A Macroeconomic Model with Financially Constrained Producers and Intermediaries

Vadim Elenev¹ Tim Landvoigt² Stijn Van Nieuwerburgh³

¹JHU Carey

²Wharton, NBER, and CEPR

³Columbia GSB, NBER, and CEPR

ECB Research Workshop, December 17, 2018

Motivation

- Great Recession underscored importance of financial sector for broader economy
 - Bank insolvencies and government bailouts
 - High credit spreads and low real interest rates
 - Disruptions in financial intermediation fed back on the real economy
 - Investment, output, and consumption all fell substantially and persistently

Motivation

- Great Recession underscored importance of financial sector for broader economy
- Triggered debate on bank regulation, with majority of work advocating for much higher bank capital requirements
 - ► The Minneapolis Plan (Dec 2017): 23.5% common equity/RW assets, or 15% equity/assets
 - Admati & Hellwig (2013): 25% equity/assets
 - "For society, there are in fact significant benefits and essentially no cost from much higher equity requirements."

Motivation

- Great Recession underscored importance of financial sector for broader economy
- Triggered debate on bank regulation, with majority of work advocating for much higher bank capital requirements
- Quantitatively realistic model to assess costs and benefits still lacking
 - BIS: "the report should not be viewed as indicating a particular calibration level" and "analysis of the macroeconomic benefits and costs is subject to considerable uncertainty"
 - ▶ Requires explicit role for intermediary sector ⇒ understand importance of intermediation frictions
 - Nonlinear risk dynamics ⇒ realistic asset prices

Main Contributions

Model

- Separate balance sheets for producers and intermediaries
- ▶ Both face financial constraints, can default on their debt
- ▶ Deposit insurance (TBTF guarantee) creates scope for bank regulation

Main Contributions

Model

- Separate balance sheets for producers and intermediaries
- Both face financial constraints, can default on their debt
- ▶ Deposit insurance (TBTF guarantee) creates scope for bank regulation
- Quantification: calibrated model
 - has productivity shocks as only source of aggregate risk
 - matches credit spread for realistic amount of credit risk
 - generates infrequent deep financial recessions
 - intermediation frictions account for severity of fin. recessions

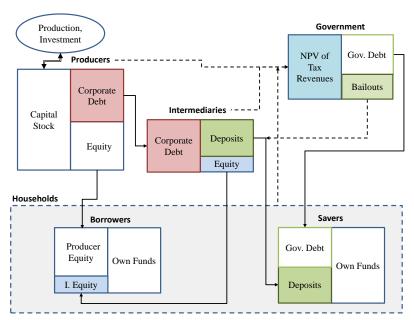
Main Contributions

Model

- Separate balance sheets for producers and intermediaries
- ▶ Both face financial constraints, can default on their debt
- Deposit insurance (TBTF guarantee) creates scope for bank regulation

Quantification: calibrated model

- has productivity shocks as only source of aggregate risk
- matches credit spread for realistic amount of credit risk
- generates infrequent deep financial recessions
- intermediation frictions account for severity of fin. recessions


Macroprudential policy experiment for bank capital requirement

- ► Higher bank capital requirements benefit equity holders of banks and non-financial firms, but hurt savers: perverse incidence
- Tighter policy yields modest aggregate welfare gain
- Trade-off between financial fragility and size of economy
- Counter-cyclical capital requirement Pareto improving

Related Literature

- Asset pricing models with financial intermediaries:
 - Brunnermeier & Sannikov 14, He & Krishnamurthy 12, 13, 15,
 Gârleanu & Pedersen 11, Gertler and Karadi 11, Adrian & Boyarchenko 12, Savov & Moreira 16
 - Contribution: split banks and borrowers, add bank bankruptcies, add government
- Quantitative macro models with incomplete markets and macro-prudential policy evaluation
 - Lorenzoni 08, Mendoza 10, Korinek 12, Bianchi and Mendoza 13, 15, and Guerrieri and Lorenzoni 15: pecuniary externalities
 - ► Farhi and Werning 16: demand externalities.
 - ► Contribution: financial sector with bank default & deposit insurance
- Bank capital regulation:
 - Maddaloni and Peydro 11, Admati and Hellwig 14, Begenau 15, Begenau and Landvoigt 16
 - ► Contribution: quantifiable framework, interaction with guarantees

Model Overview

Borrower-Entrepreneurs

- Individual entrepreneurs produce $Y_{i,t} = \omega_{i,t} Z_t^A K_t^{1-\alpha} L_t^{\alpha}$
 - 1. Aggregate TFP shock: $\log(Z_{t+1}^A) = \rho_A \log(Z_t^A) + \sigma_A \epsilon_{t+1}$
 - 2. Idiosyncratic TFP shock $\omega_{i,t}$: $\sigma_{\omega,t} = \text{Var}(\omega_{i,t})^{1/2}$ time-varying \Rightarrow uncertainty shock second source of aggregate risk
- Entrepreneurs obtain corporate loans/bonds to finance investment
 - lacktriangle Corporate loans/bonds are long-term (perpetuity with decay δ)
 - **Each** entrepreneur defaults on debt if profit $\pi(\omega_{i,t}) < \underline{\pi}$
 - * Model of liquidity default, not strategic default
 - ★ Default triggers liquidation: bank seizes bankrupt firm and unwinds it
 - ***** Aggregate implication: fraction of entrepreneurs with $\omega_{i,t} < \omega_t^*$ defaults
 - ► Family of entrepreneurs provides perfect consumption insurance, but each entrepreneur manages debt repayment/default

