1.16

(-0.20***) (0.00) (-0.04***) (-0.11***) (-1.45)

Industrial production
Large 0.88 0.97*** 1.02** 0.93 0.98***

(0.08) (0.14***) (0.17**) (-0.41*) (0.12***)
PCA 0.89 1.00 1.01 0.94 1.75

(-0.01) (0.05**) (0.07*) (-0.46) (-1.33)

Employment
Large 1.04 1.00 1.00 1.01 1.01

(0.11) (0.14**) (0.14) (-0.87) (0.10*)
PCA 1.03 0.99 1.00 1.01 3.50

(-0.19*) (0.07) (-0.01) (-0.59) (-1.88)

Note: The table shows root mean squared errors (RMSEs), and average log predictive likelihoods (LPLs) in parentheses, relative to the linear bench-
mark. In bold we mark the best performing model for each case. The grey shaded area gives the actual RMSE and LPL scores of our benchmark (linear
model). Results are averaged across the hold-out.
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Macro B: Forecast performance across 45 hold-out
countries and 100 replications Go back

Covariates Model
BART BNN BNN-NS BNN-BP Linear model

Kitchen sink 0.95*** 1.01 1.01 1.04*** 5.24
(0.06***) (0.82***) (0.95***) (-0.18***) (-4.40)

Note: The table shows root mean squared errors (RMSEs), and average log predictive likelihoods (LPLs) in parentheses, relative to the linear bench-
mark. In bold we mark the best performing model for each case. The grey shaded area gives the actual RMSE and LPL scores of our benchmark (linear
model). Results are averaged across the hold-out.
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Macro C: Forecast performance across 80 hold-out
observations Go back

Covariates Multivariate models

BART BNN BNN-NS BNN-BP Linear model

one-quarter ahead

All fundamentals 1.03 1.02 1.02 1.03 1.01
(-0.02) (0.01) (0.02) (-0.09*) (-0.01)

Kitchen sink 1.04 0.97 0.99 1.02 0.95
(-0.01) (0.03) (0.03) (-0.10) (-1.29)

one-year-ahead

All fundamentals 1.04 1.00 1.00 1.01 1.00
(0.00) (0.02) (0.00) (-0.09**) (-0.01)

Kitchen sink 1.03 1.01 1.02 0.98** 0.96
(0.06) (0.01) (0.01) (-0.09) (-1.29)

Note: The table shows RMSEs with average LPLs in parentheses. The grey shaded area gives the actual RMSE and LPL scores of our benchmark
(linear model). Results are averaged across the hold-outs.
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Finance: Forecast performance across 56 hold-out
observations Go back

Covariates Multivariate models

BART BNN BNN-NS BNN-BP Linear model

Kitchen sink 1.00* 1.00 0.99 1.03 1.07
(0.01) (0.00) (0.01) (-0.04) (-1.46)

Univariate models

BART BNN-NS BNN-BP Linear model

Dividend price ratio 1.01 0.99 0.99 0.99
(-0.04) (0.00) (0.00) (-0.01)

Dividend yield 1.01 0.99 1.01 0.99
(-0.02) (0.00) (-0.03) (0.00)

Inflation 1.02 0.99 1.00 1.00
(-0.02) (0.01) (0.00) (0.00)

Term spread 1.00 1.01 0.99 0.99
(-0.01) (0.00) (0.00) (-0.01)

Note: The table shows RMSEs with average LPLs in parentheses. The grey shaded area gives the actual RMSE and LPL scores of our benchmark
(linear model). Results are averaged across the hold-outs
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Full conditional posterior distribution (1) Go back

▶ Sample θ = (γ ′,β′)′

θ|• ∼ N
(
θ,V θ

)
,

with

V θ =
(

x̃ ′Σ−1x̃ + V−1
θ

)−1
,

θ = V θx̃ ′Σ−1y .

▶ x̃ = (x̃ ′
1, . . . , x̃

′
T )

′ as a (K + Q)× T matrix of neurons with element
x̃t = (x ′

t ,h1(x ′
t κ1 + ζ1), . . . ,hQ(x ′

t κQ + ζQ))
′

▶ Σ = diag(σ2
1 , . . . , σ

2
T ) as a T × T matrix capturing the variances

▶ V θ = diag(ϕ−1
γ ,ϕ−1

β ) where ϕ−1
γ = (ϕ−1

γ1
, . . . , ϕ−1

γK
)′ as the K prior variances for

the constant coefficients and ϕ−1
β = (ϕ−1

β1
, . . . , ϕ−1

βQ
)′ for the non-linear

coefficients
36



Full conditional posterior distribution (2) Go back

▶ The prior on γ is Normal of the form:

γj ∼ N (0, ϕ−1
γj

), ϕ−1
γj

= λ2
γφ

2
γj
, for j = 1, . . . ,K .

with the global and local shrinkage parameters, λ2
γ and φ2

γj
(HS prior in

hierarchical representation of Makalic and Schmidt (2015)):

