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Motivation

◦ Dynamic factor models (DFM) are a fundamental tool in empirical
economics for both structural and forecasting analysis (Stock and
Watson, 2016).

◦ DFMs are mostly specified linearly.

⋄ Linear relationship between the factors today and their past values.

⋄ Linear relationship between the observables and the factors.

◦ However, the Great Recession, Euro debt crisis, and COVID-19
crisis point to strong nonlinearities in the data.

⋄ Effective lower bound on interest rates.

⋄ Spikes in corporate and sovereign debt spreads.

⋄ Asymmetric tail risk behavior of GDP growth (Adrian, Boyarchenko,
Giannone, 2019).
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This paper

◦ We introduce a nonlinear dynamic factor model.
⋄ Nonlinear relationship between factors today and their past values.
⋄ Nonlinear relationship between observables and factors.

◦ Our nonlinear dynamic factor model is inspired by the pruned
second-order state-space model of Kim et al. (2008) and Andreasen et
al. (2019).

◦ The model can generate novel implications such as

⋄ Asymmetric and state-dependent IRFs (Andreasen et al., 2019)
⋄ Non-normal predictive distributions that feature time-varying volatility

and asymmetric tail behavior.

◦ Applications
⋄ Nonlinear credit cycle
⋄ Model the shadow rate indicator à la Wu and Xia, 2016
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Related Literature

◦ Perturbation methods in DSGE models and their time series
applications: Kim et. al. (2008), Andreasen et. al. (2017), Aruoba et.
al. (2017)

◦ Dynamic factor models: Chauvet (1998), Del Negro and Otrok
(2008), Aruoba and Diebold (2010), Banbura and Modugno (2014),
Cheng et. al. (2016), Carrasco and Rossi (2016), Stock and Watson
(2016) and references therein... Gorodnichenko Ng, 2017

◦ Macro and Financial Tail risks: Adrian et. al. (2019), Carriero et. al.
(2020 a,b), Caldara et. al. (2020), Cook and Doh (2020),
Plagborg-Moller et. al. (2020), Caldara et. al. (2021)
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NLDFM
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Connection to theory: Pruned System

Following Andreasen, Fernandez-Villaverde, Rubio-Ramirez, 2019:

ft = H(ft−1) + σνt

↓
2nd order approx.

↓
ft = hx ft−1 + 0.5hxx(ft−1)

2 + const + σνt

◦ Substitute: ft = f ft + f st

f ft + f st = hx
(
f ft−1 + f st−1

)
+ 0.5hxx

(
f ft−1 + f st−1

)2
+ const + σνt (1)
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f ft + f st = hx
(
f ft−1 + f st−1

)
+ 0.5hxx

(
f ft−1 + f st−1

)2
+ const + σνt (1)

◦ Leave two equations: for 1st and 2nd order,

f ft = hx f
f
t−1 + σνt ; f st = hx f

s
t−1 + 0.5hxx

(
f ft−1

)2
+ const
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ft = H(ft−1) + σνt

↓
2nd order approx.

↓
ft = hx ft−1 + 0.5hxx(ft−1)

2 + const + σνt

◦ Substitute: ft = f ft + f st

f ft + f st = hx
(
f ft−1 + f st−1

)
+ 0.5hxx

(
f ft−1 + f st−1

)2
+ const + σνt (1)

◦ Result: stationary (|hx | < 1) system with representation:

ft = const′ +
∞∑
k=1

ϕk (hx , hxx)σ
2ν2t−k +

∞∑
k=1

hkxσνt−k + σνt
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Nonlinear Dynamic Factor Model

◦ We take a pruned second-order approximation to a general nonlinear
relationship:

ft = H(ft−1) + σνt ,

motivated by the work of Kim et. al. (2008), Andreasen et. al. (2019)
and Aruoba et. al. (2017).

Measurement, e.g. Yt = Gft + et

Motion: pruned ft = c + f ft + f st

f ft = hx f
f
t−1 + σνt

f st = hx f
s
t−1 + 0.5hxx

(
f ft−1 × f ft−1

)
Measurement errors et ∼ N(0,Ωe)

Motion innovation νt ∼ N(0, I )
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A useful state space representation

 f ft
f st(
f ft
)2
 =

hx 0 0
0 hx

1
2hxx

0 0 h2x

 f ft−1

f st−1(
f ft−1

)2
+

σ 0 0
0 0 0
0 σ2 2σhx

 νt
ν2t

f ft−1νt


◦ Asymmetric responses to shocks from ν2t .

◦ State-dependent dynamics conditional on f ft−1.

⋄ Sign of f ft−1 important determinant of IRF and conditional covariance
dynamics.

