

Caterina Mendicino (ECB)

Kalin Nikolov (ECB)

Juan Rubio Ramirez (Emory University)

Javier Suarez (CEMFI and CEPR)

Dominik Supera (Wharton School)

Extreme Financial Distress and the Macroeconomy *

ECB workshop on Monetary Policy and Financial Stability 17 & 18 December 2018

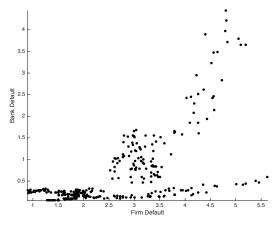
*The views expressed here are of the authors, not necessarily those of the European Central Bank

Model

- 3 Calibration and Model Fit
- 4 Bank Risk Taking
- 5 Shocks to Diversifiable Risk
- 6 How important are island shocks?
- 7 ... Non Linearities?
- 8 ...Bank Leverage?
- 9 Policy Insights

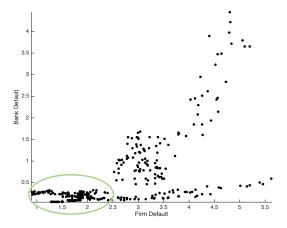
• Firms and Banks defaults:

- High Firms default can occur with or without High Banks default
- Macro-economic outcomes:
 - substantially worse in periods in which the default rate of **both** Firms and Banks is **High**

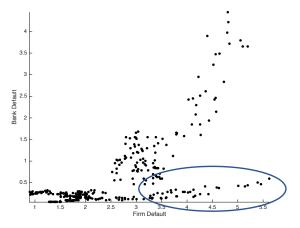

• Firms and Banks defaults:

• High Firms default can occur with or without High Banks default

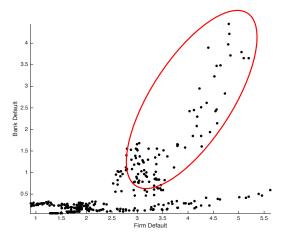
Macro-economic outcomes:


• substantially worse in periods in which the default rate of **both** Firms and Banks is **High**

Key Facts: Firms and Banks Default Rates - EA (1992-2016)


Scatter plot of Moody's expected default frequency within one year: non-financial corporations (Firm default) and banks (Bank default).

Key Facts:Firms and Banks Default Rates - EA (1992-2016)


1) Default of both Firms and Banks Low (Normal Times)

Key Facts: Firms and Banks Default Rates - EA (1992-2016)

2) Firms default High but Banks default Low

Key Facts:Firms and Banks Default Rates - EA (1992-2016)

3) Default of both Firms and Banks **High** (*extreme financial distress*)

Key Facts: Macroeconomic Outcomes

Table: Average Quarterly GDP growth (demeaned)

	High Firm Def.	High Firm Def.	
	Low Bank Def	High Bank Def.	
EA	-0.0466	-0.5842	

High default obs.: above the 90th percentile of the corresponding variable. Quarterly GDP growth de-meaned. Sample: US(1940-2016); EA (1992-2016)

Table: Average Quarterly GDP growth (demeaned)

	High Firm Def.	High Firm Def.		
	Low Bank Def	High Bank Def.		
ΕA	-0.0466	-0.5842		
DE	-0.2550	-0.6690		
FR	-0.0718	-0.6605		
IT	-0.0242	-0.5471		
NL	-0.5043	-2.1904		
ΒE	-0.3645	-0.4051		

High default obs.: above the 90th percentile of the corresponding variable. Quarterly GDP growth de-meaned. Sample: US(1940-2016); EA (1992-2016)

Table: Average Quarterly GDP growth (demeaned)

	High Firm Def.	High Firm Def.	
	Low Bank Def	High Bank Def.	
EA	-0.0466	-0.5842	
DE	-0.2550	-0.6690	
FR	-0.0718	-0.6605	
IT	-0.0242	-0.5471	
NL	-0.5043	-2.1904	
ΒE	-0.3645	-0.4051	
US	-0.0781	-0.9790	