Borrower-Entrepreneurs

- Family of entrepreneurs decides jointly on
 - consumption
 - labor demand (inelastically supplied by HH)
 - investment (subject to convex adjustment cost)
 - ▶ total corporate debt
- Debt enjoys a tax shield
- Borrower leverage limited through two forces
 - 1. Costly bankruptcies: borrower-entrepreneurs internalize effect of time-t choices on next period default rate $D(\omega_{t+1}^*)$
 - 2. Hard borrowing constraint with max LTV Φ (rarely binding):

FV of debt $\leq \Phi$ (MV of depreciated capital of non-defaulting firms)

▶ Complete Problem

 Banks are firms owned by borrower-entrepreneurs, pay dividends subject to convex equity adjustment cost

- Banks are firms owned by borrower-entrepreneurs, pay dividends subject to convex equity adjustment cost
- Portfolio choice
 - 1. New corporate loans
 - ★ Receive coupon payment on performing loans
 - ★ Recover assets and earnings though liquidation of defaulting firms
 - * Fraction ζ of bankrupt firms' assets and output lost to banks, fraction $\eta \times \zeta$ is DWL to society
 - 2. Deposits for next period

- Banks are firms owned by borrower-entrepreneurs, pay dividends subject to convex equity adjustment cost
- Portfolio choice
 - 1. New corporate loans
 - 2. Deposits for next period
- Enjoy limited liability & deposit insurance (creditor bailout)
 - Receive idiosyncratic profit shocks & optimally default
 - Government assumes all assets and liabilities of defaulting bank
 - Fraction ζ of bankrupt banks' assets lost to government, fraction $\eta \times \zeta$ is DWL to society

- Banks are firms owned by borrower-entrepreneurs, pay dividends subject to convex equity adjustment cost
- Portfolio choice
 - 1. New corporate loans
 - 2. Deposits for next period
- Enjoy limited liability & deposit insurance (creditor bailout)
- Subject to regulatory bank capital constraint:

deposits $\leq \xi$ (MV of corporate loans)

ullet Pay for deposit insurance (κ), taxed on net interest income, tax shield

Savers and Government

Savers

- More patient than borrowers
- Solve dynamic consumption-savings problem
- Only invest in risk free bonds (no short sales)
- Government follows passive tax and spending rule
 - Revenues T_t: taxes on labor income, corporate and intermediary profits, and financial income, deposit insurance fees
 - **Expenditures** G_t : discretionary (GOV_t) , transfer, intermediary bailouts
 - Budget constraint (govt. debt policy)

$$T_t + q_t^f B_t^G = B_{t-1}^G + G_t$$

- ► Tax rate adjusts at the extremes to ensure B^G stays bounded
- ► Tax rate, discr. and transfer spending are cyclical

Competitive Equilibrium

- Given prices and government policy parameters, both household types and intermediary firms maximize their value functions subject to their budget and borrowing constraints
- Markets clear
 - lacktriangle Risky, long-term corporate loan/bond market (o corporate loan rate)
 - ightharpoonup Riskfree bond market: deposits + govmt debt (\rightarrow riskfree rate)
 - ► Capital market (→ Tobin's q)
 - ightharpoonup Labor market for each of two types of households (ightarrow wages)
- Resource constraint:

$$Y_t = CONS_t + GOV_t + INV_t + DWL_t$$

State Variables and Solution Method

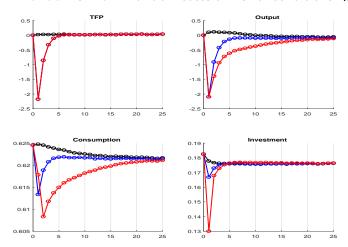
- Exogenous states
 - ▶ Persistent aggregate TFP Z_t^a , discretized
 - ▶ Dispersion of idiosyncr. productivity (uncertainty) $\sigma_{\omega,t}$, discretized
- Five endogenous states: capital, corp. debt, govt. debt, deposits, intermediary wealth
 - Wealth distribution matters for asset prices due to incomplete markets
 - ▶ Intermediary wealth is a key state variable, as is borrower wealth
- Nonlinear global solution method policy time iteration
 - Two collateral constraints occasionally binding
 - Changing wealth distribution causes time-variation in risk premia
 - ▶ Non-linear dynamics when intermediaries are constrained