⋄ Model features time-varying volatility.

◦ Correlation between mean and volatility.

⋄ Unconditional correlation between f st and
(
f ft
)2

is non-zero.
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Impulse response functions

◦ Model generates asymmetric IRFs controlled by the sign of hxx .
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Impulse response functions

◦ Model generates state-dependent IRFs

◦ ...and therefore time-varying volatility.
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Distributional Moments of Interest
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◦ Standard deviation: Width, Dispersion
◦ Shortfall: Left tail behavior

SFα(h) = Et [xt+h|xt+h < qα(xt+h)]

◦ Longrise: Right tail behavior

LRα(h) = Et [xt+h|xt+h > q1−α(xt+h)]

SF, LR
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Higher-order moment responses
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◦ Standard deviation increases with a one period lag.

◦ Simultaneous increase in the mean and standard deviation generates a
larger movement in the 5% longrise relative to the 5% shortfall.
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Predictive distribution responses
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◦ Initial shock only shifts the mean of the forecast and the distribution is
normal.

◦ Second-order factor responds with a one period lag, which leads to
non-normalities.
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Estimation Details: 2 cases

Credit growth Interest rates

Linear measurement Effective lower bound

Gibbs sampler with particle Metropolis Hastings with
smoother bootstrap particle filter

Fewer particles Many particles
due to ancestor sampling

Uses all the data Retains the information struc-
ture

Approximation of the model Model itself
Details Details
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Application-1: Nonlinear Credit Cycle
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Data
◦ Normalized real credit growth in the US

◦ Nonfinancial business, household, financial and government sectors (Z.1
Financial Accounts data by the Fed)
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Figure: Normalized real credit growth by sector in the United States: 1952:Q1-2021:Q4
with National Bureau of Economic Research recession shading.
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Figure: Estimated Credit Cycle and the Contribution of the Second-Order Factor
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Figure: Shaded areas denote 68% credible sets.
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Figure: State-Dependent Impulse Response Functions in Three Periods
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Columns: mid-2000s, credit bust period 2010, mixed case before the early 1990s recession.

Shaded areas: 68% credible sets.
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Figure: Impulse Response Functions of the Mean, Standard Deviation, and Tail Risk
During the Credit Crunch
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Credit crunch period of 2010. Shaded areas: 68% credible sets.

Jump to conclusions
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Application 2: Shadow Interest rate
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◦ Data: one-month forward rates constructed using Wu and Xia (2016)
approach to Gurkaynak et al. (2007) data: 1990-2019.

◦ Measurement:

∆forwardh
t = mh +

{
Gh(c + f ft + f st ) + ηhεht if Ŝh

t >= 0.3

−mh + ηhεht otherwise
(2)

where Ŝh
t =

∑t
τ=2

(
mh + Gh

(
c + f fτ + f sτ

))
+ forwardh

1

∆forwardh
t = forwardh

t − forwardh
t−1, h– maturity

◦ Motion:

f ft = hx f
f
t−1 + σνt (3)

f st = hx f
s
t−1 +

1

2
hxx

(
f ft−1

)2
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Figure: Filtered Estimates of the Forward Rate Factor from the Nonlinear and Linear
Models
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◦ Very similar outside the ZLB

◦ Shadow rate changes are non-zero at the ELB.

◦ Next: Sum to get the shadow rate itself
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◦ Outside ELB: tracks mostly 3m rate; at ELB: longer maturities.

◦ LR test: hxx = 0 – no change in relation at the ELB
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Conclusion

◦ Introduce a nonlinear dynamic factor model.

◦ The nonlinear dynamic factor model can generate asymmetric and
state-dependent impulse response functions.

◦ The model can also generate non-normal predictive distributions that
feature time-varying volatility and asymmetric tail behavior.

◦ Two applications:

⋄ Credit growth
⋄ ELB
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Appendix
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Gibbs Sampler with Particle Smoother
Step 1. Draw G , η given f ft , f

s
t , and yt . This step follows a standard linear

regression model.
Step 2. Draw hx , hxx given σ, G , η, f ft , f

s
t , and yt . RW Metropolis to draw

hx and hxx . Given hx and hxx , the proposal:(
hpropx

hpropxx

)
=

(
hx
hxx

)
+ Shζ, ζ ∼ N(0, I ).

Given proposed hpropx and hpropxx , calculate its likelihood. Update c and f st

f s,propt = hpropx f s,propt−1 +
1

2
hpropxx

(
f ft−1

)2
.

