
Adaptive state space models with

applications to the business cycle and

financial stress∗

Davide Delle Monache†

Banca d’Italia

Ivan Petrella‡

Warwick Business School

& CEPR

Fabrizio Venditti§

Banca d’Italia

November 1, 2016

Abstract

In this paper we develop a new framework for the analysis of state space models with

time-varying parameters. We let the driver of the time variation be the score of the

predictive likelihood and derive a new filter that allows us to estimate simultaneously the

state vector and the time-varying parameters. In this setup the model remains Gaussian,

the likelihood function can be evaluated using the Kalman filter and the model parameters

can be estimated via maximum likelihood, without requiring the use of computationally

intensive methods. Using a Monte Carlo exercise we show that the proposed method

works well for a number of different data generating processes. We also present two

empirical applications. In the former we improve the measurement of GDP growth by

combining alternative noisy measures, in the latter we construct an index of financial

stress and evaluate its usefulness in nowcasting GDP growth in real time. Given that a

variety of time series models have a state space representation, the proposed methodology

is of wide interest in econometrics and applied macroeconomics.
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1 Introduction

Following two decades of low macroeconomic volatility and stable correlations across macroe-

conomic time series, the Great Recession has brought the issue of structural breaks back in

the spotlight, spurring a wealth of new research on modeling and forecasting economic time

series in the presence of parameter instability. Recent work in the field builds on two separate

research agendas. In the former parameter instability manifests itself through large, infrequent

breaks. A second view is based on the idea that economic agents adapt to shocks through a

slow adjustment of their behavior, which is reflected in a gradual change of the parameters of

empirical models.1 The flexibility of the econometric tools designed to capture these differ-

ent forms of time variation does not come without costs as the nonlinearity introduced in the

models often requires the use of computationally intensive methods and sophisticated filtering

techniques. These complications can be particularly burdensome for unobserved component

models where also latent states variables need to be inferred on the basis of the observed data.

Motivated by these challenges, in this paper we develop a framework for the estimation of

state space models with time-varying parameters (TVP). The building block of the method

consists in positing a law of motion for the parameters that is a (linear) function of the score

of the predictive likelihood, in line with Creal at al. (2013) and Harvey (2013). In this setup,

the model remains Gaussian and the likelihood is evaluated through the Kalman filter (KF).

Intuitively, at each point in time, the score of the predictive likelihood determines both the

size and the sign of the adjustment of the model parameters that is needed to attain a local

maximum. Such mechanism, which forces changes in the parameters to adapt to the local

likelihood, justifies the definition of adaptive state space models adopted in the title of the

paper.

In a state space model with constant parameters the accrual of new information (i.e. a data

release) generates a prediction error that, through the KF recursions, is the basis for updating

and forecasting the unobserved states. In other words, conditional on the model parameters,

new information allows us to refine our view on the most likely location of the state vector

and to form the best possible guess of where the data will be in the future. The time variation

in the parameters introduces an additional margin of adjustment to this process and the new

information calls for a simultaneous update of both the parameters and the latent states. The

main contribution of the paper consists in deriving the analytical expressions for a new set of

recursions that, running in parallel with the KF, update at each point in time both the vector

of TVP and the latent states. Therefore, within this framework, the likelihood of any Gaussian

state space model with TVP is available in closed form and the model can be even estimated

by maximum likelihood (ML).

After presenting the main results we discuss a number of extensions of the baseline frame-

work: e.g. we show how to incorporate general restrictions on the model parameters, and we

1Unfortunately the question of which view of the world is more appropriate can not really be settled with an
econometric test, as tests designed for detecting large breaks typically perform poorly when the data generating
process features slow, continuous changes in the model parameters, see Benati (2007).
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illustrate how the model has to be modified to deal with data at mixed frequencies and with

missing observations. We also work through two simple analytical examples to show how the

proposed approach works in practice.

We assess the small sample properties of the new method in a Monte Carlo exercise. We

find that it does a very good job at tracking a wide range of sources of time variation in the

parameters. Furthermore, when the data are generated by a model with constant parameters

our adaptive filter collapses the parameters to a constant, i.e. the method does not generate

spurious time variation in the parameters when this feature is not supported by the data.

Given that a wide range of time series models have a state space representation, the method

that we propose is of interest for a broad spectrum of applications in econometrics and applied

macroeconomics. We present two empirical exercises that illustrate its usefulness. In the first

application we focus on business cycle measurement. In particular, we take as a starting point

the model developed by Aruoba et al. (2016) to estimate GDP growth on the basis of under-

lying (noisy) measures and extend it to account for time variation in the model parameters.

We show that most of the parameters in the model of Aruoba et al. (2016) are subject to

frequent breaks, which are well captured by our score driven method. Our approach can then

retrieve some well known stylized facts of the U.S. business cycle that are overlooked in a con-

stant parameter framework, namely a permanent slowdown in the long-run growth of the US

economy, as well as the decline of GDP growth volatility during the Great Moderation and the

subsequent leap due to the Great Recession. In a second application we derive from a panel

of business cycle and financial variables an indicator of financial stress for the euro area. Our

modeling approach allows us to address three related challenges in the construction of measures

of financial stress: model instability, irregularities in the pattern of most financial data and

the frequency mismatch between financial and real data. We assess the performance of our

model in a nowcasting exercise in which financial variables are used to complement standard

business cycle indicators in monitoring GDP developments in real time. The model detects sig-

nificant shifts in the parameters and delivers GDP forecasts that are more accurate than those

obtained on the basis of simple univariate benchmarks. Moreover, we find that financial stress

indicators provide some additional (with respect to standard business cycle indicators) real

time predictive content for the 2008 recession and that the presence of financial data improves

the accuracy of density forecasts.

The rest of the paper is structured as follows. Section 2 constitutes the theoretical body

of the paper, where we present the main results and discuss how to modify the estimation

algorithm to incorporate parameter restrictions and to deal with missing and mixed frequency

data. In Section 3 we describe the Monte Carlo exercise. In Section 4 we present the empirical

applications and Section 5 concludes the paper.
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2 Adaptive state space models

Let us assume that a given time series model has the following state space representation:

yt = Ztαt + εt, εt ∼ N (0, Ht),

αt+1 = Ttαt + ηt, ηt ∼ N (0, Qt), t = 1, ..., n.
(1)

yt is the N × 1 vector of observed variables, εt is the N × 1 vector of measurement errors, αt

is the m× 1 vector of state variables and ηt is the corresponding m× 1 vector of disturbances.

The two disturbances are assumed to be Gaussian distributed and uncorrelated for all time

period, that is E(εtη
′
s) = 0 for ∀t, s.2 The initial value of the state vector is also assumed to

be Gaussian α1 ∼ N (a1, P1) and uncorrelated ∀t with εt and ηt.

Following Harvey (1989, sec. 3.1), the system matrices Zt, Ht, Tt and Qt are assumed

to be non-stochastic and as a result the system is linear. Conditional on the information set

Yt−1 = {yt−1, ..., y1} and on the vector of parameters θ, the observations and the state vector

are Gaussian; i.e. yt|Yt−1; θ ∼ N (Ztat, Ft) and αt|Yt−1; θ ∼ N (at, Pt). It follows that the

log-likelihood function at time t is:

`t = log p(yt|Yt−1, θ) ∝ −
1

2

(
log |Ft|+ v′tF

−1
t vt

)
. (2)

The prediction error vt, its covariance matrix Ft, the state vector conditional mean at, and its

mean square error (MSE) matrix Pt, are estimated optimally3 by means of the KF:

vt = yt − Ztat, Lt = Tt −KtZt,

Ft = ZtPtZ
′
t +Ht, at+1 = Ttat +Ktvt,

Kt = TtPtZ
′
tF
−1
t , Pt+1 = TtPtL

′
t +Qt, t = 1, ..., n.

(3)

We have that at = E(αt|Yt−1, θ) is the so-called predictive filter and Pt = E[(at−αt)(at−αt)′]
is the associated MSE. The real-time filter is equal to at|t = E(αt|Yt, θ) = at + PtZ

′
tF
−1
t vt,

and its MSE is Pt|t = E[(at|t − αt)(at|t − αt)′] = Pt − PtZ ′tF−1
t ZtPt. It is worth stressing that

in this linear model the MSEs are independent from the observations, thus they are also the

unconditional covariance matrices associated with the conditional mean estimators; see Harvey

(1989, sec. 3.2.3).

If the system matrices depend on past observations the model is still conditionally Gaussian

since, given Yt−1, the system matrices can be regarded as fixed. In this case they are usually

refer to be predetermined ; see Harvey (1989, sec. 3.7.1). In this framework at is the mean of the

conditional distribution of αt and it will no longer be a linear function of the observations. Thus,

when at is viewed as an estimator of αt, Pt represents its conditional MSE in the sense that

it will depend on the particular realization of the observations in the sample. The attractive

feature of this setup is that the expression of likelihood function can be still obtained as in (2),

2This assumption can be relaxed at the cost of a slight complication in some of the filtering formulae (see
Remark 2).

3It produces the minimum mean square linear estimator (MMSLE) of the state vector.
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and the KF is still the MMSLE of the state vector.

A conditionally Gaussian setup of this sort is used in several papers. However, no unified

framework to analyze such models is available in the literature. As a result, for each type of time

variation considered in these papers, an ad hoc strategy is devised. Harvey et al. (1992) provide

approximate filtering and quasi ML estimation for unobserved components models with ARCH

disturbances. Specifically, time-varying volatilities are driven by the squared disturbances

estimated within the system as additional state variables.4 In the same spirit, Koopman et

al. (2010) modify the dynamic Nelson–Siegel model to include time-varying volatility, which

is modeled through a GARCH dynamics. Their model also features time-varying loadings,

implying a non-linearity that is handled by using the extended KF. Eickmeier et al. (2015), on

the other hand, resort to a two-step strategy to estimate the time-varying loading in a factor

model. They work under the assumption that principal components are consistent estimators

for the factors even if the loadings vary mildly over time.5 By treating the estimated factors

as observable, the relation between the variables and the factors is given by a set of univariate

regression models with time-varying coefficients, which evolve as independent random walks.

The model can therefore be analyzed equation-wise by state space methods, i.e. estimating

the hyperparameters by ML, and applying the KF to back out the TVP paths.6 Koop and

Korobilis (2014) use yet another strategy to estimate a factor model with changing loadings

and volatilities. Their estimation procedure iterates until convergence over two steps: (i) given

the TVP of the model, the KF is used to estimate the state vector and (ii) given the state

vector, the forgetting factor algorithm updates the time-varying loadings and volatilities.7

Different problems arise when the elements of the system matrices Zt, Ht, Tt and Qt are

driven by additional stochastic processes. Under this scenario the KF loses its optimality,

the likelihood function is not available in closed form and Bayesian simulation techniques

are needed; see Durbin and Koopman (2012). Several papers in the literature indeed use

this approach. Stock and Watson (2007), for instance study the evolution of the relative

importance of permanent and transitory components of US inflation through a trend-noise

decomposition with stochastic volatilities. Del Negro and Otrok (2008) analyze the evolution

of international business cycles using a dynamic factor model with time-varying loadings and

stochastic volatility. Bianchi et al. (2009) introduce parameters’ variation in the latent factors

of the Nelson Siegel yield curve model. Marcellino et al. (2016) study the nowcasting properties

of a small scale dynamic factor model in which volatility changes over time. The common theme

in these papers is the use of computationally intensive Monte Carlo Markov Chain methods.

