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1 Introduction

The increasing availability of large datasets, both in terms of the number of variables and the number

of observations, combined with the recent advancements in the field of econometrics, statistics, and

machine learning, have spurred the interest in predictive models in a data-rich environment; both

in finance and economics.1 As not all predictors are necessarily relevant, decision makers often pre-

select the most important candidate explanatory variables by appealing to economic theories, existing

empirical literature, and their own heuristic arguments. Nevertheless, a decision maker is often still

left with tens– if not hundreds– of sensible predictors that may possibly provide useful information

about the future behaviour of quantities of interest. However, the out-of-sample performance of

standard techniques such as ordinary least squares, maximum likelihood, or Bayesian inference with

uninformative priors tends to deteriorate as the dimensionality of the data increases, which is the well

known curse of dimensionality.

Confronted with a large set of predictors, two main classes of models became popular. Sparse

modelling focus on the selection of a sub-set of variables with the highest predictive power out of a large

set of predictors, and discard those with the least relevance. In the Bayesian literature, a prominent

example is given by George and McCulloch (1993) (and more recently, Ročková and George 2016 and

Ročková 2018), which introduced variable selection through a data-augmentation approach. Similarly,

regularised models take a large number of predictors and introduces penalisation to discipline the

model space. LASSO-type regularisation and ridge regressions are by far the most used in both

research and practice. A second class of models fall under the heading of dense modelling; this is

based on the assumption that, a priori, all variables could bring useful information for prediction,

although the impact of some of these might be small. As a result, the statistical features of a large set

of predictors are assumed to be captured by a much smaller set of common latent components, which

could be either static or dynamic. Factor analysis is a clear example of dense statistical modelling

(see, e.g., Stock and Watson 2002 and De Mol et al. 2008 and the references therein), which is highly

popular in applied macroeconomics.

Both these approaches entail either an implicit or explicit reduction of the model space that is in-

1See, e.g., Timmermann (2004), De Mol, Giannone, and Reichlin (2008), Mönch (2008), Bai and Ng (2010), Bel-
loni, Chen, Chernozhukov, and Hansen (2012), Billio, Casarin, Ravazzolo, and van Dijk (2013), Elliott, Gargano, and
Timmermann (2013), Manzan (2015), Harvey, Liu, and Zhu (2016), Freyberger, Neuhierl, and Weber (2017), Giannone,
Lenza, and Primiceri (2017), and McAlinn and West (2017), just to name a few.
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tended to mitigate the curse of dimensionality. However, the question of which one of these techniques

is best is still largely unresolved. For economic and financial decision making, in particular, these

dimension reduction techniques always lead to a decrease in consistent interpretability, something

that might be critical for policy makers, analysts, and investors. For instance, a portfolio manager

interested in constructing a long-short investment strategy might not find useful to use latent factors

that she cannot clearly identify as meaningful sources of risk, or similarly would not want critical, eco-

nomically sound, predictors to be shrunk to zero. More importantly, Giannone et al. (2017) recently

show, in a Bayesian setting, that the posterior distribution of the parameters of a large dimensional

linear regression do not concentrate on a single sparse model, but instead spreads over di↵erent

types of models depending on priors elicitation. These problems possibly undermine the usefulness of

exploiting data-rich environments for economic and financial decision making.

In this paper, we propose a class of data-rich predictive synthesis techniques and contribute to

the literature on predictive modelling and decision making with big data. Unlike sparse modelling,

we do not assume a priori that there is sparsity in the set of predictors. For example, suppose we

are interested in forecasting the one-step ahead excess returns on the stock market based on, say, a

hundred viable predictors. Using standard LASSO-type shrinkage– a typical solution– will implicitly

impose a dogmatic prior that only a small subset of those regressors is useful for predicting stock

excess returns and the rest is noise, i.e., sparsity is pre-assumed. Yet, there is no guarantee that the

small subset is consistent, or smooth, over time. Similarly, even with such a moderate size, the model

space is about 1e+30 possible combinations of the predictors, which makes di�cult to claim any

reasonable convergence within the class of standard stochastic search variable selection algorithms

(see, e.g., Giannone et al. 2017).