We initialize f s,prop0 = f s0 . Likelihood of the proposal, two steps:

yt − G
(
cprop + f ft + f s,propt

)
= ηϵt ; f ft − hpropx f ft−1 = σνt . (4)

Accept with probability:

prob = max


∏T

t=1 p
(
yt |cprop , G , η, f ft , f

s,prop
t

)
ptrans

(
f ft |hpropx , σ, f ft−1

)
g
(
hpropx , hpropxx

)
∏T

t=1 p
(
yt |ccurr , G , η, f ft , f st

)
ptrans

(
f ft |hcurrx , σ, f ft−1

)
g
(
hcurrx , hcurrxx

) , 1

 (5)
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Draw σ2 given G , η, f ft , f
s
t , and yt using a RW Metropolis step. Given σ2, :

σ2,prop = σ2 + Sσι, ι ∼ N(0, I ).

Likelihood of the proposal:

yt − G
(
cprop + f ft + f st

)
= ηϵt

f ft − hx f
f
t−1 = σpropνt .

(6)

Accept probability:

prob = max


∏T

t=1 p
(
yt |cprop , G , η, f ft , f st

)
ptrans

(
f ft |hx , σ2,prop , f ft−1

)
g
(
σ2,prop

)
∏T

t=1 p
(
yt |ccurr , G , η, f ft , f st

)
ptrans

(
f ft |hx , σ2,curr , f ft−1

)
g
(
σ2,curr

) , 1

 (7)
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Step 3. Draw f ft , f
s
t given σ, G , η, hx , hxx , and yt using the particle Gibbs

sampler with ancestor sampling.

◦ Initialize particle smoother: For particles j = 1, ...,N − 1. simulate for
500 periods and use the final period of the simulation to determine:

f
f ,(j)
0 , f

s,(j)
0 , f

s,(j)
1 . Note that f

s,(j)
1 is a function of f

f ,(j)
0 , f

s,(j)
0 , so it is

known.
◦ Draw first period: For particles j = 1, ...,N − 1. We determine

f
f ,(j)
1 , f

s,(j)
2 by simulation.

◦ Fix final particle: Fix f
f ,(N)
0 , f

s,(N)
0 , f

f ,(N)
1 , f

s,(N)
1 , and f

s,(N)
2 equal to

f f ,∗0 , f s,∗0 , f f ,∗1 , f s,∗1 , and f s,∗2 , where ∗ is the accepted previous draw.

◦ Set weights: Compute w
(j)
1 =

p(y1|f f ,(j)1 ,f
s,(j)
1 )∑N

jj=1 p(y1|f
f ,(jj)
1 ,f

s,(jj)
1 )

for j = 1, ...,N. For

t = 2, ...,T :
◦ Sample indices to set ancestors for each particle: For particles

j = 1, ...,N − 1. Draw a
(j)
t from the distribution wt−1. Simulate the

following:

f
f ,(j)
t = hx f

f ,(a
(j)
t )

t−1 + σνt

f
s,(j)
t+1 = hx f

s,a
(j)
t

t +
1

2
hxx

(
f
f ,(j)
t

)2 (8)28 / 41



◦ Fix the final particle: Fix f
f ,(N)
t equal to f f ,∗t .

◦ Compute auxiliary weights for the fixed particle: For j = 1, ...,N.
We compute the auxiliary weights for the fixed particle as follows:

w
aux ,(j)
t = w

(j)
t−1p(yt |f

f ,(N)
t , f

s,(j)
t )g(f

f ,(N)
t |f f ,(j)t−1 )p(yt+1|f f ,(N)

t+1 , f
s,(N′)
t+1 )g(f

f ,(N)
t+1 |f f ,(N)

t ).
(9)

When calculating f
s,(N′)
t+1 , we have to take into account that f

s,(N′)
t+1

depends on f
s,(j)
t . Therefore, f

s,(N′)
t+1 does not equal f

s,(N)
t+1 . The formula

is

f
s,(N′)
t+1 = hx f

s,(j)
t +

1

2
hxx

(
f
f ,(N)
t

)2
. (10)
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◦ Sample the associated ancestor index for particle N: We sample

a
(N)
t from the distribution waux

t . Note that we have to update f
s,(N)
t+1 to

make it consistent with the selected ancestor:

f
s,(N)
t+1 = hx f

s,(a
(N)
t )

t +
1

2
hxx

(
f
f ,(N)
t

)2
. (11)

◦ Set weights: Compute w
(j)
t = p(yt |f f ,(j)t ,f

s,(j)
t )∑N

jj=1 p(yt |f
f ,(jj)
t ,f

s,(jj)
t )

for j = 1, ...,N.

◦ Sample selected states: Sample ∗ according to wT . Set f
f ,∗
t , f s,∗t

equal to the sampled state.
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Metropolis Hasting with Bootstrap Particle Filter: Details
Propose a new set of parameters Θprop =

{
Gprop, ηprop, hpropx , hpropxx , σ2,prop

}
.