In this paper we contribute to the literature by proposing a new method for analyzing state

4Since the past values of the disturbances are not directly observable the model is not conditional Gaussian.
Nevertheless the model is treated as if it was conditionally Gaussian and the KF is considered to be quasi-
optimal.

5The assumption that the state vector can be consistently estimated in a first step can be valid for factor
models but it does not generalize to other state space models.

6Mikkelsen et al. (2015) derive the asymptotic theory for this two-step estimator.
7The use of the forgetting factor algorithm was proposed in Koop and Korobilis (2013) to deal with TVP

in large VAR models. This algorithm is obtained by applying the KF to a restricted state space model in which
only two parameters regulate the time variation in the coefficients and volatilities.
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space models with TVP. Our work falls in the first of the two lines of research discussed in the

Introduction, in that we assume that the parameters evolve continuously and that are driven

by past information. More in details, in line with Creal at al. (2013) and Harvey (2013), we

assume that the matrices Zt, Ht, Tt and Qt are driven by the score of the predictive likelihood.

Since the score depends on past information, the model is still conditional Gaussian, and

consequently, we do not need to resort to simulation methods for estimation. We analytically

derive a new auxiliary filter that runs in parallel to the KF and gives rise to an algorithm that

enables the estimation of the parameters and of the state vector in a unified framework.

The key analytical challenge is represented by the joint updating, at each point in time, of

both the system matrices and of the state vector. In the existing literature this challenge is

typically solved by assuming that the unobserved state vector can be somehow estimated out

of the model. This is done in papers that use classical methods (Eickmeier et al., 2015 and

Koop and Korobilis, 2014) and implicitly also in studies that use Bayesian methods, as cycling

through the Gibbs sampler implies conditioning on a given estimate of the whole state vector.

In contrast with existing approaches, we propose a new set of recursions that run in parallel

with the KF in order to jointly update (at each point in time) the parameters and the state

vector. Therefore, the KF still retains the usual optimality properties, the likelihood function

can be evaluated in closed form, and it is even possible to estimate the model by ML. Our

method is not tailored to a single application, but it is valid for all state space models. Since a

variety of time series models can be cast in state space form, the proposed approach is of interest

for a wide spectrum of empirical applications in econometrics and applied macroeconomics.8

2.1 Score-driven time-varying parameters

First, the TVP of model (1) are collected in the vector ft. Second, as in Creal et al. (2013)

and Harvey (2013), we posit the following law of motion for the TVP:

ft+1 = ω + Φft + Ωst, st = St∇t, t = 1, ..., n, (4)

where

∇t =
∂`t
∂ft

, St =

[
−Et

(
∂`2

t

∂ft∂f ′t

)]−k
, k = 0, 1/2, 1, (5)

and `t is the conditional log-likelihood function of the model.

In the vector θf we collect all the elements of ω, Φ, and Ω, regulating the dynamics of

the TVP. The system matrices in (1) may possibly contain some static parameters that are

collected in the vector θm. Thus, the full vector of constant parameters is θ = (θ′m, θ
′
f )
′.

At each point in time the system matrices depend upon ft and θm, namely Zt = Z(ft, θm),

Tt = T (ft, θm), Ht = H(ft, θm), and Qt = Q(ft, θm). In turn, the dynamics of ft depends on

Yt−1 and θf . Therefore, the model is observation-driven, i.e. for each point in time t, it is

8Creal et al. (2008), for instance, analyze parameters’ variation for the local level model using the score-
driven approach. Their filter is nested as a special case by our method, see sub-section 2.4.1.
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entirely determined by {Yt−1, θ}, the KF retains its optimal properties, and its log-likelihood

function is equal to (2).

The driving mechanism for the law of motion (4) is represented by the scaled-score of the

conditional likelihood. Specifically, for k = 0, st equals the score ∇t with zero mean and

variance equal to the Fisher information matrix It. Alternatively, for k = 1, the scaling matrix

St is equal to the inverse of the information matrix I−1
t and st will have variance equal to I−1

t .

Finally, for k = 1/2, the variance of st is the identity matrix.9

Let us focus briefly on the updating rule (4), at each point in time the vector ft is updated so

as to maximize the local fit of the model. Specifically, the magnitude of the update depends on

the slope and on the curvature of the likelihood function. It follows the score-driven updating

rule can be rationalized as a stochastic analogue of the Gauss–Newton search direction for the

TVP.10

Our theoretical contribution is organized in two Results: in the first one, we show analyt-

ically the formulae for the score and the scaling matrix; in the second, we present the filter

to compute recursively such scaled-score. It is worth mentioning that the strategy adopted by

Koop and Korobilis (2014) can be obtained as special case of the general algorithm presented

below.11

Before going into the main Results let us introduce some notation (see e.g. Abadir and

Magnus, 2005, ch. 11). Given a N×m matrix X, vec(X) is the vector obtained by stacking the

columns of X one underneath the other, while vech(X) eliminates all supradiagonal elements of

X from vec(X). The Nm×Nm commutation matrix CN,m is such that CN,mvec(X) = vec(X ′).

For N = m the m2×m2 commutation matrix is denoted by Cm. Given a square matrix A, the

symmetrizer matrix is Nn = 1
2
(In2 + Cn) and Nnvec(A) = vec

[
1
2
(A+ A′)

]
. For A symmetric

Nnvec(A) = vec(A). The identity matrix of order N is denoted by IN , and ‘⊗’ is the Kronecker

product.

Result 1 Given the conditional Gaussian model (1)-(2), the score and the information matrix

are:

∇t = 1
2

[
•
F
′

t(F
−1
t ⊗ F−1

t )vec(vtv
′
t − Ft)− 2

•
V
′

tF
−1
t vt

]
It = 1

2

[
•
F
′

t(F
−1
t ⊗ F−1

t )
•
F t + 2

•
V
′

tF
−1
t

•
V t

]
, t = 1, ..., n,

(6)

where
•
V t = ∂vt

∂f ′t
and

•
F t = ∂vec(Ft)

∂f ′t
. Proofs in Appendix A.1.

Let us first have a closer look at the expression for the score ∇t in (6). The score is a linear

9If it is not differently stated, we consider through all the paper the case of k = 1. In order to avoid
numerical instability it is often desirable to replace St with a smoothed estimator S̃t = (1− λ)St + λS̃t−1.

10Blasques et al. (2015) provide a formal rationale for score-driven models. They show that updating
the parameters using the score of the likelihood function is optimal in the sense that it locally reduces the
Kullback-Leibler divergence between the true conditional density and the one implied by the model.

11Koop and Korobilis (2014) use an iterative strategy in which, given an estimate of the TVP, the state
vector is obtained thought the KF. Then, given the estimated state vector, the TVP are estimated using the
forgetting factor algorithm of Koop and Korobilis (2013). It is straightforward to see that, when the state
vector is taken as given, the state space model results in two multivariate regression models with TVP, and our
algorithm collapses to the one proposed by Koop and Korobilis (2013); see Appendix B.1.
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function of two terms, namely (vtv
′
t − Ft) and vt. The first term is the difference between the

current estimate of the second moment of yt and the past estimate based on information at

t− 1. Loosely speaking, when Ft ‘correctly’ estimates the current value of the second moment

(i.e. Ft coincides with vtv
′
t), this term is zero and it does not contribute to changes in ft. Such

term is weighed by two matrices: (F−1
t ⊗ F−1

t ), which is a scaling factor measuring the degree

of uncertainty on the estimated second moment, and
•
F t, which measures the sensitivity of the

second moment with respect to ft. The second term in the score is the prediction error, which

makes changes in ft proportional to the forecast error on yt. This term is also pre-multiplied by

two matrices: F−1
t , which scales the prediction error by its variance, and

•
V t, which accounts for

the sensitivity of the prediction error with respect to ft. In sum, the stronger the impact new

information has on the estimated first and second moments of the observable yt, the larger the

revision of the parameters ft. Furthermore, the score depends on how sensitive the estimated

first and second moments of yt are to changes in ft.

The scaling matrix It in (6) is also composed of two terms, namely
•
F
′

t(F
−1
t ⊗ F−1

t )
•
F t and

•
V
′

tF
−1
t

•
V t. Those are the Hessian matrices with respect to ft of the prediction error and of its

variance, both scaled by their respective variances.

Notice that vt and Ft are recursively computed by means of the KF (3), while their Jacobian

counterparts,
•
V t and

•
F t, are recursively computed through the new filter presented below.

Result 2 For t = 1, ..., n, the Jacobian counterpart of the KF (3) leads to

•
V t = −[(a′t ⊗ IN)

•
Zt + Zt

•
At],

•
F t = 2NN(ZtPt ⊗ IN)

•
Zt + (Zt ⊗ Zt)

•
P t +

•
H t,

•
Kt = (F−1

t ZtPt ⊗ Im)
•
T t + (F−1

t Zt ⊗ Tt)
•
P t + (F−1

t ⊗ TtPt)CNm
•
Zt − (F−1

t ⊗Kt)
•
F t,

•
At+1 = (a′t ⊗ Im)

•
T t + Tt

•
At + (v′t ⊗ Im)

•
Kt +Kt

•
V t

•
P t+1 = (Tt ⊗ Tt)

•
P t − (Kt ⊗Kt)

•
F t +

•
Qt + 2Nm[(TtPt ⊗ Im)

•
T t − (KtFt ⊗ Im)

•
Kt],

(7)

where
•
Zt = ∂vec(Zt)

∂f ′t
,
•
H t = ∂vec(Ht)

∂f ′t
,
•
T t = ∂vec(Tt)

∂f ′t
and

•
Qt = ∂vec(Qt)

∂f ′t
. Proofs in Appendix A.

Results 1 and 2 generalize the results in Harvey (1989, sec. 3.4.6) to multivariate models

and to models with TVP.

In order to understand the logic behind the filter presented in (7), let us recall how the

recursions in the standard KF work. In the KF, given past estimates of the state vector

moments (at and Pt) and current information yt, the prediction error vt and its variance Ft

are obtained. Based on these, new estimates of the state vector moments (at+1 and Pt+1) are

computed. The link between past and current estimates is given by the Kalman gain Kt whose

role is to weigh the current observation. The filter presented in Theorem 2 works much in the

same way. Given past Jacobians of the state vector moments
•
At and

•
P t, current Jacobians of

the prediction error (
•
V t) and of the prediction error variance (

•
Ft) are computed. The Jacobians

•
At+1 and

•
P t+1 can then be updated through the Jacobian of the Kalman gain

•
Kt. Notice that

8



also the Jacobians of the system matrices appear; i.e.
•
Zt,

•
H t,

•
T t and

•
Qt. Those depend on

the specific model under consideration; in simple models they result in selection matrices as

will be clearer from the examples that we provide below.

Remark 1 It is sometimes convenient to include mean adjustment terms in (1) resulting in

yt = Ztαt + dt + εt, εt ∼ N (0, Ht),

αt+1 = Ttαt + ct + ηt, ηt ∼ N (0, Qt),
(8)

where dt and ct are known vectors possibly time-varying. The filtering (3) is amended in the

following elements

vt = yt − Ztat − dt,
at+1 = Ttat + ct +Ktvt,

(9)

and two expressions of (7) are modified as follows

•
V t = −[(a′t ⊗ IN)

•
Zt +

•
dt + Zt

•
At],

•
At+1 = (a′t ⊗ Im)

•
T t
•
ct + Tt

•
At + (v′t ⊗ Im)

•
Kt +Kt

•
V t,

(10)

where
•
dt = ∂dt

∂f ′t
and

•
ct = ∂ct

∂f ′t
are model specific.