We, in turn, retain all of the information available and decouple a large predictive model into

a set of much smaller predictive regressions, which are constructed by similarity among the set of

regressors. Precisely, suppose these predictors can be classified into J di↵erent subgroups, each one

containing fewer regressors, according to their economic meaning. Rather than assuming a sparse

structure, we retain all of the information by estimating J di↵erent predictive densities– separately

and sequentially– one for each class of predictors, and recouple them dynamically using the predictive

synthesis approach.

One comment is in order. The term and general concept of ”decouple/recouple” stems from the

3



emerging developments in multivariate analysis and graphical models, where a large cross-section of

data are decoupled into univariate models and recoupled via a post-process recovery of the dependence

structure (see Gruber and West 2016 and the recent developments in Gruber and West 2017; Chen,

K., Banks, Haslinger, Thomas, and West 2017). While previous research focuses on making complex

multivariate models scalable, our approach does not directly recover some specific portion of a model

(full models are available but not useful), instead aims to improve forecasts and understand the

underlying structure through the subgroups.

The way the subgroups of regressors are classified in the first step is independent of the decoupling-

recoupling strategy. In the empirical application we classified groups of variables according to their

economic meaning. However, one can use correlation-based clustering algorithms such as, K-means,

fuzzy C-means, hierarchical clustering, mixture of Gaussians, or other nearest neighbour classifications

to construct the set of smaller dimensional regressions.

Our proposed approach significantly di↵ers from model combination of multiple small models (e.g.

multiple LASSO models with di↵erent tuning parameters), such as Stevanovic (2017), by utilising the

theoretical foundations and recent developments of Bayesian predictive synthesis (BPS: West and

Crosse, 1992; West, 1992; McAlinn and West, 2017). This makes our decouple-recouple strategy

theoretically and conceptually coherent, as it regards the decoupled models as separate latent states

that are learned and calibrated using the Bayes theorem in an otherwise typical dynamic linear

modelling framework (see West and Harrison 1997). Under this framework, the dependencies between

subgroups, as well as biases within each subgroup, can be sequentially learned; information that is

critical, though lost in typical model combination techniques.

The intuition why our predictive strategy could improve the forecasting performance compared

to shrinkage methods and factor models is fairly simple. To fix ideas, we reconsider the bias-variance

tradeo↵; a well known statistical property where an increase in model complexity increases variance

and lowers bias and vice versa. The goal in both shrinkage methods and factor models is to arbitrarily

lower model complexity to balance bias and variance, in order to potentially minimise predictive loss.

In terms of LASSO-type shrinkage, increasing the tuning parameter (i.e. increasing shrinkage) leads

to increased bias, so using cross-validation aims to balance the bias-variance tradeo↵ by balancing the

tuning parameter. Similarly, in factor model the optimal number of latent factors is chosen to reduce

the variance by reducing the model dimensionality at the cost of increasing the bias. Our proposed
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method takes a significantly di↵erent approach towards the bias-variance tradeo↵ by breaking a large

dimensional problem into a set of small dimensional ones, while at the same time exploiting the fact

that our methodology can learn the biases and inter-dependencies via Bayesian learning. As this is

the case, recoupling step benefits from biased models, as long as the bias has a signal that can be

learned. More specifically, by decoupling the model into smaller, less complex models, we adjust for

the bias– that characterise each group– that is sequentially learned and corrected, while maintaining

the low variance from each model. This flips the bias-variance tradeo↵ around, exploiting the weakness

of low complexity models to an advantage in the recoupling step, potentially improving predictive

performance.

We calibrate and implement the proposed methodology, which we call decouple-recouple synthesis

(DRS), on both a macroeconomic and a finance application. More specifically, in the first application

we test the performance of our decouple-recouple approach to forecast the one- and three-month ahead

annual inflation rate in the U.S. over the period 1986/1 to 2015/12, a context of topical interest (see,

e.g. Cogley and Sargent 2005, Primiceri 2005, Stock and Watson 2007, Koop and Korobilis 2010, and

Nakajima and West 2013, among others). The set of monthly macroeconomic predictors consists of an

updated version of the Stock and Watson macroeconomic panel available at the Federal Reserve Bank

of St.Louis. Details on the construction of the dataset can be found in McCracken and Ng (2016). The

empirical exercise involves a balanced panel of 119 monthly macroeconomic and financial variables,

which are classified into eight main groups: Output and Income, Labor Market, Consumption, Orders

and Inventories, Money and Credit, Interest Rate and Exchange Rates, Prices, and Stock Market.