High default obs.: above the 90th percentile of the corresponding variable. Quarterly GDP growth de-meaned. Sample: US(1940-2016); EA (1992-2016)

This Paper

Tractable quantitative macro-banking model that embeds:

- a microfounded banking setup: microfounds bank-firm default
- into an otherwise standard macro framework

...to reproduce the following facts:

1 High Firm default can occur **with** or **without** High Bank default

② Bank credit losses may or may not lead to infrequent but highly disruptive events of financial crises (High Bank and Firm defaults)

The outcome (regimes of defaults & their macro impact) depends on the underlying nature of borrowers riskiness (*diversifiable vs non-diversifiable*).

Key mechanism -> Bank Risk-taking Channel

powerful if banks face an increase in non-diversifiable borrowers risk
amplified by high bank leverage and non-linearities

Tractable quantitative macro-banking model that embeds:

- a microfounded banking setup: microfounds bank-firm default
- into an otherwise standard macro framework
- ...to reproduce the following facts:
 - **1** High Firm default can occur with or without High Bank default
 - Bank credit losses may or may not lead to *infrequent* but *highly disruptive* events of financial crises (High Bank and Firm defaults)

The outcome (regimes of defaults & their macro impact) depends on the underlying nature of borrowers riskiness (*diversifiable vs non-diversifiable*).

Key mechanism -> Bank Risk-taking Channel

powerful if banks face an increase in non-diversifiable borrowers risk
 amplified by high bank leverage and non-linearities

Tractable quantitative macro-banking model that embeds:

- a microfounded banking setup: microfounds bank-firm default
- into an otherwise standard macro framework
- ...to reproduce the following facts:
 - **1** High Firm default can occur **with** or **without** High Bank default
 - Bank credit losses may or may not lead to *infrequent* but *highly disruptive* events of financial crises (High Bank and Firm defaults)

The outcome (regimes of defaults & their macro impact) depends on the underlying nature of borrowers riskiness (*diversifiable vs non-diversifiable*).

Key mechanism -> Bank Risk-taking Channel

- powerful if banks face an increase in non-diversifiable borrowers risk
- 2 amplified by high bank leverage and non-linearities

Tractable quantitative macro-banking model that embeds:

- a microfounded banking setup: microfounds bank-firm default
- into an otherwise standard macro framework
- ...to reproduce the following facts:
 - **1** High Firm default can occur with or without High Bank default
 - Bank credit losses may or may not lead to *infrequent* but *highly disruptive* events of financial crises (High Bank and Firm defaults)

The outcome (regimes of defaults & their macro impact) depends on the underlying nature of borrowers riskiness (*diversifiable vs non-diversifiable*).

Key mechanism -> Bank Risk-taking Channel

- **()** powerful if banks face an increase in **non-diversifiable** borrowers risk
- ② amplified by high bank leverage and non-linearities

A growing number of papers studies

financial crises and their normative analysis

Bianchi and Mendoza, 2010, 2018; Jeanne and Korinek,2010; Benigno et al., 2013; Boissay, Collard, and Smets 2016; Adrian and Duarte, 2017; Gertler, Kiyotaki, Prestipino, 2017; Elenev, Landvoigt, Nieuwerburgh, 2018;...

 \Rightarrow Framework of analysis that micro-founds the link between Bank and Firm defaults & capture: normal times/recessions vs financial crisis

the long-run effects of capital/leverage requirements

 (e.g. Van Den Heuvel, 2008; Christiano and Ikeda, 2014; Martinez-Miera and Suarez, 2014; Begenau, 2016; Corbae and D'Erasmo, 2017; Begenau and Ladvoigt, 2017; Mendicino, Nikolov, Supera, Suarez, 2018)

 \Rightarrow Capturing the different regimes in the correlation of defaults is KEY when drawing conclusions on the optimal capital requirements!