Remark 2 In the case the two disturbances in (1) are correlated, that is E(εtη
′
t) = Gt, the

Kalman gain in (3) is equal to Kt = (TtPtZ
′
t +Gt)F

−1
t , and the third expression of (7) becomes

•
Kt = (F−1

t ZtPt ⊗ Im)
•
T t + (F−1

t Zt ⊗ Tt)
•
P t + (F−1

t ⊗ TtPt)CNm
•
Zt

+[F−1
t ⊗ (GtF

−1
t −Kt)]

•
F t + (F−1

t ⊗ I)
•
Gt, (11)

where
•
Gt = ∂vec(Gt)

∂f ′t
is model specific.

Putting together Results 1 and 2, we obtain a new filter that enables to compute the scaled

score st = St∇t and therefore to estimate the TVP vector using the the score-driven filter (4).

Such auxiliary filter runs in parallel with the standard KF (3) and gives rise to the Algorithm

described below.12

The vector of static parameters θ can be estimated by ML: θ̂ = arg max
∑n

t=1 `t(θ). Given

the above algorithm, the evaluation of the log-likelihood function is straightforward and the

maximization can be obtained numerically. As in Creal et al. (2013, sec. 2.3), we can conjecture

that the usual ML results hold and this is backed up by the Monte Carlo experiment in Section

3. Specifically, we have that
√
n(θ̂ − θ) → N (0,Ξ), where the asymptotic variance Ξ is

evaluated by numerical derivative at the optimum.

12A simpler version of this algorithm is used by Delle Monache et al. (2016) to analyze inflation rates in the
euro area within a dynamic factor model with TVP.
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Algorithm

Initialize the following elements a1, P1, f1,
•
A1,

•
P 1.

For t = 1, ..., n :

i. given ft, evaluate Zt, Ht, Tt, Qt,
•
Zt,

•
H t,

•
T t,

•
Qt

ii. compute vt, Ft, Kt, and `t using (2)-(3)

iii. compute
•
V t,

•
F t,

•
Kt using (7)

iv. compute ∇t, It, (and st) using (6)

v. update at+1, Pt+1 using (3)

vi. update
•
At+1,

•
P t+1 using (7)

vii. update ft+1 using (4)

For t = n we have all the elements to estimate the model (1).

2.2 Parameter restrictions

Applications of TVP models often require imposing restrictions on the parameters’ space.

For instance, stationarity restrictions or positivity of the volatilities may be desirable. When

restrictions are implemented within our setup, the resulting model can still be estimated by ML

without the need for demanding simulation methods. This requires the re-parameterization of

the TVP vector:

f̃t = ψ(ft), (12)

where ft is the unrestricted vector of parameters, f̃t is the restricted vector of interest with

respect to which the likelihood function (2) is expressed, and ψ(·) is assumed to be a time-

invariant, continuous, invertible and twice differentiable function (also known as link function).

In particular, we model ft = h(f̃t), where h(·) is the inverse function of ψ(·). The vector ft

continues to follow the updating rule (4), and the algorithm easily takes into account such

transformation via the Jacobian Ψt = ∂f̃t
∂f ′t

ensuring that the restrictions are satisfied at each

point in time.

In our modeling strategy the transformation (12) will affect the Jacobian matrices
•
Zt,

•
H t,

•
T t and

•
Qt above defined. Generally, these matrices contain both constant and TVP, some of

which are restricted, some are left unrestricted. To deal with the presence of restrictions, given

a generic time-varying system matrix Mt, we propose the following decomposition:

vec (Mt) = cM + SM1ψM (SM2ft) , (13)

where Mt denotes a nr×nc matrix containing both constant and time-varying parameters, cM

is a nrnc × 1 vector with constant elements, and SM1 and SM2 are selection matrices: SM1

selects the time-varying elements of Mt and it is obtained from Inrnc by retaining the columns

associated with the time varying elements of vec (Mt), while SM2 selects the sub-vector of ft

belonging to Mt. Finally, ψM (·) denotes the link function used to restrict the elements of Mt
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and is the Jacobian of ψM (·) is denoted with ΨMt. Given the representation (13), the Jacobian

of the matrix is computed as
•
M t = SM1ΨMtSM2.

Note that different sub-vectors of ft may need different restrictions and thus different link

functions may be used. For instance, in the empirical applications we will impose two main

restrictions. First, we impose the restriction that the autoregressive coefficients have stable

roots at each point in time; this is implemented by re-parameterising the model with respect

to the partial autocorrelations as in Delle Monache and Petrella (2014). A second set of

restrictions forces a generic covariance matrix Σt to be positive definite at each point in time;

this is achieved by means of the log-Cholesky transformation. More in details, Σt = JtJ
′
t, with

Jt being a lower triangular matrix, and we model TVP vector vech(J̃t), where J̃ij,t = Jij,t for

i 6= j, and J̃ii,t = log Jii,t. Thus, the Jacobian is computed as follows

∂vec(Σt)

∂vech(J̃t)′
= (IN2 + CN)(Jt ⊗ IN)SJSlog t,

where CN is the commutation matrix, SJ is a selection matrix13 such that SJvech(Jt) = vec(Jt)

and Slog t = diag[exp(J̃ii,t)].

2.3 Missing observations and mixed frequencies

Assume to have a data set containing missing observations. The observed vector is repre-

sented by Wtyt, where Wt is an Nt × N selection matrix with 1 ≤ Nt ≤ N , meaning that at

least one observation is available at time t. Note that Wt is obtained by eliminating the i− th
row from IN when the i− th variable is missing. In this setting, at each time t the likelihood `t

is computed using Nt observations; i.e. `t = log p(Wtyt|Yt−1, θ), that is the marginal likelihood.

In practice, the score of the marginal likelihood is computed and the updating of ft is based

on the available information. We have two polar cases. If there are no missing observations

Wt = IN and the score is computed on the joint likelihood. If, on the other hand, no data is

available at time t, we have that Nt = 0, the marginal density degenerates to a constant and

the score is zero. In this case the future values of ft are obtained by using (4) with st = 0. A

formal discussion of dealing with missing values in score-driven TVP models can be found in

Lucas et. al (2016).

Given this reparameterization for the model, the measurement equation in (1) is modified

as follows:

Wtyt = WtZtαt +Wtεt, Wtεt ∼ N (0,WtHtW
′
t). (14)

13SJ is obtained form diag(vec(Jt)) by dropping the columns containing only 0s and replacing the non-zeros
elements with 1s.
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The first three expressions of the KF (3) are modified as follows:

vt = Wt(yt − Ztat),
Ft = Wt(ZtPtZ

′
t +Ht)W

′
t ,

Kt = TtPtZ
′
tW
′
tF
−1
t ,

(15)

thus the first three formulae of the new filter (7) become

•
V t = −[(a′t ⊗Wt)

•
Zt +WtZt

•
At],

•
F t = 2NNt(WtZtPt ⊗Wt)

•
Zt + (WtZt ⊗WtZt)

•
P t + (Wt ⊗Wt)

•
H t,

•
Kt = (F−1

t WtZtPt ⊗ Im)
•
T t + (F−1

t WtZt ⊗ Tt)
•
P t + (F−1

t Wt ⊗ TtPt)CNm
•
Zt − (F−1

t ⊗Kt)
•
F t,

(16)

The derivation of (15) can be found in Durbin and Koopman (2012), while the formulae (16)

can be derived following the steps in Appendix A.

The case of mixed frequencies is of particular interest for a number of applications, like for

instance forecasting low frequency variables using higher frequency predictors (nowcasting).

Mixed frequencies typically involve missing observations and temporal aggregation. Indeed

low frequency indicators can be modeled as a latent process that is observed at regular low

frequency intervals and missing at higher frequency dates. The relation between the observed

low frequency variable and the corresponding (latent) higher frequency indicator depends on

whether the variable is a flow or a stock and on how the variable is transformed before entering

the model. In all cases, the variable can be rewritten as a weighted average of the unobserved

high frequency indicator. Therefore, temporal aggregation only requires a modification of the

state space representation leaving the filtering algorithms unchanged, for details see Appendix

B.2.

2.4 Examples

In this section we provide some more intuition on how the proposed algorithm works by

looking at two specific examples: the unobserved components local level model and the reduced

form autoregressive model of order one.

2.4.1 Local level model

Let us consider a simple local level model with time-varying volatilities:

yt = µt + εt, εt ∼ N (0, σ2
ε,t),

µt+1 = µt + ηt, ηt ∼ N (0, σ2
η,t).

(17)

This model has been proposed by Stock and Watson (2007) to model US inflation. The

estimation of (17) using the score-driven approach was initially proposed by Creal et al. (2008,

sec. 4.4). Here we show how our general algorithm collapses to the one therein proposed.
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Model (17) can be easily cast in the state space form (1) with

αt = µt, Zt = Tt = 1, Ht = σ2
ε,t, Qt = σ2

η,t.

The vector of TVP and the corresponding Jacobian matrices are

ft = (log σε,t, log ση,t)
′,

•
H t =

(
2σ2

ε,t, 0
)
,

•
Qt =

(
0, 2σ2

η,t

)
,

•
Zt =

•
T t = 0.

In order to ensure positive volatility we use the exponential link function, this implies that ft

contains the log standard deviations, σ2
ε,t = exp(2f1,t), and σ2

η,t = exp(2f2,t). As previously

anticipated, the Jacobian of the system matrices incorporate the parameter restrictions used

for the specific model. Application of the KF (3) leads to the following recursions:

vt = yt − at, at+1 = at + ktvt,

dt = pt + σ2
ε,t, pt+1 = (1− kt)pt + σ2

η,t,

kt = pt/dt, t = 1, ..., n.

(18)

The estimator of the state vector conditional mean and variance (at+1 and pt+1) depend on

ft, which is recursively estimated based on the score-driven filter (4). First, the log-likelihood

of model (17) is equal to `t ∝ −1
2
(log dt + v2

t /dt). Secondly, the elements of the gradient and

information matrix in (6) are:

∇i,t =
1

2

 •di,t
d2
t

(v2
t − dt)− 2

•
vi,t

vt
dt

 , i = 1, 2, (19)

Iij,t =
1

2

 •di,t •dj,t
d2
t

+
2
•
vi,t
•
vj,t
dt

 , i, j = 1, 2, (20)

where the indexing i = 1, 2 refers to the two elements of ft.

We are now ready to apply the recursions of the new filter (7):

•
vi,t = −•ai,t,

•
ai,t+1 = (1− kt)

•
ai,t +

•
ki,tvt,

•
di,t =

•
pi,t + 2σ2

ε,t1(i = 1),
•
pi,t+1 = (1− kt)

•
pi,t −

•
ki,tpt + 2σ2

η,t1(i = 2),
•
ki,t = (

•
pi,t − kt

•
di,t)/dt, t = 1, ..., n,

(21)

where 1(x) is an indicator function, taking value one when the condition x is verified and zero

otherwise.14

As explained in the general case, the score vector (19) is composed of two terms. The first

one (v2
t − dt) is the difference between a current estimate of the prediction error variance and

its past estimated value. Such term is scaled by its variance d2
t and weighed by

•
di,t, which

is the sensitivity of the prediction error variance to changes in fi,t. The second term is the

14The recursions in 21 are the same as the ones derived in Creal et al. (2008, sec. 4.4).
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scaled prediction error, vt/dt, weighed by its sensitivity to changes in fi,t. Looking at (21),

we have that
•
di,t is a linear function of

•
pi,t, while

•
vi,t is a linear function of

•
ai,t. Thus, for a

given prediction error vt the model updates the two time-varying variances according to the

current signal to noise ratio. Specifically, each element of the score is proportional to the past

estimated values of the corresponding variance. Therefore, in periods of high signal to noise

ratio, for a given prediction error the model is more likely to update more the trend than

the noise variance. Conversely, in periods of low signal to noise ratio the algorithm revises

relatively more the noise variance.