- Key parameters
 - 1. Pop. and inc. shares for stockholders (=borrower-entrepreneurs) and non-stockholders (=savers) from SCF

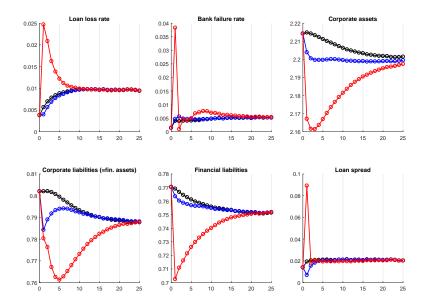
- Key parameters
 - Pop. and inc. shares for stockholders (=borrower-entrepreneurs) and non-stockholders (=savers) from SCF
 - 2. Exogenous shocks: both in real economy
 - ★ TFP vol: set to 2% to match GDP vol of 2.4%
 - * Uncertainty: set TS vol of $\sigma_{\omega,t}$ based on firm-level TFP evidence (Bloom et al. 12)

- Key parameters
 - 1. Pop. and inc. shares for stockholders (=borrower-entrepreneurs) and non-stockholders (=savers) from SCF
 - 2. Exogenous shocks: both in real economy
 - ★ TFP vol: set to 2% to match GDP vol of 2.4%
 - * Uncertainty: set TS vol of $\sigma_{\omega,t}$ based on firm-level TFP evidence (Bloom et al. 12)
 - 3. Corporate debt: realistic calibration of credit risk
 - ★ Default threshold π : non-fin leverage of 37%
 - ★ TS mean of $\sigma_{\omega,t}$: corporate default rate of 2.2%
 - ★ LGD ζ : severity rates on corporate debt of 44%

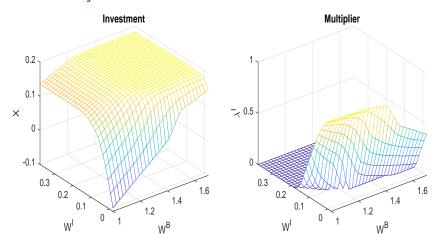
- Key parameters
 - 1. Pop. and inc. shares for stockholders (=borrower-entrepreneurs) and non-stockholders (=savers) from SCF
 - 2. Exogenous shocks: both in real economy
 - ★ TFP vol: set to 2% to match GDP vol of 2.4%
 - * Uncertainty: set TS vol of $\sigma_{\omega,t}$ based on firm-level TFP evidence (Bloom et al. 12)
 - 3. Corporate debt: realistic calibration of credit risk
 - ★ Default threshold π : non-fin leverage of 37%
 - ★ TS mean of $\sigma_{\omega,t}$: corporate default rate of 2.2%
 - ★ LGD ζ : severity rates on corporate debt of 44%
 - 4. Bank equity issuance cost to match credit spread of 2.05%



- Key parameters
 - 1. Pop. and inc. shares for stockholders (=borrower-entrepreneurs) and non-stockholders (=savers) from SCF
 - 2. Exogenous shocks: both in real economy
 - ★ TFP vol: set to 2% to match GDP vol of 2.4%
 - * Uncertainty: set TS vol of $\sigma_{\omega,t}$ based on firm-level TFP evidence (Bloom et al. 12)
 - 3. Corporate debt: realistic calibration of credit risk
 - ★ Default threshold $\underline{\pi}$: non-fin leverage of 37%
 - ★ TS mean of $\sigma_{\omega,t}$: corporate default rate of 2.2%
 - ★ LGD ζ : severity rates on corporate debt of 44%
 - 4. Bank equity issuance cost to match credit spread of 2.05%
 - 5. Preferences: log utility for both HH (robust to EZ utility)
 - ★ $\beta_B = 0.95$: K/Y = 2.24
 - $\star \beta_S = 0.982$: mean r^f of 2.2%

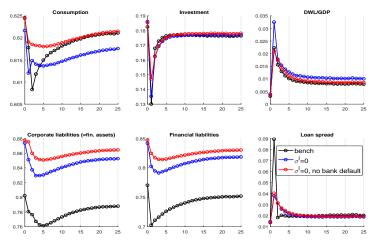


Results: Macro Quantities


- Period 1: One std shock down in TFP + uncertainty shock (high σ_{ω}) or not (low σ_{ω})
- Financial vs. non-financial recession vs. unconditional path

Results: Prices and Balance Sheets

Intermediary Constraint and Producer Investment



- "Double Accelerator": investment plummets when firm has little equity and intermediary becomes constrained
- Feedback: low profits ⇒ loan losses for bank ⇒ reduced credit supply
 ⇒ less investment ⇒ low profits next period

Key Frictions

- Debt finance in model subject to frictions
 - Firms
 - ★ Debt funding cheap due to higher patience of savers
 - ★ But costly liquidity-driven bankruptcies limit benefit
 - ★ Default waves during times of high XS dispersion of productivity
 - 2 Banks
 - ★ Moral hazard due to strategic default option and deposit insurance
 - Equity adjustment cost: expensive to recapitalize bank after losses, effectively like risk aversion
- How important are intermediation frictions (point 2) for financial recessions?