A growing number of papers studies

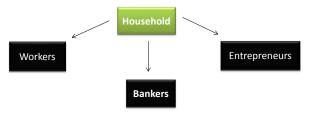
• financial crises and their normative analysis

Bianchi and Mendoza, 2010, 2018; Jeanne and Korinek,2010; Benigno et al., 2013; Boissay, Collard, and Smets 2016; Adrian and Duarte, 2017; Gertler, Kiyotaki, Prestipino, 2017; Elenev, Landvoigt, Nieuwerburgh, 2018;...

 \Rightarrow Framework of analysis that micro-founds the link between Bank and Firm defaults & capture: normal times/recessions vs financial crisis

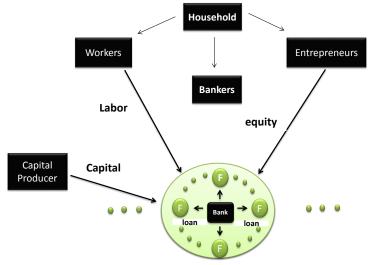
the long-run effects of capital/leverage requirements

 (e.g. Van Den Heuvel, 2008; Christiano and Ikeda, 2014; Martinez-Miera and Suarez, 2014; Begenau, 2016; Corbae and D'Erasmo, 2017; Begenau and Ladvoigt, 2017; Mendicino, Nikolov, Supera, Suarez, 2018)

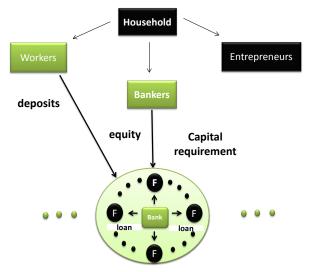

 \Rightarrow Capturing the different regimes in the correlation of defaults is KEY when drawing conclusions on the optimal capital requirements!

2 Model

- Calibration and Model Fit
- 4 Bank Risk Taking
- 5 Shocks to Diversifiable Risk
- 6 How important are island shocks?
- 7 ... Non Linearities?
- 8 ...Bank Leverage?
- 9 Policy Insights


Representative household: 3 different types of household members

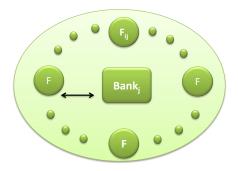
Continuum Island: In each operate one Bank and a continuum of Firms



Firms

Firm produces the final good y; pays input of production using equities and loans

Banks



Bank: use equity and (partially insured) deposits to grant loans to firms in the island

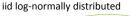
Firm i living on an island j

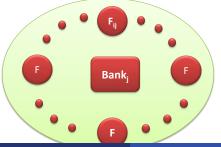
- borrows from Bank j
- and **defaults** if terminal value of assets $\omega_i \omega_j [q_{t+1} (1-\delta) k_t + y_{t+1}]$

insufficient to repay bank loans $R_{f,t}B_{f,t}$

18 / 60

Firm i living on an island j


- borrows from Bank j
- and **defaults** if terminal value of assets $\omega_i \omega_j [q_{t+1} (1-\delta) k_t + y_{t+1}]$ insufficient to repay bank loans $R_{f,t} B_{f,t}$
- : firm-idiosyncratic shock 🛛 📥 diversifiable at bank/island level ω_i iid log-normally distributed Bank, December 17, 2018


Firm i living on an island j

- borrows from Bank j
- and **defaults** if terminal value of assets $\omega_i \omega_j [q_{t+1} (1-\delta) k_t + y_{t+1}]$

insufficient to repay bank loans $R_{f,t}B_{f,t}$

 ω_j : island-idiosyncratic shock

NOT diversifiable at bank/island!

 ω_j = bank-idiosyncratic shock that affects bank returns in a non-linear way

All borrowers (including Banks)

- can default on their debt obligations
- operate under limited liability

All external financing

- is subject to CSV frictions
- takes the form of non-recourse uncontingent debt

All borrowers (including Banks)

- can default on their debt obligations
- operate under limited liability

All external financing

- is subject to CSV frictions
- takes the form of non-recourse uncontingent debt

Firms:

Banks:

- operate under safety net guarantees (insured deposits)
- part of deposits not insured: priced according to the average rather than individual risk profile of the Bank

ncentives to under-price risk!)