Putting together the recursions (18)-(21) and after some algebra, we obtain the algorithm

shown in the table below.

Algorithm for the local level model

Given the vector of static parameters θ and the initial values a1, p1, f1,
•
a1,

•
p1.

For t = 1, ..., n :

i. compute the parameters:

σ2
ε,t = exp(2f1,t), σ

2
η,t = exp(2f2,t);

i. compute the pred. error, the pred. error var., the Kalman gain, and the log-lik:

vt = yt − at, dt = pt + σ2
ε,t, kt = pt/dt, `t ∝ −1

2
(log dt + v2

t /dt);

iii. compute the gradients of dt and kt (i.e. their sensitivity to changes in ft):
•
di,t =

•
pi,t + 2σ2

ε,t1(i = 1),
•
ki,t = (

•
pi,tdt − pt

•
di,t)/d

2
t ;

iv. compute the gradient and the Hessian of `t, and the score st = I−1
t ∇t:

∇i,t = 1
2dt

[
•
di,t

(
v2t
dt
− 1
)

+ 2
•
ai,tvt

]
, Iij,t = 1

2dt

[ •
di,t
•
dj,t
dt

+ 2
•
ai,t
•
aj,t

]
;

v. compute the next period estimate of the state vector and its conditional variance:

at+1 = at + ktvt, pt+1 = (1− kt)pt + σ2
η,t;

vi. compute the gradients of at+1 and pt+1 (i.e. their sensitivity to changes in ft):
•
ai,t+1 = (1− kt)

•
ai,t +

•
ki,tvt,

•
pi,t+1 = (1− kt)

•
pi,t −

•
ki,tpt + 2σ2

η,t1(i = 2);

vii. compute the next period estimate of the TVP vector:

ft+1 = ω + Φft + Ωst.

2.4.2 Autoregressive model

Let us consider the following autoregressive model of order one:

yt+1 = φtyt + ξt, ξt ∼ N (0, σ2
t ). (22)

Despite its simplicity, the above model (generalized to p lags) has been successfully used by

Delle Monache and Petrella (2014) for modeling US inflation. Blasques et al. (2014) consider

the AR(1) model with time-varying coefficient and study the stochastic properties of the implied
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non-linear model. The SSF representation (1) of model (22) can be easily obtained setting

αt = yt, Zt = 1, εt = Ht = 0, Tt = φt, Qt = σ2
t .

For simplicity here we do not impose parameter restrictions, thus the vector of TVP vector

and the corresponding Jacobian matrices are: 15

ft = (φt, σ
2
t )
′,

•
T t = (1, 0),

•
Qt = (0, 1),

•
Zt =

•
H t = 0.

The KF (3) results in the following formulation:

vt = ξt, at+1 = φtyt,

Ft = Pt, Pt+1 = Qt = σ2
t ,

Kt = φt, t = 2, ..., n.

(23)

Given the Jacobian matrices, the new filter (7) collapses to:

•
V t = −

•
At = −(yt−1, 0),

•
P t+1 =

•
Qt = (0, 1),

•
F t =

•
P t = (0, 1),

•
At+1 = yt

•
T t = (yt, 0),

•
Kt =

•
T t = (1, 0), t = 2, ..., n.

(24)

Given (23) and (24), the gradient and scaling matrix in (6) are equal to:

∇t = 1
2

[
1
σ4
t

(
0

ξ2
t − σ2

t

)
+ 2

σ2
t

(
yt−1ξt

0

)]
,

It = 1
2

[
1
σ4
t

(
0 0

0 1

)
+ 2

σ2
t

(
y2
t−1 0

0 0

)]
.

(25)

Thus the scaled-score vector has a very simple formulation:

st =

[
1

y2t−1
(yt−1ξt)

ξ2
t − σ2

t

]
. (26)

Specifically, the driving process for the coefficient φt is the prediction error scaled by the

squared regressor, while the time-varying volatility σ2
t is driven by the squared prediction

error, consistently with similar results in Delle Monache and Petrella (2014) and Blasques et

al (2014).16 This result can be easily extended to vector autoregressive models (see Appendix

B.1) as well as to ARMA models.

15In case we restrict the model to have stable roots as in Delle Monache and Petrella (2014) and positive
variance as in the previous example, we re-parameterize the model as follows ft = (arctanhφt, log σt)

′, which

implies
•
T t = [(1− φ2t ), 0], and

•
Qt = [0, 2σ2

t ].
16Note that the recursion starts at time t = 2 because the likelihood is conditional on the initial observation.

However, the use of the SSF methods allows to have the exact likelihood (also for t = 1), thus the score can
also be estimated for the initial observation.
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3 A Monte Carlo analysis

Before testing our approach on actual data we assess through a Monte Carlo exercise its

ability to replicate the salient features of a number of data generating processes (DGPs). Since

our claim is that the estimation technique that we propose is ‘adaptive’, we expect it to work

reasonably well in capturing different sources of time variation, whether coming for instance

from the loadings of the unobserved components or from the autoregressive coefficients of the

transition equations or from the volatilities of the measurement or transition equation errors.

More in detail, we design the following DGPs:

DGP1 - Time-Varying loadings[
y1,t

y2,t

]
=

[
1

λt

]
µt +

[
ε1,t

ε2,t

]
,

[
ε1,t

ε2,t

]
∼ N (0, I) ,

µt = 0.8µt−1 + ut ut,∼ N (0, 1) .

DGP2 - Time-Varying AR coefficient[
y1,t

y2,t

]
=

[
1

1

]
µt +

[
ε1,t

ε2,t

]
,

[
ε1,t

ε2,t

]
∼ N (0, I),

µt = ρtµt−1 + ut, ut ∼ N (0, 1).

DGP3 - Time-Varying Volatility in the measurement equation

yt = µt + εt, εt ∼ N (0, σ2
ε,t),

µt+1 = 0.8µt + ut, ut ∼ N (0, 1).

DGP4 - Time-Varying Volatility in the transition equation

yt = µt + εt, εt ∼ N (0, 1),

µt+1 = 0.8µt + ut, ut ∼ N (0, σ2
η,t).

In DGP1 we design a bivariate factor model and let the loading of the second variable on

the common factor µt vary over time. In DGP2 we lay out a similar model but this time

we keep both factor loadings constant while introducing time variation in the law of motion

of the common factor, which evolves as an AR(1) model with time-varying coefficient ρt. In

DGP3 and DGP4 we experiment with time varying volatilities, which can appear either in the

measurement or in the transition equation. We look at two different sample sizes n = 250 and

n = 500. We experiment with six different laws of motions for the TVPs entering DGP1 to

DGP4:

CONSTANT ft = a1,∀t;

SINE ft = a2 + b2 sin
(

2πt
T/2

)
;
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SINGLE STEP ft = a3 + b3 (t ≥ τ);

DOUBLE STEP ft = a4 + b4I (t ≥ τ1) + c4I (t ≥ τ2);

RAMP ft = a5 +
(

b5
T/c5

)
mod (t);

AR(1) MODEL ft = a6(1− b6) + b6ft−1 + ξt, ξt ∼ N (0, c6);

where ft = λt in DGP1, ft = ρt in DGP2, ft = σ2
ε,t in DGP3, and ft = σ2

u,t in DGP4. Moreover,

ft in the AR(1) model is transformed to be within the unit circle for DGP2, and to be positive

for DGP3 and DGP4. The calibration of the parameters a1, a2, b2, . . . , b6 is described in

Appendix D.2.

Case 1 is a baseline exercise in which we keep the parameters constant over time. We then

move to four cases where the parameters change over time according to a deterministic process.

In case 2 the parameters follow a cyclical pattern determined by a sine function. In cases 3

and 4 we let the parameters break at discrete points in time, allowing for either one or two

breaks. We set the location of the discrete breaks at given point in the sample. In the case

of a single break τ corresponds to half of the sample, while when we consider two breaks τ1

and τ2 are located at 1/3 and 2/3 of the sample. Case 5 (RAMP) is a rather challenging case,

whereby the parameters increase for some time before returning abruptly to their starting levels.

Finally, case 6 is the only one in which we let the parameters vary stochastically, following a

very persistent AR(1) model. The DGPs that we design are simple, in that time variation is

introduced in all the channels in which it can manifest itself, but only one at the time. By

focusing on a single channel at the time allows us to better discriminate the situations in which

our model either succeeds or fails at identifying and tracking time variation.

We present the results of the Monte Carlo exercise in Table 1. The table is organized in

four panels corresponding to each of the four DGPs under analysis. On the left hand side of

the table we show the results for a sample size of n=250, on the right hand side those obtained

when setting n=500. In each panel we report the results obtained for the six alternative

laws of motion described above. We base our assessment on five different statistics, namely

the Root Mean Squared Error (RMSEs), the Mean Absolute Error (MAE), the correlation

between actual and estimated coefficients, the Coverage (i.e. percentage of times that the

actual parameters fall in a given estimated confidence interval) and the number of cases in

which a pile-up occurs (#Pile-up). The last statistics consists of the number of simulations in

which the static coefficients that pre-multiply the score end up being lower than 10−6, which

we take as sufficient evidence that the estimated parameters are effectively zero, i.e. that there

is no time variation.

For each DGP we target 300 simulations. However, the actual number of samples changes

depending on the specifications. In the case of constant coefficients, where we would like to see

our estimator to end up in a pile-up situation as often as possible, we perform 300 simulations

and compute all the statistics on these samples. For the remaining specifications, on the

other hand, we keep on drawing artificial samples until we obtain 300 simulations in which
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the estimated parameters are different from zero and compute RMSEs, MAEs, correlations

and coverage ratios on these 300 artificial samples. At the same time we also keep track of

the number of times the pile-up problem arises. To better understand how we proceed let us

take a concrete example, that is the top-left panel of Table 1 (DGP1-Time Varying loadings,

n=250). In the first row we report the results for the constant coefficient case. As explained,

for this case we simulate 300 artificial samples and estimate the model using our algorithm. It

turns out that in 215 out of 300 simulations our estimation method ends up in a pile-up. The

RMSEs, MAEs, Correlations and Coverages, are estimated on all the 300 simulations. Now let

us take in the same panel the last line, referring to the AR(1) specification. In this case we

need to draw up to 319 samples to obtain 300 simulations in which the estimation algorithm

does not end being stuck in a region of the likelihood where the model loading is zero. Now,

in this case all the remaining statistics are computed on the 300 ‘good’ samples. We proceed

in this way because we want to appraise two different issues. The former is the percentage of

cases in which the algorithm ends up in the pile-up even if the true DGP implies time variation.