Importance of Intermediation Frictions

- Turning off
 - equity adjustment cost $(\sigma' = 0)$
 - and limited liability for banks
- leads to larger fin. sector, less severe fin. recessions

• Bank leverage declines with tighter capital requirement

	Bench	Tighter cap. requ.		Looser	
	$\xi = 94\%$	$\xi = 85\%$ $\xi = 90\%$		$\xi = 97\%$	
	Financial sector size & profitability				
Fin leverage	93.3%	83.6%	88.9%	97.0%	
Fraction intermed. constr. binds	61.3%	43.5%	60.3%	96.0%	
EER on loans	1.09%	1.70%	1.44%	0.62%	
Corp leverage	35.8%	29.5%	32.4%	38.9%	
	Financial fragility				
Loss rate	0.96%	-44.8%	-25.0%	+18.8%	
Bank failure rate	0.54%	-100.0%	-99.0%	+851.0%	
DWL/GDP	0.008	-31.23%	-20.89%	+124.88%	
		Size of the	e Economy		
GDP	0.978	-1.1%	-0.6%	+0.9%	
Capital stock	2.199	-3.8%	-2.2%	+3.0%	
	Volatility				
Investment gr	29.56%	+35.2%	+16.4%	-5.5%	
Aggr. consumption gr	2.17%	+27.7%	+16.6%	+58.5%	

• Tighter constraint binding less often as banks become more cautious

	Bench	n Tighter cap. requ.		Looser
	$\xi = 94\%$	$\xi = 85\%$ $\xi = 90\%$		$\xi = 97\%$
	Financial sector size & profitability			
Fin leverage	93.3%	83.6%	88.9%	97.0%
Fraction intermed. constr. binds	61.3%	43.5%	60.3%	96.0%
EER on loans	1.09%	1.70%	1.44%	0.62%
Corp leverage	35.8%	29.5%	32.4%	38.9%
	Financial fragility			
Loss rate	0.96%	-44.8%	-25.0%	+18.8%
Bank failure rate	0.54%	-100.0%	-99.0%	+851.0%
DWL/GDP	0.008	-31.23%	-20.89%	+124.88%
		Size of the	e Economy	
GDP	0.978	-1.1%	-0.6%	+0.9%
Capital stock	2.199	-3.8%	-2.2%	+3.0%
	Volatility			
Investment gr	29.56%	+35.2%	+16.4%	-5.5%
Aggr. consumption gr	2.17%	+27.7%	+16.6%	+58.5%

• EER on corporate loans rises, corporate leverage declines

	Bench	Tighter cap. requ. $\xi = 85\%$ $\xi = 90\%$		Looser	
	$\xi = 94\%$			$\xi = 97\%$	
	Financial sector size & profitability				
Fin leverage	93.3%	83.6%	88.9%	97.0%	
Fraction intermed. constr. binds	61.3%	43.5%	60.3%	96.0%	
EER on loans	1.09%	1.70%	1.44%	0.62%	
Corp leverage	35.8%	29.5%	32.4%	38.9%	
	Financial fragility				
Loss rate	0.96%	-44.8%	-25.0%	+18.8%	
Bank failure rate	0.54%	-100.0%	-99.0%	+851.0%	
DWL/GDP	0.008	-31.23%	-20.89%	+124.88%	
	Size of the Economy				
GDP	0.978	-1.1%	-0.6%	+0.9%	
Capital stock	2.199	-3.8%	-2.2%	+3.0%	
	Volatility				
Investment gr	29.56%	+35.2%	+16.4%	-5.5%	
Aggr. consumption gr	2.17% +27.7% +16.6%		+58.5%		

• Rise in EER despite large drop in loss rate on loans

	Bench	Tighter cap. requ.		Looser	
	$\xi = 94\%$	$\xi=85\%$	$\xi=90\%$	$\xi = 97\%$	
	Financial sector size & profitability				
Fin leverage	93.3%	83.6%	88.9%	97.0%	
Fraction intermed. constr. binds	61.3%	43.5%	60.3%	96.0%	
EER on loans	1.09%	1.70%	1.44%	0.62%	
Corp leverage	35.8%	29.5%	32.4%	38.9%	
	Financial fragility				
Loss rate	0.96%	-44.8%	-25.0%	+18.8%	
Bank failure rate	0.54%	-100.0%	-99.0%	+851.0%	
DWL/GDP	0.008	-31.23%	-20.89%	+124.88%	
	Size of the Economy				
GDP	0.978	-1.1%	-0.6%	+0.9%	
Capital stock	2.199	-3.8%	-2.2%	+3.0%	
	Volatility				
Investment gr	29.56%	+35.2%	+16.4%	-5.5%	
Aggr. consumption gr	2.17%	+27.7%	+16.6%	+58.5%	