Firms:

 Contracting problem between Bank and Firm (participation constraint of the bank)
 ↓
 internalize expected cost of default!

Banks:

- operate under safety net guarantees (insured deposits)
- part of deposits not insured: priced according to the average rather than individual risk profile of the Bank

ncentives to under-price risk!!

Firms:

 Contracting problem between Bank and Firm (participation constraint of the bank)
 ↓
 internalize expected cost of default!

Banks:

- operate under safety net guarantees (insured deposits)
- part of deposits not insured: priced according to the average rather than individual risk profile of the Bank

ncentives to under-price risk!!

Firms:

 Contracting problem between Bank and Firm (participation constraint of the bank)
 ↓
 internalize expected cost of default!

Banks:

- operate under safety net guarantees (insured deposits)
- part of deposits not insured: priced according to the average rather than individual risk profile of the Bank

ncentives to under-price risk!!

Firms:

 Contracting problem between Bank and Firm (participation constraint of the bank)
 ↓
 internalize expected cost of default!

Banks:

- operate under safety net guarantees (insured deposits)
- part of deposits not insured: priced according to the average rather than individual risk profile of the Bank

incentives to under-price risk!!

2 Mode

- 3 Calibration and Model Fit
- 4 Bank Risk Taking
- 5 Shocks to Diversifiable Risk
- 6 How important are island shocks?
- 7 ... Non Linearities?
- 8 ...Bank Leverage?
- 9 Policy Insights

Moments Targeted

- Third-order approximate solution
- Quarterly data for the Euro area (1992:1-2016:4)
- GMM

Variable	Data	Model	Variable	Data	Model
MEAN Loans/GDP	2.442	1.7374	STD Loan gr.	1.1965	0.7234
MEAN Loan spr.	1.2443	1.3084	STD Loan spr.	0.6828	0.8217
MEAN Firm def.	2.6469	2.0990	STD Firm def.	1.0989	2.1386
MEAN Bank def.	0.6646	0.5282	STD Bank gr.	0.8438	1.1753
MEAN ROE banks	6.4154	6.2137	STD ROE gr.	4.1273	2.9301
CORR (B & F def.)	0.6421	0.7396			

- Third-order approximate solution
- Quarterly data for the Euro area (1992:1-2016:4)
- GMM

Variable	Data	Model	Variable	Data	Model
MEAN GDP gr.	0.3301	0.3313	STD GDP gr.	0.6877	0.6222
MEAN Loans/GDP	2.442	1.7374	STD Loan gr.	1.1965	0.7234
MEAN Loan spr.	1.2443	1.3084	STD Loan spr.	0.6828	0.8217
MEAN Firm def.	2.6469	2.0990	STD Firm def.	1.0989	2.1386
MEAN Bank def.	0.6646	0.5282	STD Bank gr.	0.8438	1.1753
MEAN ROE banks	6.4154	6.2137	STD ROE gr.	4.1273	2.9301
CORR (B & F def.)	0.6421	0.7396	STD Inv. gr.	1.3908	2.0631

- Third-order approximate solution
- Quarterly data for the Euro area (1992:1-2016:4)

GMM

Variable	Data	Model	Variable	Data	Model
MEAN GDP gr.	0.3301	0.3313	STD GDP gr.	0.6877	0.6222
MEAN Loans/GDP	2.442	1.7374	STD Loan gr.	1.1965	0.7234
MEAN Loan spr.	1.2443	1.3084	STD Loan spr.	0.6828	0.8217
MEAN Firm def.	2.6469	2.0990	STD Firm def.	1.0989	2.1386
MEAN Bank def.	0.6646	0.5282	STD Bank gr.	0.8438	1.1753
MEAN ROE banks	6.4154	6.2137	STD ROE gr.	4.1273	2.9301
CORR (B & F def.)	0.6421	0.7396	STD Inv. gr.	1.3908	2.0631