The second is how well it estimates the parameters conditional on the model correctly detecting

time variation. The two points are of independent interest because, if we were to find that the

model often ends up in the pile-up but it is very precise when it does not, one could decide

to force the algorithm to stay away from zero, for instance by using a grid-based estimation

method. This is the choice made, for instance Koop and Korobilis (2013), and a solution that

we also adopt in one of the two empirical applications.17

There are four key takeaways from the Monte Carlo exercise. First, for all the DGPs, when

the true parameters are constant the model performs extremely well. This means that the

adaptive filter correctly collapses the parameters to a constant. As a result, RMSEs and MAEs

are virtually nil, the actual coverage extremely precise and a pile-up at zero occurs in more

than two thirds of the cases. This result implies that our estimation method passes an essential

prerequisite, i.e. it does not generate spurious time variation in the coefficients when this is

not supported by the data. Second, for DGPs 1, 3 and 4 and across all the specifications for

the parameters we obtain extremely good coverage. For DGP3 (time-varying volatility in the

measurement equation) the results are slightly less favorable in the presence of occasionally

braking coefficients (Single Step, Double Step and Ramp) and when n=250. Third, across

all DGPs the RAMP specification is the one that the model finds more challenging to track.

This specification generally leads to low correlations between actual and estimated parameters,

higher RMSEs and MAEs and lower coverage. Fourth, the adaptive filter is very effective in

estimating time-varying loadings and auto-regressive coefficients, while it is rather conservative

in the estimation of the time-varying variances. In other words, when the variance of either the

measurement or the transition equation are subject to occasional breaks the results appear to

be satisfactory. Yet if time variation is slow, as in the case of a persistent AR(1) process, the

correlation between estimates and actual parameters is markedly lower and in many cases the

filter ends in a pile-up. For instance, in the case of DGP4 we need to perform 618 simulations

17Similarly, in their Monte Carlo Markov Chain estimation, Stock and Watson (2007) reject draws in which
the variances are very close to zero.
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to accumulate 300 samples where the algorithm estimates parameters different from zero, while

in the remaining 318 the estimation does not pick up any change in the model parameters.

However, notice that for the cases in which time variation is detected, the algorithm performs

quite well, i.e. it yields relatively low RMSEs and MAEs and a satisfactory coverage. Hence

we take this results as evidence that, in the case of time-varying variances, the algorithm needs

substantial evidence of breaks in the parameters to move away from zero, i.e. it is relatively

conservative.

To convey a visual idea of the results, in Appendix D.2 we report the graphs of the actual

parameters together with the 68% and 90% confidence bands.18 Most of the features that we

have just described are also visually apparent in these graphs. In particular the 68% confidence

bands appear to be tightly squeezed around the actual values in the case of constant coefficients,

while it is evident the fact that the RAMP specification appears more challenging.

4 Empirical applications

In the following sub-sections we present two empirical exercises showing the usefulness of

our method: the former deals with measuring GDP dynamics combining heterogeneous sources

of information; in the latter we compile a financial stress indicator and evaluate its relevance

for forecasting GDP growth.

4.1 GDPplus revisited

Our first empirical application consists of extending the model proposed by Aruoba et al.

(2016) in the context of GDP measurement. Before going into the application let us briefly

provide a short background to this exercise. Given national account identities, GDP can be

measured either from the expenditure or from the income side. In the U.S. the expenditure-

side version, which we denote as GDPE, is more widely-used than the income-side version,

which we denote as GDPI . Even though the two measures are supposed to convey the same

information it is often the case that discrepancy between the two concepts is non negligible

and can at time give a contrasting picture about the state of the economy. For instance, there

was an average difference of two percentage points on an annualized basis in the year preceding

the last recession, with GDPI dipping into negative territory and GDPE showing an healthy

two percent growth.19 The question of which GDP measure is more reliable is of particular

interest to policy makers who need to monitor business cycle developments in real time, since

some researchers argue that GDPI , which has traditionally received much less attention than

GDPE, has actually done a better job at recognizing the start of recessions, see Nalewaik (2012).

Aruoba et al. (2016) combine the two existing measures of GDP growth computed from the

expenditure and from the income side (defined, respectively, yE,t and yI,t) in a dynamic factor

18In the case of the AR(1) specification we report the difference between actual and estimated, since the
actual parameters are stochastic and therefore change at each simulation.

19See charts in Appendix E.
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model, and extract through optimal filtering techniques a measure of underlying GDP growth

(which they define GDPplus) that is relatively cleaner of measurement error. In our empirical

exercise we extend their framework by allowing for the parameters of the dynamic factor model

to change over time, driven by the score of the conditional likelihood.

Formally, the baseline constant parameter specification from which we start is described in

the following state space model:20

[
yE,t

yI,t

]
=

[
1

1

]
αt +

[
εE,t

εI,t

]
,

[
εE,t

εI,t

]
∼ N (0, H) ,

αt+1 = ρ0 + ρ1αt + ρ2αt−1 + et, et ∼ N (0, σ2) ,

(27)

where H is a full 2 × 2 matrix. It can be readily recognized that the model is a traditional

small-scale dynamic factor model in the spirit of Sargent and Sims (1977). The common factor

αt merges the information from the two GDP indicators, that is GDPplus.

We extend model (27) to allow for all the seven parameters, that are ρ0, ρ1, ρ2, σ2
t , vech(H),

to change over time.21

We then collect in the vector ft the three groups of parameters, namely the coefficients

of the transition equation, the variance of the transition equation, and the elements of the

measurement equation covariance, i.e. ft = (ρ0,t, ρ1,t, ρ2,t, σ
2
t , vech(J̃t)

′)′, where J̃t is the log-

Cholesky transformation of Ht as described earlier. We assume that

ft+1 = ft + Ωst,

where Ω is a diagonal matrix function of only three static coefficients: κρ, κσ, κl, one for each

group of the TVP. The three static parameters κρ, κσ, κl are estimated by ML.22 Estimation

results are reported in Table 2.

In Figure 1 we report the main estimation results. The first feature that our model unveils,

see panel (a), is a secular downward trend in the time-varying intercept ρ0,t coupled with marked

falls corresponding to some recessions, namely those of the early 70s and early 2000s. The

constant parameter model severely overestimates this term at the end of the sample (dashed

green line), with important implications for the estimated long-run growth of the economy.

The evolution of the autoregressive parameters is shown in panel (b). Notice that the second

20Aruoba et al. (2016) consider up to five alternative specifications, which differ from each other with
respect to the correlation structure of the measurement errors. In our application we consider only one of their
specifications. Furthermore, in Aruoba et al. (2016) the state variable (i.e. the GDPplus) follows an AR(1)
process, we instead prefer the AR(2) specification that is more in line with traditional business cycle models.
Notice that the spectrum of an AR(1) model has its peak at zero and most of its mass on the left hand side of
the frequency band, while in an AR(2) model the peak of the spectrum can occur at cyclical frequencies.

21Several papers provide a motivation for this extension. Antolin-Diaz et al. (2016), for instance, focus on
shifts in the intercept ρ0 as a way to capture different business cycle phases and the secular fall of productivity
growth. The importance of changes in GDP growth volatility are stressed by Perez-Quiros and McConnell
(2000). The relationship between changes in the conditional mean and in the persistence of US GDP growth is
studied by Camacho and Perez Quiros (2007).

22The algorithm is initialized fitting an AR(2) model to the average of the two GDP series in the first 4
years. Confidence sets take into account estimation uncertainty following Hamilton (1986).
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autoregressive term (red line) fluctuates markedly over time, although it is reasonably centered

around zero, the value to which is constrained in the original specification by Aruoba et al.

(2016). The first AR term (blue line), also displays non-negligible time variation, especially at

the end of the sample. Aruoba et al. (2016) place a lot of emphasis on this parameter, which

they estimate at around 0.5 on the whole sample (dashed green line). This value is higher than

the one estimated for either yE,t or yI,t, which leads them to conclude that the filtered measure

is more predictable than its components. Our findings cast some doubt over the possibility of

exploiting this auto-correlation in real time, since it seems to be the result of the prolonged

fall in macroeconomic activity during the Great Recession rather than a robust, full-sample,

feature of GDPplus.

Next, in panel (c) we report the estimated long-run growth µt = ρ0,t
(1−ρ1,t−ρ1,t) . Notice that

both the time-varying intercept and the the autoregressive terms contribute to defining µt,

so that underestimating or overestimating any of this terms can lead to a poor estimate of

the long-run GDP growth.23 According to our estimates, four distinct phases of U.S. long-

run growth (measured by the long-run forecast of the estimated model) emerge: the first (in

the 1950s and 1960s) characterized by a steady high level of growth, the second (from the

mid-1970s) marked by a rapid deceleration, a third period of resurgence starting from mid-

1990s and, finally, a sharp decline since the burst of the dotcom bubble in the early 2000s,

a development which has been further reinforced by the Great Recession. These results are

strikingly in line with the conclusions reached by Antolin-Diaz et al. (2016). As a result, we

currently estimate long-run growth in the U.S. to stand at levels between 1.5 and 2 percent, in

line with current Congressional Budget Office estimates.

Finally, in panel (d) we show the variance of the error of the common component, a measure

of macroeconomic volatility. It is interesting to notice that, after a prolonged period of decrease

in the 50s and 60s, volatility reaches a plateau until the mid-80s. From 1984 onwards there is a

second marked fall of volatility, corresponding to the Great Moderation, which is interrupted,

and partially reversed by the Great Recession in 2008.

In Figure 2 we report the Kalman gain of yE,t relative to that of yI,t over the whole sample,

which can be interpreted as the relative weights that the two observed measures receive in the

construction of GDPplus. Given how this is computed, we have that values below 1 imply

that a relatively larger weight is assigned to yI,t. From the picture it emerges that, indeed, as

claimed by part of the literature, yI,t better captures the behavior of GDPplus in the middle

of the sample. However, in recent years, an equal weighting scheme seems warranted. This

result squares well with the fact that from July 2015 the BEA started publishing the mean

of yE,t and yI,t as an indicator of the business cycle. Our results corroborate the choice of an

equal weighting scheme at the current juncture.

In Figure 3 we show the resulting GDPplus estimate (blue line) together with the two

23It is worth stressing that this is a key variable for both monetary and fiscal policy. Orphanides (2003),
for instance, argues that a failure in identifying a permanent slowdown in productivity growth in the first part
of the 70s led monetary policy makers to be excessively complacent, resulting in a prolonged period of high
inflation. Long-run projections are also at the center of the fiscal policy debate as they determine the solvency
of pension systems and, more generally, the sustainability of public debt.
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underlying components. From this picture it is clear that the estimated latent factor is consid-

erably smoother than the two observed series, so that in many periods yI,t and yE,t fall outside

of the confidence intervals.24

Concluding, when applied to the problem of extracting a cleaner measure of output growth

from observed GDP series, our model recovers a number of stylized facts in US business cycle

dynamics highlighted by a broad number of previous studies but overlooked in the constant

parameters framework proposed by Aruoba et al. (2016). In particular, our model delivers a

real time/time-varying assessment (i) of the long-run economic growth (ii) of macroeconomic

volatility and (iii) of the relative importance of yI,t and yE,t. All these three ingredients are of

great interest to policy makers and business cycle analysts.