The second application relates to forecasting monthly year-on-year total excess returns across

di↵erent industries from 1970/1 to 2015/12, based on a large set of predictors, which have been chosen

by previous academic studies and existing economic theory with the goal of ensuring the comparability

of our results with these studies (see, e.g., Lewellen 2004, Avramov 2004, Goyal and Welch 2008,

Rapach, Strauss, and Zhou 2010, and Dangl and Halling 2012, among others). More specifically, we

collect monthly data on more than 70 pre-calculated financial ratios for all U.S. companies across eight

di↵erent categories. Both returns and predictors are aggregated at the industry level by constructing

value-weighted returns in excess of the risk-free rate and value-weighted aggregation of the single-firm

predictors. Industry aggregation is based on the four-digit SIC codes of the existing firm at each time

t. Those 70 ratios are classified into eight main categories: Valuation, Profitability, Capitalisation,
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Financial Soundness, Solvency, Liquidity, E�ciency Ratios, and Other. Together with industry-

specific predictors, we use additional 14 aggregate covariates obtained from existing research, which

are divided in two categories; aggregate financials and macroeconomic variables (see, Goyal and

Welch 2008 and Rapach et al. 2010).

To evaluate our approach empirically, we compare forecasts against standard Bayesian model

averaging (BMA), in which the forecast densities are mixed with respect to sequentially updated

model probabilities (e.g. Harrison and Stevens, 1976; West and Harrison, 1997, Sect 12.2), as well as

against simpler, equal-weighted averages of the model-specific forecast densities using linear pools,

i.e., arithmetic means of forecast densities, with some theoretical underpinnings (e.g. West 1984). In

addition, we compare the forecasts from our setting with a state-of-the-art LASSO-type regularisation,

which constraints the coe�cients of least relevant variables to be null leading to sparse models ex-

post, and PCA based latent factor modelling (Stock and Watson, 2002; McCracken and Ng, 2016).

While some of these strategies might seem overly simplistic, they have been shown to dominate some

more complex aggregation strategies in some contexts, at least in terms of direct point forecasts in

empirical studies (Genre, Kenny, Meyler, and Timmermann, 2013). Finally, we also compare our

decouple-recouple model synthesis scheme against the marginal predictive densities computed from

the group-specific set of predictors taken separately. Forecasting accuracy is primarily assessed by

evaluating the out-of-sample log predictive density ratios (LPDR); at horizon k and across time indices

t. Although we mainly focus on density forecasts in this paper, we also report the root mean squared

forecast error (RMSFE) over the forecast horizons of interest, which, combined with the LPDR results,

paints a fuller picture of the results.

Irrespective of the performance evaluation metrics, our decouple-recouple model synthesis scheme

emerges as the best for forecasting the annual inflation rate for the U.S. economy. This holds for both

one-step ahead and three-step ahead forecasts. It significantly out-performs both sequential BMA and

the equal-weighted linear pooling of predictive densities. Interestingly, the LASSO performs worst

among the model combination/shrinkage schemes, in terms of density forecasts. The sequential esti-

mates of the latent inter-dependencies across classes of macroeconomic predictors show that pressure

on the labor market and price levels tend to dominate other groups of predictors, with labor market

being a dominant component in early 2000s, while prices tend to increase their weight in the aggregate

predictive density towards the end of the test period.
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The results are possibly even more pronounced concerning the prediction of the yearly total excess

returns across di↵erent industries. The di↵erences in the LPDRs are rather stark and clearly shows

a performance gap in favour of DRS. None of the alternative specifications come close to DRS when

it comes to predicting one-step ahead. While the equally-weighted linear pooling turns out to be a

challenging benchmark to beat, we show that LASSO-type shrinkage estimators and PCA perform

poorly out-of-sample, especially when it comes to predicting the one-step ahead density of excess

returns. This result is consistent with the recent evidence in Diebold and Shin (2017), which show

the sub-optimality of LASSO estimators in out-of-sample real-time forecasting exercises. We also

compare our model combination scheme against the competitors outlined above on the basis of the

economic performance assuming a representative investor with power utility preferences.