- Third-order approximate solution
- Quarterly data for the Euro area (1992:1-2016:4)
- GMM

Variable	Data	Model	Variable	Data	Model
MEAN GDP gr.	0.3301	0.3313	STD GDP gr.	0.6877	0.6222
MEAN Loans/GDP	2.442	1.7374	STD Loan gr.	1.1965	0.7234
MEAN Firm def.	2.6469	2.0990	STD Firm def.	1.0989	2.1386
MEAN Bank def.	0.6646	0.5282	STD Bank def.	0.8438	1.1753
MEAN Loan spr.	1.2443	1.3084	STD Loan spr.	0.6828	0.8217
MEAN ROE banks	6.4154	6.2137	STD ROE gr.	4.1273	2.9301
CORR (B & F def.)	0.6421	0.7396	STD Inv. gr.	1.3908	2.0631

Implied Moments: 3 Defaults Regimes

	Frequency	GDP growth	Bank default	Firm default		
	Low Firm and Low Bank Default					
Data	0.844	0.0923	0.4346	2.3480		
Model	0.857	0.0392	0.196	1.4409		
High Firm and Low Bank Default						
Data	0.038	-0.0466	0.4033	4.8500		
Model	0.042	-0.0863	0.814	6.3371		
High Firm and High Bank Default						
Data	0.058	-0.5842	3.2294	4.6688		
Model	0.057	-0.4048	3.8718	7.6206		

High level of defaults is above 90th percentile.

based on 1.000.000 simulations.

	Frequency	GDP growth	Bank default	Firm default		
	Low Firm and Low Bank Default					
Data	0.844	0.0923	0.4346	2.3480		
Model	0.857	0.0392	0.196 1.440			
High Firm and Low Bank Default						
Data	0.038	-0.0466	0.4033	4.8500		
Model	0.042	-0.0863	0.814	6.3371		
High Firm and High Bank Default						
Data	0.058	-0.5842	3.2294	4.6688		
Model	0.057	-0.4048	3.8718	7.6206		

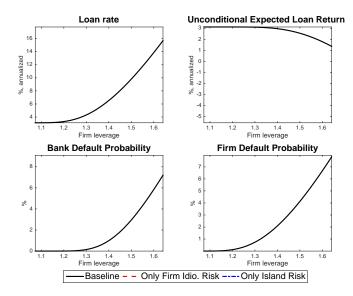
High level of defaults is above 90th percentile.

based on 1.000.000 simulations.

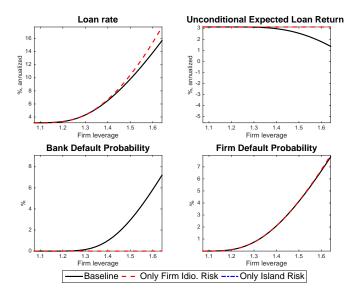
	Frequency	GDP growth	Bank default	Firm default		
	Low Firm and Low Bank Default					
Data	0.844	0.0923	0.4346	2.3480		
Model	0.857	0.0392	0.196	1.4409		
	High Firm and Low Bank Default					
Data	0.038	-0.0466	0.4033	4.8500		
Model	0.042	-0.0863	0.814	6.3371		
High Firm and High Bank Default						
Data	0.058	-0.5842	3.2294	4.6688		
Model	0.057	-0.4048	3.8718	7.6206		

High level of defaults is above 90th percentile.

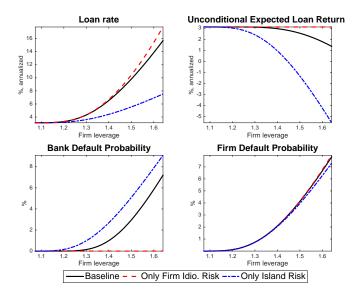
based on 1.000.000 simulations.