4.2 Measuring financial stress in the euro area

In our second empirical exercise we construct a measure of financial stress for the euro area

and evaluate its usefulness in forecasting and nowcasting GDP growth. This application is

designed to test our method in a more complex setting, where the information set is charac-

terized by ragged edges, indicators start in different time periods and are sampled at different

frequencies. Our index of financial stress is estimated starting from the 15 sub-indices that

form the Composite Indicator of Systemic Stress (CISS) for the euro area developed by Hollo’

et al. (2012), see Table 3 for details. We model these 15 variables together with 4 business

cycle indicators, namely GDP growth, industrial production growth and two survey indicators,

the composite Purchasing Manager Index (PMI) and its orders subcomponent. The vector

of observable is yt = (yr
′
t , y

x′
t )′, in which yrt is a vector of macroeconomic variables including

also the quarter on quarter growth rate of GDP and other cyclical indicators, and yxt are the

financial indicators.25

In constructing a measure of financial stress a clear issue is endogeneity, that is we need to

disentangle primitive financial shocks from the endogenous response of financial variables to

other shocks. In particular, Hatzius et al. (2012) define financial shocks as “exogenous shifts

in financial conditions that influence or otherwise predict future economic activity. True finan-

cial shocks should be distinguished from the endogenous reflection or embodiment in financial

variables of past economic activity that itself predicts future activity”. The definition above

is implicitly a statement about Granger-causality and motivates the empirical specification of

our model. In particular, we look for a common index of financial stress that predicts output

beyond the information in the past levels of economic activity.

24In Figures E and E.3 in Appendix E we zoom these comparisons in two recession periods, namely the
1970s recessions and the Great Recession of 2008. It is evident that during these turbulent periods GDPplus
gives less volatile indications on output dynamics than the other two measures.

25Although financial variables are potentially available at frequencies higher than monthly, we restrict our-
selves to the use of monthly averages in order to limit the dimension of the state vector and also because a
monthly update of such an indicator seems sufficiently informative for policy makers.
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Formally, we link the observed variables to the state equation as follows:[
yrt

yxt

]
=

[
λrt 0

0 λxt

][
αrt

αxt

]
+

[
εrt

εxt

]
,

[
εrt

εxt

]
∼ N (0, Ht), (28)

where αrt and αxt summarize the information in the indicators of economic activity and financial

stress. Time variation in the loading vector allows for the relevance of the variables included

in the system for the factors to vary over time. More generally, the information content of

different asset classes could change in different stages of the business cycle. The state vector

evolves as follows:[
αrt+1

αxt+1

]
=

[
γrt

γxt

]
+ Φ1t

[
αrt−1

αxt−1

]
+ Φ2t

[
αrt−2

αxt−2

]
+ ut, ut ∼ N (0,Σt). (29)

The feedback matrices capturing the dynamic relationship between real and financial factors,

Φjt, are restricted to be upper triangular and enforce a Granger-causality restriction between

the two factors. Furthermore, time varying volatilities are allowed for both in the measurement

error and to the innovations of the transition equations.

Note that the contemporaneous relation between the factors is fully captured by the covari-

ance matrix Σt on which we have made no restriction. Therefore, current development in real

activity, i.e. in the unpredictable changes in the coincident indicator αxt, affect contempora-

neously financial stress and vice versa.26 Note that even though the measurement equation is

block diagonal the fact that the covariance matrix is unrestricted implies that financial vari-

ables help to nowcast current economic activity. In fact, it is easy to show that the Kalman

gain is not diagonal in this setting. Intuitively, if financial markets react systematically to

macroeconomic developments, their reaction helps to pin down the real shocks and therefore

to improve the nowcast of the coincident indicator and its components.

Details on the full state space representation of the model and on the estimation method

are discussed in Appendix C.

Figure 4 and 5 show the financial and business cycle factors as estimated by our model.

We compare our index of financial stress with the Composite Index of Systemic Stress (CISS)

produced by Hollo’ et al. (2012) and the business cycle factor with Eurocoin, the monthly

indicator of medium-term growth proposed by Altissimo et al. (2010) and regularly published

by the CEPR and the Bank of Italy.27 Two observations are in order. First, the estimated

financial factor, our measure of financial stress, also captures correctly the two period of fi-

nancial stress after the Lehman and the Sovereign Debt Crisis. Differently from the CISS,

however, it raises warning signals in the early part of the sample, corresponding to the 2000-

2001 downturn. This is not surprising, since in our model innovations to the financial factor

and to business cycle factor are correlated, but the Granger causality restriction imposed on

26In principle one can attempt at identifying financial shocks in this context for instance imposing that eco-
nomic activity reacts the developments in the financial market only with a delay, whereas the news components
in the macroeconomic data releases are reflected into changes in asset prices.

27See http://eurocoin.cepr.org. All the indicators are rescaled to have zero mean and unit variance.
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the model ensures that what we are picking up is not a feedback from the business cycle to

financial stress. Second, the business cycle indicator captures the main features of euro-area

business cycle, namely the two expansion phases before the Great Recession, as well as the

double dip downturn generated by the Great Recession first and by the Sovereign Debt Crisis

second.

Next, in Figure 6 we show the time varying elements of the covariance matrix of the un-

observed states, i.e. the volatilities of the business cycle and of the financial factor, as well as

their time varying covariance. The model detects significant shifts in the volatilities in corre-

spondence with the two recent recessions. Noticeably, the covariance between the disturbances

of these two factors appears to be quite stable for most of the sample, but it turns significantly

negative after 2007, a period of both severe financial stress and real economy strains.

The distinctive feature of our method is that it can be used to estimate financial stress

and evaluate its (real time) predictive content for GDP growth in a unified framework. We

therefore set up a real-time out of sample forecast exercise in which we predict GDP 1 to 12

months ahead. We use actual vintages of GDP and industrial production as available from

the ECB area Real Time database and align the surveys and financial variables to replicate as

closely as possible the actual information set available to forecasters at the end of the reference

month. Forecasts are formed for each quarter between 2000q1 and 2014q3. In line with the

nowcasting literature we measure steps ahead in terms of months to GDP releases. Given the

typical publication lag of GDP (45 days) this means that the 1 step ahead forecast is usually

computed with information available in the first month after the reference quarter.28

In Figure 7 we report the evolution of the Root Mean Square Forecast Error (RMSE) of

our model (blue solid line) and contrast it with that of two different benchmarks. The former

is a a simple univariate AR benchmark (red dotted line). The latter is a restricted factor

model in which we exclude financial stress variables, so that forecasts are computed only based

on business cycle indicators (green dashed line). This latter benchmark is useful in assessing

the contribution of financial stress variables to predictive accuracy once timely business cycle

indicators are accounted for. Notice that at long horizons (12 months to GDP release) the

model that performs best is the restricted model with a single business cycle factor. As the

forecast horizon shortens, however, the RMSE of the model that also includes financial stress

variables falls more rapidly than the others. At short horizons (1 to 4 months to GDP release),

the model with two factors performs better than the other two, indicating that information on

financial stress provides valuable coincident information on GDP growth. Not surprisingly both

factor models always perform better than the AR benchmark, which means that the presence

of monthly information improves predictive accuracy.

In Figure 8 we report the cumulative sum of squared forecast error differentials, computed

as

CSSEDt =
t∑

j=1

(e2
j,AR − e2

j,TV P ). (30)

28In the literature this is typically called a backcast.
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This statistics is very useful in revealing the parts of the forecast sample where the TVP-Factor

models accrue their gains relative to the AR benchmark. Positive and increasing values indicate

that the TVP models outperforms the AR benchmark, while negative and decreasing values

suggest the opposite. For simplicity, we focus on short-term horizons (1 to 4 steps ahead). Two

results stand out. First, over most of the sample the CSSED are only mildly upward sloping,

while most of the forecasting gains obtained by our TVP-Factor models are obtained during

the Great Financial Crisis. Second, the gain in forecast accuracy in 2008 is considerably larger

for the model that includes measures of financial stress.

Finally, we look at the relevance of our financial stress indicator for predictive density

accuracy. In Figure 9 we compare the results obtained by the factor model that includes

financial stress indicators (top panel) with those produced by the model that excludes them

(bottom panel). The left-hand panels of Figure 9 show the empirical distribution (p.d.f.) of

the Probability Integral Transforms (PITs) together with the 95% confidence interval (broken

lines) using a normal approximation to a binomial distribution as in Diebold et al. (1998).

If the density forecast produced by the model is satisfactory, the PITs should be distributed

uniformly, see Berkowitz (2003). The right-hand panels display the cumulative distribution

(c.d.f.) of the PITs together with the critical values based on the Rossi and Sekhposyan (2013)

test. Under the null hypothesis the PITs should be uniformly distributed and the c.d.f. of the

PITs should therefore be the 45 degrees line.

Clearly, the forecast densities produced by the model that uses information on financial

variables are well calibrated. Indeed, the PITs distribution is not significantly different from

that of a uniform random variable, and the Rossi and Sekhposyan (2013) test never rejects the

null of uniform distribution. In contrast, when financial indicators are excluded from the model

the left tail of the PITs distribution, corresponding to periods of low/negative growth, is not

well calibrated and the Rossi and Sekhposyan (2013) rejects the null of uniform distribution.

This finding is consistent with the results in Alessandri and Mumtaz (2014), Adrian et al.

(2016) and Giglio et al. (2016), who find that financial indicators are particularly useful in

forecasting economic recessions.

5 Conclusions

In this paper we develop a score-driven approach to estimate state space models with TVP.

By letting the dynamics of the parameters be driven by the score of the predictive likelihood

we show that the model retains many desirable properties, namely it can be analyzed using

an augmented KF procedure. We derive an auxiliary filter that, running in parallel with the

standard KF, allows us estimate simultaneously the unobserved state vector and the TVP.

Given that a variety of time series models have a state space representation, the proposed

methodology has to be considered of wide interest in econometrics and applied macroeconomics.

After presenting the main results we discuss a number of extensions of the theoretical

framework. Two of them could be particularly valuable in applied work. First, since in some
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applications the researcher would like to impose parameters restrictions, such as stationarity

and non-negative variances, we show how to incorporate general restrictions on the model

parameters. Second, we illustrate how the model can be extended to deal with data at mixed

frequencies and missing observations.

We assess the usefulness of the method in the controlled environment of a Monte Carlo

experiment and in two empirical applications. The Monte Carlo exercise shows that the new

filter that we propose tracks well a wide range of possible sources of time variation. Moreover,

when the true data generating process features constant parameters, it does not generate

spurious fluctuations in coefficients and variances. In the empirical section we report the results

of two exercises. In the first one we focus on business cycle measurement. In particular, we

take as a starting point the model that Aruoba et al. (2016) have developed to estimate GDP

growth on the basis of underlying (noisy) measures and extend it to account for time variation

in the model parameters. Our model delivers a real time and time-varying assessment of the

long-run economic growth and of macroeconomic volatility. In a second application we use our

method to extract an indicator of financial stress from a panel of business cycle and financial

variables characterized by mixed frequencies and ragged edges. The model picks up significant

changes in the co-movement between financial stress and the business cycle and allows us to

evaluate the real-time predictive content of financial indicators for GDP growth. We find that

financial stress is relevant for very short-term forecasting and relatively more informative for

predicting recessions.
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Table 1: Monte Carlo exercise

n = 250 n = 500

DGP1: TIME-VARYING LOADING

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile-up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile-up

CONSTANT 0.000 0.000 - 0.680 0.896 215 0.00 0.000 - 0.682 0.898 223

SINE 0.493 0.396 0.899 0.640 0.860 0 0.390 0.311 0.939 0.653 0.870 0

SINGLE STEP 0.433 0.294 0.915 0.656 0.872 0 0.362 0.236 0.942 0.660 0.882 0

DOUBLE STEP 0.485 0.348 0.930 0.648 0.868 0 0.390 0.276 0.952 0.652 0.874 0

RAMP 0.431 0.322 0.463 0.680 0.892 0 0.350 0.247 0.641 0.680 0.892 0

AR(1) MODEL 0.207 0.169 0.649 0.672 0.892 19 0.213 0.171 0.727 0.680 0.898 2

DGP2: TIME-VARYING AR COEFF

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile-up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile-up