• Bank failure rate zero at $\xi = 85\%$

	Bench	Tighter cap. requ.		Looser
	$\xi = 94\%$	$\xi=85\%$	$\xi=90\%$	$\xi = 97\%$
	Financial sector size & profitability			
Fin leverage	93.3%	83.6%	88.9%	97.0%
Fraction intermed. constr. binds	61.3%	43.5%	60.3%	96.0%
EER on loans	1.09%	1.70%	1.44%	0.62%
Corp leverage	35.8%	29.5% 32.4%		38.9%
	Financial fragility			
Loss rate	0.96%	-44.8%	-25.0%	+18.8%
Bank failure rate	0.54%	-100.0%	-99.0%	+851.0%
DWL/GDP	0.008	-31.23%	-20.89%	+124.88%
		Size of the	e Economy	
GDP	0.978	-1.1%	-0.6%	+0.9%
Capital stock	2.199	-3.8%	-2.2%	+3.0%
	Volatility			
Investment gr	29.56%	+35.2%	+16.4%	-5.5%
Aggr. consumption gr	2.17%	+27.7%	+16.6%	+58.5%

• Economy shrinks as cost of capital for firms rises

	Bench	Tighter cap. requ.		Looser	
	$\xi = 94\%$	$\xi=85\%$	$\xi=90\%$	$\xi = 97\%$	
	Financial sector size & profitability				
Fin leverage	93.3%	83.6%	88.9%	97.0%	
Fraction intermed. constr. binds	61.3%	43.5%	60.3%	96.0%	
EER on loans	1.09%	1.70%	1.44%	0.62%	
Corp leverage	35.8%	29.5%	32.4%	38.9%	
	Financial fragility				
Loss rate	0.96%	-44.8%	-25.0%	+18.8%	
Bank failure rate	0.54%	-100.0%	-99.0%	+851.0%	
DWL/GDP	0.008	-31.23%	-20.89%	+124.88%	
	Size of the Economy				
GDP	0.978	-1.1%	-0.6%	+0.9%	
Capital stock	2.199	-3.8%	-2.2%	+3.0%	
	Volatility				
Investment gr	29.56%	+35.2%	+16.4%	-5.5%	
Aggr. consumption gr	2.17%	+27.7%	+16.6%	+58.5%	

• Willingness of banks to absorb aggregate risk decreases

	Bench	Tighter cap. requ.		Looser	
	$\xi = 94\%$	$\xi=85\%$	$\xi=90\%$	$\xi = 97\%$	
	Financial sector size & profitability				
Fin leverage	93.3%	83.6%	88.9%	97.0%	
Fraction intermed. constr. binds	61.3%	43.5%	60.3%	96.0%	
EER on loans	1.09%	1.70%	1.44%	0.62%	
Corp leverage	35.8%	29.5%	32.4%	38.9%	
	Financial fragility				
Loss rate	0.96%	-44.8%	-25.0%	+18.8%	
Bank failure rate	0.54%	-100.0%	-99.0%	+851.0%	
DWL/GDP	0.008	-31.23%	-20.89%	+124.88%	
	Size of the Economy				
GDP	0.978	-1.1%	-0.6%	+0.9%	
Capital stock	2.199	-3.8%	-2.2%	+3.0%	
	Volatility				
Investment gr	29.56%	+35.2%	+16.4%	-5.5%	
Aggr. consumption gr	2.17%	+27.7%	+16.6%	+58.5%	

Bank Profitability and Tighter Regulation

Bank AROE

Bank assets × EER on loans / Bank equity capital

 EER on loans ↑, bank assets ↓, equity capital ↑, ⇒ AROE declines as financial sector shrinks

	Bench	Tighter c	Looser	
	$\xi = 94\%$	$\xi = 85\%$ $\xi = 90\%$		$\xi = 97\%$
Accounting ROE	15.35	-36.66%	-20.90%	+55.31%
Market ROE	7.73	-2.55%	-1.53%	+7.94%
WACC	2.34	+25.60%	+15.64%	-16.88%
Franchise value	33.9	18.3	33.8	73.7

Bank Profitability and Tighter Regulation

- Banking becomes less risky when forced to hold more capital ⇒
 MROE = required return on equity declines
- Consistent with argument of Admati et al (2013)

	Bench	Tighter cap. requ.		Looser
	$\xi = 94\%$	$\xi = 85\%$	$\xi = 90\%$	$\xi = 97\%$
Accounting ROE	15.35	-36.66%	-20.90%	+55.31%
Market ROE	7.73	-2.55%	-1.53%	+7.94%
WACC	2.34	+25.60%	+15.64%	-16.88%
Franchise value	33.9	18.3	33.8	73.7

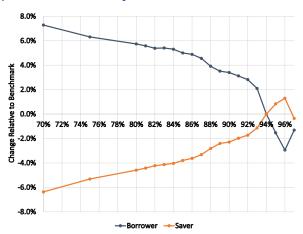
Bank Profitability and Tighter Regulation