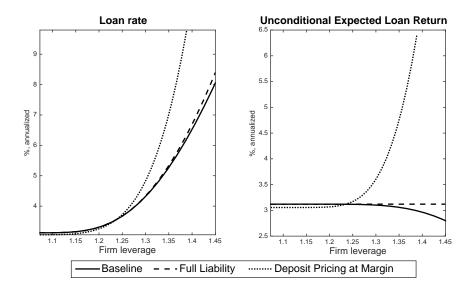

2 Mode

- B) Calibration and Model Fit
- 4 Bank Risk Taking
 - 5 Shocks to Diversifiable Risk
- 6 How important are island shocks?
- 7 ... Non Linearities?
- 8 ...Bank Leverage?
- 9 Policy Insights


Banks are the center stage of the transmission mechanism of our model

- bank risk taking
- Ø bank funding cost
- bank net worth


Bank Loan Pricing: diversifiable vs non-diversifiable Risk


Bank Loan Pricing: diversifiable vs non-diversifiable Risk

Bank Loan Pricing: diversifiable vs non-diversifiable Risk

Bank Loan Pricing: Limited Liability Bank Risk Pricing

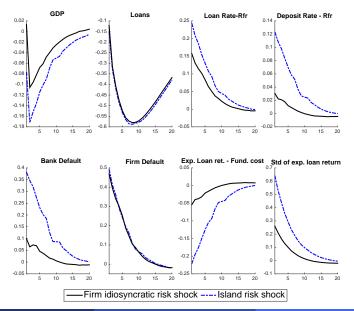
Banks that face **non-diversifiable borrowers risk**

- ① operate under limited liability
- ② in the absence of risk pricing at the margin
- -> 1+2: are prone to engage in risk taking!

₩

High Firm and Bank Default

Model

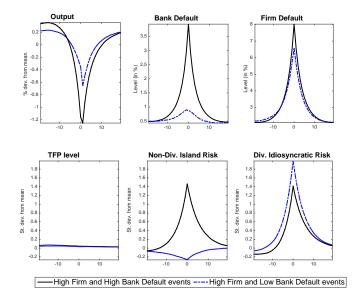

- 3 Calibration and Model Fit
- 4 Bank Risk Taking
- 5 Shocks to Diversifiable Risk
- 6 How important are island shocks?
- 7 ... Non Linearities?
- 8 ...Bank Leverage?
- 9 Policy Insights

Conditional on the same effect on aggregate borrowers riskness, a shock to **non-diversifiable risk**

- Increases bank risk taking and banks default...
- ...activates the bank funding cost channel
- and depresses economic activity

by more than a shock to diversifiable risk!

Shocks to diversifiable and undiversifiable risk



Model

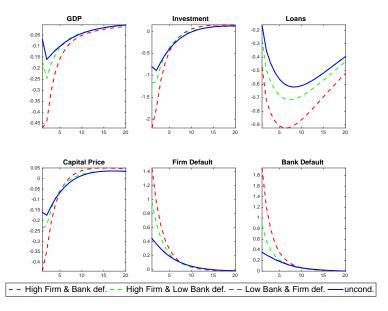
- 3 Calibration and Model Fit
- 4 Bank Risk Taking
- 5 Shocks to Diversifiable Risk
- 6 How important are island shocks?
 - 7 ... Non Linearities?
 - 8 ...Bank Leverage?
 - Policy Insights

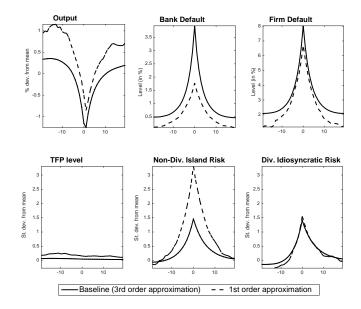
...instead other regimes can be produced without it!