CONSTANT 0.000 0.000 - 0.676 0.896 197 0.000 0.000 - 0.680 0.899 204

SINE 0.361 0.291 0.781 0.676 0.896 0 0.281 0.219 0.870 0.682 0.900 0

SINGLE STEP 0.269 0.193 0.718 0.676 0.896 0 0.225 0.154 0.783 0.678 0.897 0

DOUBLE STEP 0.279 0.220 0.845 0.684 0.900 0 0.235 0.175 0.880 0.682 0.898 0

RAMP 0.193 0.153 0.190 0.680 0.896 0 0.178 0.135 0.379 0.680 0.896 0

AR(1) MODEL 0.243 0.195 0.537 0.678 0.896 48 0.252 0.204 0.634 0.682 0.900 15

DGP3: TIME-VARYING VOLATILITY - MEASUREMENT EQUATION ERROR

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile-up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile-up

CONSTANT 0.00 0.00 - 0.674 0.892 229 0.00 0 0.000 - 0.678 0.898 249

SINE 0.582 0.466 0.551 0.688 0.896 24 0.444 0.360 0.725 0.691 0.896 0

SINGLE STEP 0.493 0.359 0.843 0.636 0.856 0 0.382 0.272 0.881 0.652 0.872 0

DOUBLE STEP 0.448 0.355 0.843 0.624 0.844 1 0.355 0.272 0.881 0.650 0.868 0

RAMP 0.603 0.501 0.200 0.648 0.868 163 0.514 0.417 0.368 0.662 0.878 30

AR(1) MODEL 0.341 0.281 0.476 0.676 0.892 300 0.341 0.274 0.513 0.678 0.892 159

DGP4: TIME-VARYING VOLATILITY - TRANSITION EQUATION ERROR

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile-up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile-up

CONSTANT 0.000 0.000 - 0.680 0.896 249 0.000 0.000 - 0.680 0.898 247

SINE 0.571 0.468 0.578 0.680 0.896 105 0.503 0.405 0.702 0.681 0.896 14

SINGLE STEP 0.508 0.374 0.813 0.652 0.876 1 0.421 0.296 0.859 0.664 0.884 0

DOUBLE STEP 0.472 0.375 0.828 0.644 0.866 0 0.369 0.283 0.878 0.660 0.880 0

RAMP 0.616 0.522 0.162 0.656 0.876 39 0.535 0.442 0.319 0.666 0.886 7

AR(1) MODEL 0.375 0.305 0.482 0.672 0.892 318 0.352 0.283 0.532 0.674 0.894 188

Note: The results shown in the first and in the second panel (DGP1 and DGP2) refer to a bivariate factor model

in which two variables are driven by a single common factor that evolves as an autoregressive process of order 1.

In the first case (DGP1) the loading of the second variable on the common factor varies over time and all the other

parameters are kept constant. In the second case (DGP2) the autoregressive component of the common factor

varies over time and all the other parameters are kept constant. The results shown in the third and in the fourth

panel (DGP3 and DGP4) refer to ARMA(1,1) models that are cast in state space and feature time varying variances

of the random disturbance in, respectively, the measurement and the transition equation. The abbreviations Corr.

and Cov. stand, respectively for Correlation and Coverage, while # Pile-up denotes the number of simulations

in which the algorithm delivers constant parameters. The different laws of motion of the parameters in the first

column (Constant, Sine, Single Step, Double Step, Ramp and AR(1) are described in Section 4).
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Table 2: TVP-GDPplus, Estimation results

κT 0.030

(0.007)

κQ 0.111

(0.021)

κH 0.002

(0.002)

Log-lik -1045.22

Note: The table contains the estimated parameters and their standard errors (in parenthesis) for TVP-

GDPplus. κT relates to the dynamic of the coefficients of the autoregressive specification of the common

factor. κQ and κH relate to the volatility dynamics in the transition and measurement equation, respectively.

The best log-likelihood is indicated with Log-lik.
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Figure 1: Time-varying parameters: GDPplus model
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(b) Time varying AR coefficients
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(c) Time varying long-run mean
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(d) Time varying error variances

Note: The figure reports median estimates (blue solid line) together with 64% confidence intervals (blue dotted line) of the

time-varying coefficient in the time-varying version of the GDPplus model. The dashed green line indicates the estimated

coefficient in the constant parameter version of the model. Shaded areas indicate recessions as dated by the NBER. Panel

(a) reports the intercept, ρ0,t. Panel (b) reports the autoregressive coefficients, ρ1,t (blue lines) and ρ2,t (red lines). Panel

(c) reports the implied long-run mean, estimated as ρ0,t/(1− ρ1,t− ρ2,t). Panel (d) reports the variance of the innovation to

the transition equation, i.e. (σ2
t ).



Figure 2: Relative Kalman Filter Gain
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Note: The figure reports median estimates (solid lines) together with 64% confidence intervals

(dotted lines) of the time-varying relative Kalman gain (GDPE over GDPI) in the time-varying

version of the GDPplus model. The dashed green line indicates relative Kalman Gain in the

constant parameter version of the model. Shaded areas indicate recessions as dated by the NBER.

Figure 3: Estimated Common Factor, GDPE and GDPI
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Note: The figure reports the estimated common factor (at, green dashed) in the time-varying

version of the GDPplus model together with yI,t (blue solid line) and yE,t (purple solid line).

Shaded areas indicate recessions as dated by the NBER.
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Table 3: Data used for the Financial Stress Model

Starting Period Ending Period Frequency

GDP Jan-86 Dec-14 Quarterly

PMI - composite Jan-98 Jan-15 Monthly

PMI - orders Jan-98 Jan-15 Monthly

Industrial Production Feb-87 Dec-14 Monthly

CMAX of non-financial sector stock market Jan-86 Feb-15 Monthly

CMAX A Rated NFC and Gov. Bonds Jan-86 Feb-15 Monthly

MFI Emergency Central Bank Lending Jan-99 Feb-15 Monthly

Stock-Bond Correlation Jan-86 Feb-15 Monthly

Spread 3 Month Euribor-French T Bill Dec-98 Feb-15 Monthly

10 year interest swap spread Mar-98 Feb-15 Monthly

Spread A Rated NFC and Financial Corporations Mar-98 Feb-15 Monthly

Spread A Rated NFC and Gov. Bonds Mar-98 Feb-15 Monthly

RV of 10 year Bund Mar-98 Feb-15 Monthly

RV of the 3-month Euribor rate Dec-98 Feb-15 Monthly

RV of the idiosyncratic equity return Jan-86 Feb-15 Monthly

RV Euro/Yen May-90 Feb-15 Monthly

RV of non-financial sector stock market Mar-98 Feb-15 Monthly

RV Euro/Pound Jun-90 Feb-15 Monthly

RV Euro/US$ Oct-89 Feb-15 Monthly

Note: PMI stands for Purchasing Manager Index. CMAX measures the maximum cumulated loss

over a moving two-year window. RV stands for realized volatility. For further details see Hollo’ et

al. (2012).
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Figure 4: Estimated Financial Stress Factor
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Note: The figure reports the median estimate of the financial stress indicator obtained in our

factor model (solid lines) together with the Composite Index of Systemic Stress (CISS) produced

by Hollo’ et al. (2012). Shaded areas indicate recessions as dated by the CEPR.

Figure 5: Estimated Business Cycle Factor
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Note: The figure reports the median estimate of the business cycle indicator obtained in our factor

model (solid lines) together with EuroCoin, an index of medium-term GDP growth for the euro

area published by the CEPR and the Bank of Italy. Shaded areas indicate recessions as dated by

the CEPR.
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Figure 6: Time Varying Covariances
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Note: The figure reports (i) in the left panel the estimated time-varying variance of the business

cycle factor (ii) in the central panel the estimated time-varying variance of the financial stress

factor (iii) in the right panel the estimated time-varying covariance between the business cycle and

the financial stress factor. Shaded areas indicate recessions as dated by the CEPR.

Figure 7: Root Mean Square Forecast Errors
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Note: The figure reports the Root Mean Square Forecast Errors (RMSFE) obtained with the

Autoregressive model (AR, blue solid line) against the RMSFE attained by the dynamic factor

model estimated by equal weight pooling and a restricted version of the factor model that excludes

financial data.
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Figure 8: Cumulative Sum of Squared Errors Differentials
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Note: The figure reports Cumulative Sum of Squared Errors Differentials between the dynamic

factor model estimated by equal weight pooling and the Autoregressive model (blue solid line)

and the restricted version of the factor model that excludes financial data and the Autoregressive

model (green dashed line). Shaded areas indicate recessions as dated by the CEPR.

Figure 9: Density forecast evaluation
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Note. In the left panels we report the p.d.f. of the PITs (normalized) and the 95% critical values

(dashed lines) approximated by binomial distribution, constructed using a normal approximation.

In the right panels, we show the c.d.f. of the PITs with critical values based on Rossi and Sekh-

posyan (2013).



A Proofs

We follow the notation and the main results on the matrix differential calculus in Abadir

and Magnus (2005, ch 13)

A.1 Result 1

The gradient vector is

∇t = −1

2

[
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We compute the information matrix as the expected value of the Hessian
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Let re-write the Gradient (31) as follows
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The negative Hessian is made of two terms:
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We first computing the first term of (34)
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Putting together (35) and (36) we obtain
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The second term of (34) is equal to
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Putting together (37) and (38) we obtain the following expression for (34)
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Following Harvey (1989, p.141), taking the conditional expectation of (39) the only random

element is the prediction error vt and its first and second derivatives are
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A.2 Result 2
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T t − (KtFt ⊗ Im)

•
Kt] + (Tt ⊗ Tt)

•
P t − (Kt ⊗Kt)

•
F t +

•
Qt (45)

An alternative expression for
•
P t+1 can be obtain as follows:

•
P t+1
m2×k

=
∂vec(TtPtT

′
t)

∂vec(Tt)′
∂vec(Tt)

∂f ′t
+
∂vec(TtPtT

′
t)

∂vec(Pt)′
∂vec(Pt)

∂f ′t
− ∂vec(KtZtPtT

′
t)

∂vec(Kt)′
∂vec(Kt)

∂f ′t

− ∂vec(KtZtPtT
′
t)

∂vec(Zt)′
∂vec(Zt)

∂f ′t
− ∂vec(KtZtPtT

′
t)

∂vec(Pt)′
∂vec(Pt)

∂f ′t
− ∂vec(KtZtPtT

′
t)

∂vec(Tt)′
∂vec(Tt)

∂f ′t
+
•
Qt

= [2Nm(TtPt ⊗ Im)− (Im ⊗KtZtPt)]
•
T t +

+(Tt ⊗ Lt)
•
P t − (TtPtZ

′
t ⊗ Im)

•
Kt − (TtPt ⊗Kt)

•
Zt +

•
Qt (46)
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B Extensions

B.1 Vector autoregressive model

It is straightforward to generalize the results in Section 2.4.2 to the case of the VAR of

order one:

yt+1 = Φtyt + εt, εt ∼ N (0,Σt).

The SSF representation (1) of the above model is

αt = yt, Zt = I, Tt = Φt, Qt = Σt.

The TVP vector is ft = (vec(Φt)
′, vec(Σt)

′)′, and after some algebra we obtain:

st = I−1
t ∇t =

[
(X ′tΣ

−1
t Xt)

−1X ′tΣ
−1
t εt

vec(εtε
′
t)− vec(Σt)

]

Xt = (y′t−1 ⊗ I). The general VAR of order p is obtained with Xt = [(y′t−1, ..., y
′
t−p)⊗ I].