3 blocks:

◦ Block 1 (factor equation) Θprop
1 =

{
hpropx , hpropxx , σ2,prop

}
;

◦ Block 2 (measurement equation loadings) Θprop
2 = {Gprop};

◦ Block 3 (measurement equation variances) Θprop
3 = {ηprop}.

For each block 50 draws, holding other parameters at their previously
accepted values.

Θprop
i = Θcurr

i + 0.95Si ,1ζ1 + 0.05Si ,2ζ2, ζi ∼ N(0, I ) i = 1, 2, 3, 4

We tune the variance-covariance matrix of the proposals Si ,1 and Si ,2 in an
adaptive fashion over the first 30, 000 draws of the algorithm. Si ,1 is
calculated using the variance-covariance matrix from all of the previous draws
multiplied by a scaling parameter that decreases if the previous 250 draws
within the block had an acceptance rate less than 10%. Si ,2 is a diagonal
matrix that is meant to introduce some independent noise within the
proposal. It is multiplied by a separate scaling parameter that decreases if the
previous 250 draws within the block had an acceptance rate less than 10%.31 / 41



Bootstrap Particle filter
◦ Initialize the particle filter: For particles j = 1, ...,N. To take a draw
from the unconditional distribution, we simulate the model for 500
periods and use the final period of the simulation to determine:

f
f ,(j)
0 , f

s,(j)
0 , f

s,(j)
1 .

For t = 1, ...,T :
◦ Prediction step:

Given particles and weights at t − 1:
{
f
f ,(j)
t−1 , f

s,(j)
t ,w

(j)
t−1

}
.

1. For particles j = 1, ...,N. Draw a new particle
{
f
f ,(j)
t , f

s,(j)
t+1

}
from

f
f ,(j)
t = hx f

f ,(j)
t−1 + σνt

f
s,(j)
t+1 = hx f

s,(j)
t +

1

2
hxx

(
f
f ,(j)
t

)2

.

2. Calculate weights:

ω
(j)
t = p(yt |f f ,(j)t , f

s,(j)
t ), j = 1, . . . ,N.
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◦ Update step:

1. Define normalized weights: w̃
(j)
t =

ω
(j)
t w

(j)
t−1

1
N

∑
ω

(j)
t w

(j)
t−1

.

2. Resample from multinomial distribution
{
ω
(j)
t , w̃

(j)
t

}
and set w

(j)
t = 1.

◦ Compute conditional likelihood:

p(yt |Y1:t−1) ≈
1

N

N∑
i=1

ω
(j)
t w

(j)
t−1. (12)

The overall likelihood is then p(y |Θprop
i ,Θcurr

−i ) =
∏T

t=1 p(yt |Y1:t−1).
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Appendix: Definitions of Shortfall and
Longrise

Shortfall:

SFα(h) = Et [xt+h|xt+h < qα(xt+h)]

Longrise:

LRα(h) = Et [xt+h|xt+h > q1−α(xt+h)]

◦ h is horizon

◦ qα is the α quantile of the distribution

Return
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Appendix: Higher-Order Moment Responses,
Negative Shock
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Appendix: Higher-Order Moment Responses,
High risk EDC
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Appendix: Higher-Order Moment Responses,
High risk EDC
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Appendix: Higher-Order Moment Responses,
Low risk
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Appendix: Higher-Order Moment Responses,
Low risk
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Appendix: Parameter Estimates
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Appendix: Particle Filter
Bootstrap filter version (Sarkka, 2013)

◦ Prediction
Given particles and weights at t − 1:

{
x it−1,W

i
t−1

}
1. Draw a new particle x

(i)
t for each point in the sample set

{x (i)t−1 : i = 1, . . . ,N} from

x
(i)
t ∼ p(xt |x (i)t−1), i = 1, . . . ,N

2. Calculate weights:

ω
(i)
t = p(yt |x (i)t ), i = 1, . . . ,N

◦ Update

1. Define normalized weights: W̃
(i)
t =

ω
(
t i)W

(i)
t−1

1
N

∑
ω

(i)
t W

(i)
t−1

.

2. Resample from multinomial distribution
{
ω
(i)
t , W̃

(i)
t

}
and set W

(i)
t = 1.

Approximate state distribution and likelihood are:

p(xt |Y1:t) ≈
N∑
i=1

ω
(i)
t δ(xt − x

(i)
t ), p(yt |Y1:t−1) ≈

1

N

N∑
i=1

ωi
tW

i
t−1. (13)41 / 41
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