Path to Crisis: 3-order

- **High bank leverage** amplifies the transmission of non-diversifiable risk
- **Non-linear** behaviour of bank returns and loan pricing (3 order approx)
 - Conditional on High Firms and Banks defaults the amplification of non-diversifiable risk shocks is strongly amplified (more than 3 times larger drop in GDP)
 - First-order approximate solution fails to match periods of high bank defaults (also with much larger undiversifiable shocks)

- **High bank leverage** amplifies the transmission of non-diversifiable risk
- **Non-linear** behaviour of bank returns and loan pricing (3 order approx)
 - Conditional on High Firms and Banks defaults the amplification of non-diversifiable risk shocks is strongly amplified (more than 3 times larger drop in GDP)
 - First-order approximate solution fails to match periods of high bank defaults (also with much larger undiversifiable shocks)

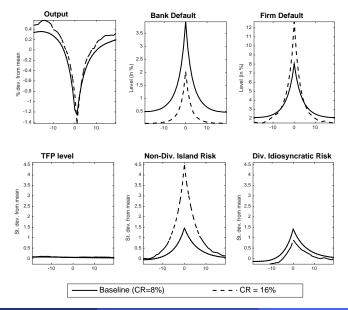

- **High bank leverage** amplifies the transmission of non-diversifiable risk
- **Non-linear** behaviour of bank returns and loan pricing (3 order approx)
 - Conditional on High Firms and Banks defaults the amplification of non-diversifiable risk shocks is strongly amplified (more than 3 times larger drop in GDP)
 - First-order approximate solution fails to match periods of high bank defaults (also with much larger undiversifiable shocks)


Model

- 3 Calibration and Model Fit
- 4 Bank Risk Taking
- 5 Shocks to Diversifiable Risk
- 6 How important are island shocks?
 - 7 ... Non Linearities?
- 8 ...Bank Leverage?
- 9 Policy Insights

Conditional IRFs to Island Risk Shock

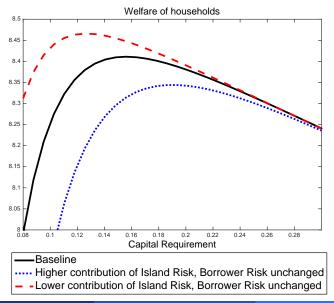
Path to Crisis: 1st order



Model

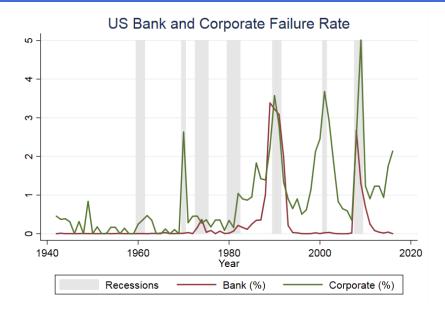
- 3 Calibration and Model Fit
- 4 Bank Risk Taking
- 5 Shocks to Diversifiable Risk
- 6 How important are island shocks?
- **7** ...Non Linearities?
- 8 ...Bank Leverage?
 - Policy Insights

Paths to crises and Bank Leverage

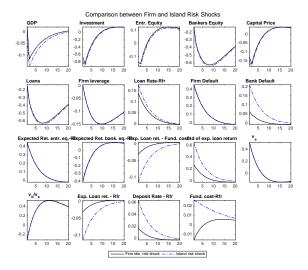


Model

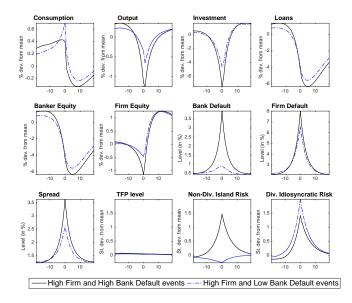
- 3 Calibration and Model Fit
- 4 Bank Risk Taking
- 5 Shocks to Diversifiable Risk
- 6 How important are island shocks?
- 7 ... Non Linearities?
- 8 ...Bank Leverage?
- Policy Insights


Optimal Capital Requirement: Welfare

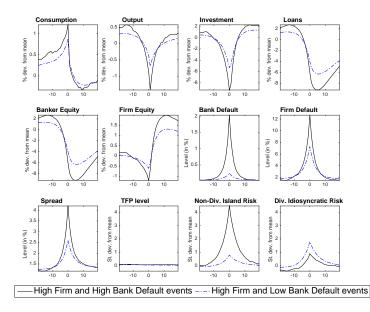
- Bank risk taking key amplification channel of borrowers risk
- Shocks to **non-divesifiable risk** play an important role in generating of *extreme financial distress* (high firms and banks defaults + large GDP drops) when **banks are highly leveraged**
- Non-linearities are key!
- Getting the **correlation of defaults** right (underlying nature of borrowers risk) it is of first order importance when drawing conclusions on the optimal level of capital requirements!