But WACC

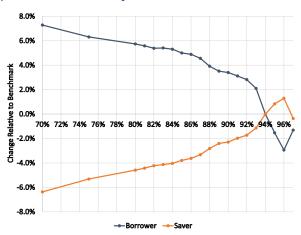
$$\mathsf{MROE} \times \mathsf{Leverage} + r^f \times (1 - \mathsf{Leverage})$$

rises sharply despite drop in MROE as bank is forced to shift away from cheap deposits

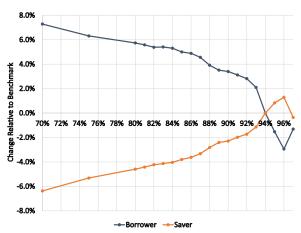
-	Bench	Tighter cap. requ.		Looser
	$\xi = 94\%$	$\xi = 85\%$	$\xi=90\%$	$\xi = 97\%$
Accounting ROE	15.35	-36.66%	-20.90%	+55.31%
Market ROE	7.73	-2.55%	-1.53%	+7.94%
WACC	2.34	+25.60%	+15.64%	-16.88%
Franchise value	33.9	18.3	33.8	73.7


Bank Profitability and Tighter Regulation

Franchise value


$$\frac{\text{Market value of equity for shareholders}}{\text{Bank equity capital}} - 1$$

• Net result is decline in franchise value with tighter regulation


	Bench Tighter cap. requ.		ap. requ.	Looser
	$\xi = 94\%$	$\xi=85\%$	$\xi=90\%$	$\xi = 97\%$
Accounting ROE	15.35	-36.66%	-20.90%	+55.31%
Market ROE	7.73	-2.55%	-1.53%	+7.94%
WACC	2.34	+25.60%	+15.64%	-16.88%
Franchise value	33.9	18.3	33.8	73.7

- Tighter regulation shifts wealth from savers to entrepreneurs
 - ► As debt finance becomes more expensive, firms shift to equity finance
 - lacktriangle More of firm profits "owned" by B \Rightarrow their consumption increases

- Tighter regulation shifts wealth from savers to entrepreneurs
- Aggregate welfare
 - **1** Population weighted ex-post welfare: $\xi_{opt} = 91\%$
 - ② NPV of compensating transfer scheme: $\xi_{opt} = 96\%$

- Tighter regulation shifts wealth from savers to entrepreneurs
- Aggregate welfare $\xi_{opt} \in \{91\%, 96\%\}$
- Current capital requirement close to optimal Both measures

Macro-prudential Policy: Pro-cyclical Cap Regs

- \bullet Set $\xi=93\%$ when uncertainty is low, $\xi=95\%$ when high
 - ► Reduces macroeconomic volatility
 - Largest Pareto improvement

- Calibrated macro-economic model with financial intermediaries
 - banks who extend long-term defaultable loans to firms
 - and raise deposits from risk averse savers
 - both are subject to leverage restrictions
 - rich set of fiscal policy rules, including deposit insurance

- Calibrated macro-economic model with financial intermediaries
- Unconditional macro and asset pricing moments are realistic

- Calibrated macro-economic model with financial intermediaries
- Unconditional macro and asset pricing moments are realistic
- Model generates financial crises where GDP and investment fall considerably and credit spreads are high

- Calibrated macro-economic model with financial intermediaries
- Unconditional macro and asset pricing moments are realistic
- Model generates financial crises where GDP and investment fall considerably and credit spreads are high
- Use model to evaluate quantitatively effects of macro-prudential policy
 - Intermediary leverage constraint: trade-off between size of economy and financial fragility
 - ▶ Large redistributional effects that depend on policy instrument

Borrower-Entrepreneurs: Complete Problem

▶ Back

$$\begin{split} \hat{V}^{B}(\hat{K}_{t}^{B}, \hat{A}_{t}^{B}, \mathcal{S}_{t}^{B}) &= \max_{\{\hat{C}_{t}^{B}, \hat{K}_{t+1}^{B}, \hat{X}_{t}, \hat{A}_{t+1}^{B}, \mathcal{L}_{t}^{j}\}} \left\{ (1 - \beta_{B}) \left(\hat{C}_{t}^{B} \right)^{1 - 1/\nu} + \right. \\ &+ \beta_{B} \mathsf{E}_{t} \left[\left(\mathsf{e}^{g_{t+1}} \tilde{V}^{B} (\mathsf{e}^{-g_{t+1}} \hat{K}_{t+1}^{B}, \mathsf{e}^{-g_{t+1}} \hat{A}_{t+1}^{B}, \mathcal{S}_{t+1}^{B}) \right)^{1 - \sigma_{B}} \right]^{\frac{1 - 1/\nu}{1 - \sigma_{B}}} \end{split}$$