φ2
γj
|• ∼ G−1

(
1, c−1

γj
+

γ2
j

2λ2
γ

)
,

λ2
γ |• ∼ G−1

K + 1
2

,d−1
γ +

K∑
j=1

γ2
j

2φ2
γj

 ,

cγj |• ∼ G−1
(

1,1 + φ−2
γj

)
,

dγ |• ∼ G−1
(

1,1 + λ−2
γ

)
.
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Full conditional posterior distribution (3) Go back

▶ We sample the hyperparameters associated with the MGP prior on β from
inverse Gamma distributions:

δ1 ∼ G−1

a1 +
Q
2
,1 +

1
2

Q∑
q=1

(ϕβqβ
2
q)

 ,

δr ∼ G−1

a2 +
Q − r − 1

2
,1 +

1
2

Q∑
q=1

(ϕβqβ
2
q)

 .
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Full conditional posterior distribution (4) Go back

▶ Hamiltonian Monte Carlo (HMC) within Gibbs step to draw κq (q = 1, . . . ,Q): Let rq denote an auxiliary
moment variable, where rq ∼ N (0, I) and L(κq) = log p(κq |•) the log conditional posterior density of κq .
The fictitious Hamiltonian system of the conditional posterior density of κq is then given by

H(κq , rq) = −L(κq) +
1
2

r ′qrq .

We simulate the Hamiltonian dynamics via the leapfrog integrator with proposals:

r∗∗q = r (a)q +
ϵ

2
∇κqL(κ

(a)
q ),

κ∗
q = κ

(a)
q + ϵr∗∗q ,

r∗q = r∗∗q +
ϵ

2
∇κqL(κ∗

q ),

where κ
(a)
q and r (a)q denote the previously accepted values, ∇κqL(κq) is the gradient of the log conditional

posterior, ϵ is the discrete step size to generate a full-step proposal for κq (i.e., κ∗
q ) and half-step updates

for the momentum rq (r∗∗q for the first half-step update and r∗q for the final proposal).
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Full conditional posterior distribution (5) Go back

▶ We repeat the leapfrog method in n = 1, . . . ,N steps. To tune N and ϵ we use the No U-Turn Sampler
(NUTS) as in Hoffman et al. (2014).

Finally, we evaluate the proposed and previously accepted values by means of a Metropolis accept/reject
step and determine the acceptance probability ηq for proposed κ∗

q :

ηq = min

(
1,

exp(L(κ∗
q )− 1

2 r
′∗
q r∗q )

exp(L(κ(a)
q )− 1

2 r
′(a)
q r (a)q )

)
.

This step remains conceptually similar for the deep BNN. In this case, we only need to iterate through all
layers and also take into account the fact that the composite function of L layers has different implications
on the gradients of the layer-specific neurons.

40



Full conditional posterior distribution (6) Go back

▶ Column-wise horseshoe prior on the elements of κq:

φ2
κjq
|• ∼ G−1

(
1, c−1

κj q +
κ2

jq

2λ2
κq

)
,

λ2
κq |• ∼ G−1

K + 1
2

,d−1
κq +

K∑
j=1

κ2
jq

2φ2
κjq

 ,

cκjq |• ∼ G−1
(

1,1 + φ−2
κjq

)
,

dκq |• ∼ G−1
(

1,1 + λ−2
κq

)
.
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Full conditional posterior distribution (7) Go back

▶ Choose activation function hq by drawing δq from a multinomial distribution:

Pr(δq = m|•) ∝ ωqm×exp

{
−1

2

(
(ŷq − µ

(m)
q )′Σ−1(ŷq − µ

(m)
q )

)}
, for m = 1, . . . ,4,

where µ
(m)
q = (µ

(m)
1q , . . . , µ

(m)
Tq )′ with elements µ

(m)
tq = βqh(m)

q (x ′
tκq + ζq).
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Bayesian Neural Network by backpropagation Go back

▶ Variational inference scheme for learning the posterior distribution on the
weights of a neural network (Blundell et al., 2015)

▶ Maximize the log-likelihood subject to a Kullback-Leibler complexity term on
the parameters (with reparameterization trick and stochastic gradient descent)

▶ Prior on the weights as a scale mixture of two Gaussian densities with zero
mean but differing variances (σ2

1 = 3 and σ2
2 = 0.0025)

▶ Cross validation exercise:
▶ Macro A: time series split with 24 months
▶ Macro B: random split in 20 replications
▶ Macro C: time series split with 12 quarters
▶ Finance: time series split with 10 years
▶ 1000 epochs
▶ MSE loss function
▶ ADAM optimizer
▶ learning rate 0.014
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Bayesian additive regression trees Go back

▶ Approximate f using Bayesian additive regression trees (Chipman et al., 2010)
▶ Sum over a number of Z regression trees (gz):

f (xt) ≈
Z∑

z=1

gz(xt |Tz ,ρz)

▶ Tree structure Tz
▶ Terminal node parameter ρz
▶ Z = 250
▶ Prior on the tree structure built upon a tree-generating stochastic process

▶ Determining the probability that a given node is nonterminal
▶ Selection of variables used in a splitting rule (to spawn left and right children

nodes)
▶ Terminal node parameter: conjugate Gaussian prior distribution with data-based

prior variance
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