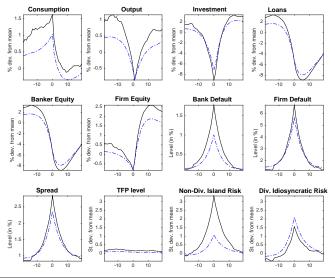

BACKGROUND SLIDES

Paths to crises and Bank Leverage

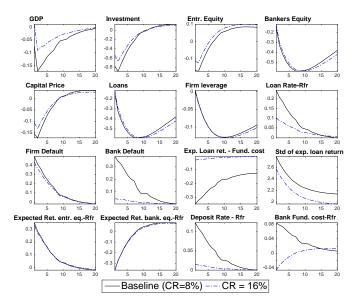


Parameter	Value	
Entrepreneurs' endowment	χ_{e}	0.5514
Bankers' endowment	χь	0.5233
Mean std of firm idio. shock	$\bar{\sigma}_{\omega_i}$	0.4425
Mean std of island idio. shock	$\bar{\sigma}_{\omega_i}$	0.3131
Std TFP shock	σ_{A}	0.0053
Persistence TFP shock	$ ho_{A}$	0.9868
Std firm idio. risk shock	σ_i	0.0789
Persistence firm idio. risk shock	$ ho_{\sigma_i}$	0.8322
Std island idio. risk shock	σ_j	0.084
Persistence island idio. risk shock	ρ_{σ_i}	0.8401
Mean productivity growth	Ī	1.0965
Capital adjustment cost	ψ_{k}	4.9902


IRFs: 1st order


Path to Crisis: 3-order

Paths to crises and Bank Leverage



Path to Crisis: 1st order

-High Firm and High Bank Default events ---- High Firm and Low Bank Default events

Island idio. risk shock and Bank Leverage

	Moment	Baseline Model	Model	Model	Data		
		$(\phi = .08)$	$(\phi=.105)$	$(\phi = .16)$			
	L	ow Firm and Low	Bank Default				
Mean	GDP growth	0.0392	0.0273	0.0196	0.0923		
Mean	Bank default	0.196	0.0688	0.0067	0.4346		
Mean	Firm default	1.4409	1.3849	1.2584	2.3480		
	High Firm and Low Bank Default						
Mean	GDP growth	-0.0863	-0.103	-0.0805	-0.0466		
Mean	Bank default	0.814	0.326	0.0491	0.4033		
Mean	Firm default	6.3371	6.2944	6.0243	4.8500		
High Firm and High Bank Default							
Mean	GDP growth	-0.4048	-0.2396	-0.1628	-0.5842		
Mean	Bank default	3.8718	1.9106	0.4344	3.2294		
Mean	Firm default	7.6206	7.4513	7.0123	4.6688		

	Moment	Baseline	1st order app.	Data	
Low Firm and Low Bank Default					
Mean	GDP growth	0.0392	0.0213	0.0923	
Mean	Bank default	0.196	0.1034	0.4346	
Mean	Firm default	1.4409	1.3458	2.3480	
High Firm and Low Bank Default					
Mean	GDP growth	-0.0863	-0.102	-0.0466	
Mean	Bank default	0.814	0.5548	0.4033	
Mean	Firm default	6.3371	4.4265	4.8500	
High Firm and High Bank Default					
Mean	GDP growth	-0.4048	-0.1538	-0.5842	
Mean	Bank default	3.8718	0.997	3.2294	
Mean	Firm default	7.6206	4.8921	4.6688	