subject to

$$\begin{split} \hat{C}_{t}^{B} &= (1 - \tau_{\Pi}^{I}) Z_{K}(\omega_{t}^{*}) (\hat{K}_{t}^{B})^{1 - \alpha} L_{t}^{\alpha} + (1 - \tau_{t}^{B}) \hat{w}_{t}^{B} \bar{L}^{B} + \hat{G}_{t}^{T,B} \\ &+ p_{t} [\hat{X}_{t} + Z_{A}(\omega_{t}^{*}) (1 - (1 - \tau_{\Pi}^{B}) \delta_{K}) \hat{K}_{t}^{B}] \\ &+ q_{t}^{m} \hat{A}_{t+1}^{B} - Z_{A}(\omega_{t}^{*}) \hat{A}_{t}^{B} (1 - (1 - \theta) \tau_{\Pi}^{B} + \delta q_{t}^{m}) \\ &- p_{t} \hat{K}_{t+1}^{B} - \hat{X}_{t} - \Psi(\hat{X}_{t}, \hat{K}_{t}^{B}) - (1 - \tau_{\Pi}^{I}) Z_{A}(\omega_{t}^{*}) \sum_{j=B,S} \hat{w}_{t}^{j} L_{t}^{j} + D_{t}^{I} \\ F\hat{A}_{t+1}^{B} &\leq \Phi p_{t} Z_{A}(\omega_{t}^{*}) \hat{K}_{t}^{B} \\ \mathcal{S}_{t+1}^{B} &= h(\mathcal{S}_{t}^{B}) \end{split}$$

Intermediaries: Complete Problem

▶ Back

$$V^{I}(W_{t}^{I}, \mathcal{S}_{t}^{I}) = \max_{d_{t}^{I}, B_{t}^{I}, A_{t+1}^{I}} d_{t}^{I} + \mathsf{E}_{t} \left[\mathcal{M}_{t,t+1}^{B} \mathit{max} \left\{ V_{t+1}^{I}(W_{t+1}^{I}, \mathcal{S}_{t+1}^{I}) - \epsilon_{t+1}^{I}, 0 \right\} \right]$$

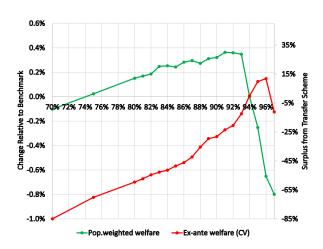
subject to:

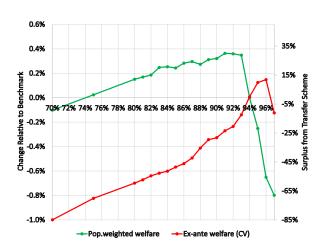
$$\begin{split} & \mathcal{W}_{t}^{I} \geq d_{t}^{I} + \Sigma(d_{t}^{I}) + q_{t}^{m} A_{t+1}^{I} + (q_{t}^{f} + \mathbf{I}_{\{B_{t}^{I} < 0\}} \kappa) B_{t}^{I} + \tau_{\Pi}^{I} \Pi_{t}^{I}, \\ & \mathcal{W}_{t}^{I} = \Omega_{A}(\omega_{t}^{*}) \left(1 + \delta q_{t}^{m}\right) A_{t}^{I} + M_{t} + B_{t-1}^{I}, \\ & - q_{t}^{f} B_{t}^{I} \leq \xi q_{t}^{m} A_{t+1}^{I}, \\ & A_{t+1}^{I} \geq 0, \\ & \mathcal{S}_{t+1}^{I} = h(\mathcal{S}_{t}^{I}). \end{split}$$

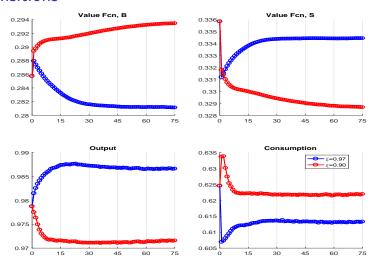

with payoff on defaulted bonds:

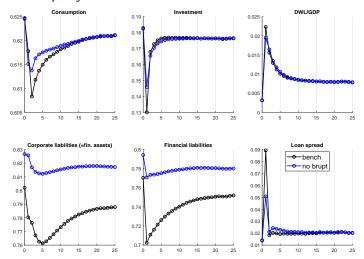
$$\begin{array}{lcl} \mathcal{M}_t & = & (1-\zeta)\left[(1-\Omega_A(\omega_t^*))(1-\delta_K)p_tK_t^B + (1-\Omega_K(\omega_t^*))Z_t^A(K_t^B)^{1-\alpha}L_t^\alpha\right] \\ & & - (1-\Omega_A(\omega_t^*))\sum_i w_t^jL_t^j \end{array}$$