Given the score computed above, we can obtain exactly the algorithm proposed by Koop

and Korobilis (2013) by the following restrictions: (i) in the law of motion (4), Φ = I and Ω

depends on two scalar parameters driving the coefficients and volatility, respectively; (ii) the

scaling matrix X ′tΣ
−1
t Xt is replaced by its smoothed estimator St = (1−λ)St−1 +λ(X ′tΣ

−1
t Xt).

B.2 Mixed frequencies and temporal aggregation

Let consider the high frequency variable xt, which is unobserved, and the corresponding

observed low frequency series, xkt with k > 1. The relation between the observed low frequency

variable and the corresponding indicator depends on whether the variable is a flow or a stock

variable and on how the variable is transformed before entering the model. In all cases the

variable can be rewritten as a weighted average of the unobserved high frequency indicator,

specifically

xt =
2k−2∑
j=0

ωkj x
k
t−j (47)

Here a summary of the implied weights (see e.g. Bańbura et al. (2013)). If the variable enters:

• in level and is a stock : ωk0 = 1, and ωkj = 0 for j > 0;

• in level and is a flow : ωkj = 1 for j = 0, ..., k − 1, and ωkj = 0 for j ≥ k;

• in first diff. and is a stock ωkj = 1 for j = 0, ..., k − 1, and ωkj = 0 for j ≥ k;

• in first diff. and is a flow ωkj = j + 1 for j = 0, ..., k − 1, and ωkj = 2k − j − 1 for j ≥ k.
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Let consider a single indicator (e.g., the GDP) to be aggregated from quarterly to monthly

(i.e. k = 3); assuming that the unobserved monthly variable follows the state space model

yi,t = Zi,tαt + εi,t, εi,t ∼ N
(
0, σ2

i,t

)
, (48)

at quarterly frequency we would observe

yqi,t =
4∑
j=0

ω3
jZi,t−jαt−j +

4∑
j=0

ω4
j ε

4
i,t−j. (49)

Thus, the state space models needs to be accommodated taking into account the aggregation

(49) and the implied missing observations.29

C State space representation and estimation of the Fi-

nancial Stress model

Let first discuss the state space representation of the model (28)-(29) taking into account

the mixed frequency and aggregation. For the macro variables yrt , we have three types of

indicators: the quarterly GDP yqt , two monthly business cycle surveys indicators in the vector

yst , and the industrial production yit. For the financial variables, we have 15 monthly indicators

in the vector yxt . Therefore, the vector of observables yt = (yqt , y
s′
t , y

i
t, y

x′
t )′ contains 19 variables.

The state vector is

αt =
(
1, 1, αyt , α

x
t , α

y
t−1, α

x
t−1, α

y
t−2, α

y
t−3, α

y
t−4, ε

q
t , ε

q
t−1, ε

q
t−2, ε

q
t−3, ε

q
t−4

)′
where αyt is the real factor αxt is the financial factor and εqt is the measurement error of the

quarterly macro variable (i.e., GDP). Due to time aggregation we have the moving average

terms. The 1 appearing in the first two positions of the state vector allow us to include score-

driven breaking intercepts in the transition equations. The corresponding time-varying matrix

of factor loading, consistent with the time aggregation, is equal to

Zt =


0 0 1

3
λqt 0 2

3
λqt−1 0 λqt−2

2
3
λqt−3

1
3
λqt−4

1
3

2
3

1 2
3

1
3

0 0 1
3
λst 0 1

3
λst−1 0 1

3
λst−2 0 0 0 0 0 0 0

0 0 λmt 0 0 0 0 0 0 0 0 0 0 0

0 0 0 λxt 0 0 0 0 0 0 0 0 0 0

 ,

where λqt is scalar, λst is 2 × 1 vector, λmt is a scalar, and λxt is 15 × 1 vector. Note that

we impose restrictions on the factor loadings such that the one relative to the first macro

29Note that although the aggregation implies that the measurement error now follows a moving average
process of order related to the dimension of the high frequency, it nevertheless remains white noise when
observed at the low frequency frequency (see Aruoba et al., 2011). Hence we treat the measurement error at
the low frequency as white noise in what follows.
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variable (the GDP) and the one relative to the first financial variable are both normalized to

one. The measurement errors are εt = (0, εs′t , ε
i
t, ε

x′
t )′ ∼ N (0, Ht), where Ht is diagonal. We

impose positive volatility on non-zero diagonal elements of Ht by log transformation element

by element.

Consistently with the previous discussion, the elements of the transition equation are:

Tt =

 T11,t T12,t T13,t

T21,t T22,t T23,t

T31,t T32,t T33,t

 , T21,t =

 γrt 0

0 γxt

0 0

 T22,t =


φ11,t φ12,t φ13,t φ14,t

0 φ22,t 0 φ24,t

1 0 0 0

0 1 0 0

 ,

all the other Tij are sub-matrices of 0s and 1s, and Qt = blockdiag
[
02×2,Σt, 05×5, σ

2
qt, 04×4

]
. In

order to impose stable roots in the sub-matrix T22,t, we use the transformation described early

on for the two pairs

φr,t = (φ11,t, φ13,t)
′ ∈ S2 φx,t = (φ22,t, φ24,t)

′ ∈ S2

where S2 is the space with stable roots, while φ12,t and φ14,t are left unrestricted. Finally, we

restrict the matrix Σt to be positive definite using the log-Cholesky transformation. Collecting

all the time varying parameters in the vector ft we specialize their score driven law of motion

as

ft+1 = ft + Ωst

The matrix Ω is restricted to be diagonal and to depend on two constants, κs and κv, where the

former drives the amount of time variation in the factor loadings and in the AR coefficients,

while κv is a smoothing parameter that governs the time variation of the model volatilities.

In the financial stress application, given the irregular behaviour of the financial variables

over the considered sample, we find that the maximization of the likelihood is particularly

sensitive to the starting parameter values. Hence, rather than using maximum likelihood

methods we set up a grid of plausible values for the smoothing parameters κs and κv, and esti-

mate the model using model combination strategies, namely equal weights averaging, Dynamic

Model Selection (DMS) and Dynamic Model Averaging (DMA), see Appendix C for further

details. The grid that we use implies the following values for the smoothing parameters:

[0.006, 0.009, 0.012, 0.015], which are broadly in line with those used by Koop and Korobilis

(2013). Since the different estimation methods turn out to deliver broadly similar result, unless

explicitly stated, we refer to the model estimated with equal weights.

Estimation via model averaging and selection proceeds as follows. We specify a grid of

values for the parameters κs and κv. Each point in this grid defines a new model. Weights for

each model j (defined πt|t−1,j) are obtained as a function of the predictive density at time t− 1
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through the following recursions:

πt|t−1,j =
παt−1|t−1,j∑J
l=1 π

α
t−1|t−1,l

(50)

πt|t,j =
πt|t−1,jpj(yt|Yt−1)∑J
l=1 πt|t−1,lpl(yt|Yt−1)

(51)

where pj(yt|Yt−1) is the predictive likelihood of model j. Since this is a function of the prediction

errors and of the prediction errors variance, which are part of the output of the KF, the model

weights can be computed at no cost along with the model parameters estimation. Note that

here a new forgetting factor appears, α, which discounts past predictive likelihoods. We set

this parameter to 0.95. At each point in time, forecast are obtained on the basis of the model

with the highest weight πt|t−1,j or by averaging on the basis of the model weights, see also

Koop and Korobilis (2013). In Figures C.1 and C.2 we report a time series plot of the weights

assigned by the Dynamic Model Averaging algorithm and the indicator of the best model as

selected by Dynamic Model Selection. It can be noticed that the model achieves model sparsity,

in the sense that, after a necessary period of learning, it assigns nontrivial weights only to a

limited number of models. Figure C.2, on the other hand, reveals that the highest weights are

typically assigned to models in the upper part of grid, where time variation is relatively more

pronounced.
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Figure C.1: Model weights (Dynamic Model Averaging)
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Note. The figure reports the Dynamic Weights computed as in equation 51 for the 16 models

estimated using a 4 points grid for the static parameters κs and κv.

Figure C.2: Best Model (Dynamic Model Selection)
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Note. The figure reports the index between 1 and 16 of the model that attains the highest Dynamic

Weight, out of the 16 models estimated using a 4 points grid for the static parameters κs and κv.
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D Monte Carlo exercise

D.1 Calibration

DGP1:Time-varying loadings

CONSTANT: a1 = 1;

SINE: a2 = 2, b2 = 1.5;

SINGLE STEP: a3 = 1, b3 = 2, τ = (2/5)n;

DOUBLE STEP: a4 = 1, b4 = c4 = 1.5, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.5, b5 = 1.5, c5 = 3;

MODEL: a6 = 1, b6 = 0.99, c6 = 0.052.

DGP2: Time-varying autoregressive coefficient

CONSTANT: a1 = 0.7;

SINE: a2 = 0, b2 = 0.7;

SINGLE STEP a3 = 0.8, b3 = −0.6, τ = (2/5)n;

DOUBLE STEP:a4 = 0.8, b4 = c4 = −0.5, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.3, b5 = 0.6. c5 = 2;

MODEL a6 = 0.2, b6 = 0.99, c6 = 0.052;

with the restriction that |ρt| < 1.

DGP3 and DGP4: Time-varying volatilities

CONSTANT: a1 = 1;

SINE: a2 = 7, b2 = 5;

SINGLE STEP: a3 = 1, b3 = −4, τ = (2/5)n;

DOUBLE STEP:a4 = 1, b4 = c4 = −3, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.5, b5 = 4.5, c5 = 3;

MODEL a6 = 0, b6 = 0.99, c6 = 0.052.

In DGP3 and DGP4, after having simulated the dynamic of the volatility the time-varying

volatilities are rescaled so as to have a fixed ratio between the measurement and transition

error variances equal to 1.

In figures D.1 - D.8 we report the simulated true process for the time-varying parameters

(black line), 16% and 88% (green dotted lines) and 5% and 95% (red broken lines) quantiles of

the filtered parameters. In the case of the AR(1) specification we report the difference between

actual and estimated parameters. The figures are based on 300 replications.
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D.2 Actual and estimated parameters

Figure D.1: Time Varying loadings, n=250
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Figure D.2: Time Varying loadings, n=500
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Figure D.3: Time Varying autoregressive coefficients, n=250
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Figure D.4: Time Varying autoregressive coefficients, n=500
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Figure D.5: Time Varying measurement equation error variance, n=250
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Figure D.6: Time Varying measurement equation error variance, n=500
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Figure D.7: Time Varying transition equation error variance, n=250
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Figure D.8: Time Varying transition equation error variance, n=500
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E Additional figures

Figure E.1: GDP(E) vs. GDP(I)

Note: Upper panel: GDP(E) (green line) and GDP(I) (blue line). Lower panel: Difference between the two

GDP measures in annualized percentage rate.

52



Figure E.2: Zooming in the 1970s recessions
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Figure E.3: Zooming in the Great Recession
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Note: GDP sample paths, 1969 – 1977 (Fig. E.2) and 2007 – 2013 (Fig. E.3). In each panel we show the

sample path of the estimated GDPplus factor (blue continuous line) with the 68% confidence interval (blue

dotted lines), together with GDP(I) (green broken line, left panel) and GDP(E) (pink broken line, right panel).
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