Calibration Overview


Par	Description	Value	Target		
Exogenous Shocks					
PΑ	persistence TFP	0.7	AC(1) HP-detr GDP 53-14 of 0.55		
σ_A	innov. vol. TFP	2.0%	Vol HP-detr GDP 53-14 of 2.56%		
$\sigma_{\omega,L}$	low uncertainty	0.095	Avg. corporate default rate of 2%		
$\sigma_{\omega,H}$	high uncertainty	0.175	Avg. IQR firm-level productivity (Bloom et al. (2012))		
p_{LL}^{ω} , p_{HH}^{ω}	transition prob	{0.91, 0.80}	Bloom et al. (2012)		
	Product	ion, Population, I	abor Income Shares		
ψ	marginal adjustment cost	2	Vol. investment-to-GDP ratio 53-14 of 1.58%		
α	labor share in prod. fct.	0.71	Labor share of output of 2/3		
δ_K	capital depreciation rate	8%	Investment-to-capital ratio, 53-14		
ℓ^i	pop. shares $i \in \{S, B\}$	{69,31}%	Population shares SCF 95-13		
γ^i	inc. shares $i \in \{S, B\}$	{60,40}%	Labor inc. shares SCF 95-13		
	Corporate loans and Intermediation				
δ	average life loan pool	0.937	Duration fcn. bond index		
θ	principal fraction	0.582	Duration fcn. bond index		
ζ	Losses in bankruptcy	0.6	Corporate loan and bond severities 81-15 of 44%		
η	% bankr. loss is DWL	0.2	Bris, Welch, & Zhu 2006		
Ф	maximum LTV ratio	0.45	Vol. of non-fin sector debt-to-GDP 53-14 of 5.2%		
$\underline{\pi}$	profit default threshold	0.04	FoF non-fin sector leverage 85-14 of 37%		
σ_{ϵ}	cross-sect. dispersion ϵ_t^I	0.025	FDIC failure rate of deposit. inst. of 0.5%		
σ^I	marg. dividend payout cost	5	avg. credit spread of 2.05%		
Government Policy					
G°	discr. spending	17.17%	BEA discr. spending to GDP 53-14 of 17.58%		
G^T	transfer spending	2.42%	BEA transfer spending to GDP 53-14 of 3.18%		
au	labor income tax rate	29.5%	BEA pers. tax rev. to GDP 53-14 of 17.30%		
$ au_\Pi^B = au_\Pi^I$	corporate tax rate	20.0%	BEA corp. tax rev. to GDP 53-14 of 3.41%		
τ^D	interest rate income tax rate	13.2%	tax code; see text		
κ	deposit insurance fee	0.0084	Deposit insurance revenues/bank assets		
ξ	max. intermediary leverage	0.94	Basel II reg. capital charge for C&I loans & bonds		
▶ Back					

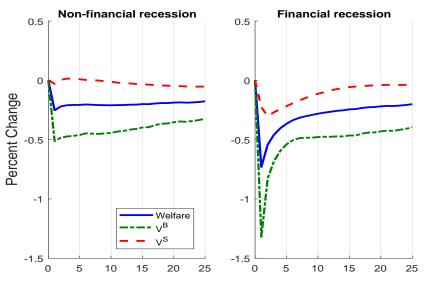

• Small aggregate gain from tighter constraint (max at 91%)

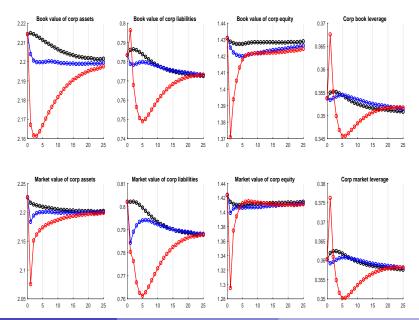

- Small aggregate gain from tighter constraint (max at 91%)
- Pareto improvement possible for looser constraint (max at 96%)


- Small aggregate gain from tighter constraint (max at 91%)
- Pareto improvement possible for looser constraint (max at 96%)
- Status quo close to optimal for either measure

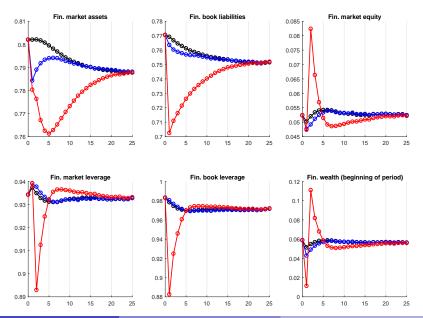
Transitions

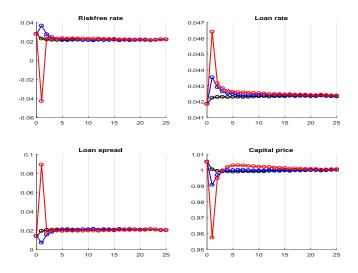
- Tighter capital: Investment overshoots
- Investment drop associated with consumption boom as economy adjusts to lower capital stock


No Bankruptcy


- Removing bankruptcy option makes banks effectively more risk averse
- Makes financial crises substantially less bad

Boom-Bust: Welfare


Financial vs. non-financial recession


Boom-Bust: Balance Sheets of Non-financial Corporates

Boom-Bust: Balance Sheets of Intermediaries

Boom-Bust: Prices