The comparison is conducted for the unconstrained as well as short-sales constrained investor at

the monthly horizons, for the entire sample. We find that the economic constraints lead to higher

Certainty Equivalent (CER) values at all horizons and across practically all competing specifications.

Specifically, the short-sale constraint results in a higher CER (relative to the unconstrained case)

of more than 100 basis points per year, on average across sectors. Consistent with the predictive

accuracy results, we generally find that the DRS strategy produces higher CER improvements than

the competing specifications under portfolio constraints. In addition, we show that DRS allows to

reach a higher CER both in the cross-section and in the time-series, which suggests that there are

economically important gains by using our methodology.

The structure of this paper is as follows. Section 2 introduces our decouple-recouple methodology

for the e�cient synthesis of predictive densities. Section 3 presents the core of the paper and report

the empirical results related to both the U.S. annual inflation forecasts and the total stock returns

predictability across industries in the U.S. Section 4 concludes the paper with further discussion.

2 Decouple-Recouple Strategy

A decision maker D is interested in predicting some quantity y, in order to make some informed

decision based on a large set of predictors, which are all considered relevant to D, but with varying

degree. In the context of macroeconomics, for example, this might be a policy maker interested in

forecasting inflation using multiple macroeconomic indicators, that a policy maker can or cannot
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control (such as interest rates). Similar interests are also relevant in finance, with, for example,

portfolio managers tasked with implementing optimal portfolio allocations on the basis of expected

future returns on risky assets.

A canonical and relevant approach is to consider a basic time series linear predictive regression

(see, e.g., Stambaugh 1999, Pesaran and Timmermann 2002, Avramov 2004, Lewellen 2004, Goyal

and Welch 2008, and Rapach et al. 2010, among others);

yt = �
0
xt + ✏t, ✏t ⇠ N(0, ⌫), (1)

where yt is the quantity of interest, xt is a p�dimensional vector of predictors, which could have its

own dynamics, � is the p�dimensional vector of betas, and ✏t is some observation noise (Gaussian

and constant over time here to fix ideas).

In many practically important applications, the dimension of predictors relevant to D is large,

possibly too large to directly fit something as simple as an ordinary linear regression. As a matter

of fact, at least a priori, all of these predictors could provide relevant information for the decision

making process of D. Under this setting, regularisation or shrinkage would not be consistent with

D’s decision making process, as she has no dogmatic priors on the size of the model space. Similarly,

dimension reduction techniques such as principal component analysis and factor models, e.g., Stock

and Watson (2002) and Bernanke, Boivin, and Eliasz (2005), while using all of the predictors available,

reduces them to a small preset number of latent factors that are typically di�cult to interpret or

control, in the sense of optimal decision making.

Our decouple-recouple strategy exploits the fact that the potentially large p�dimensional vector

of predictors can be partitioned into smaller groups j = 1:J , modifying Eq. (1) to

yt = �
0
1xt,1 + ...+ �

0
jxt,j + ...+ �

0
Jxt,J + ✏t, ✏t ⇠ N(0, ⌫). (2)

These groups can be partitioned based on some qualitative categories (e.g. group of predictors related

to the same economic phenomenon), or by some quantitative measure (e.g. clustering based on

similarities, correlation, etc.), though the dimension of each partitioned group should be relatively

small in order to obtain sensible estimates. The first step of our model combination strategy is to
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decouple Eq. (2) into J smaller models, such as,

yt = �
0
jxt,j + ✏t,j , ✏t,j ⇠ N(0, ⌫j), (3)

for all j = 1:J , producing forecast distributions p(yt+k|Aj), where Aj denotes each subgroup, and

k � 1 is the forecast horizon. Since Eq. (3) is a linear projection of data from each subgroup, we

can consider, without loss of generality, that p(yt+k|Aj) is reflecting the information arising from that

subgroup regarding the quantity of interest.

In the second step, we recouple the densities p(yt+k|Aj) for j = 1:J in order to obtain a forecast

distribution p(yt+k) reflecting and incorporating all of the information that arises from each subgroup.

In the most simple setting, p(yt+k|Aj) can be recoupled via linear pooling (see, e.g., Geweke and

Amisano 2011 for a further discussion);

yt+k = w1p(yt+k|A1) + ...+ wjp(yt+k|Aj) + ...+ wJp(yt+k|AJ), (4)

where weights w1:J are estimated by the decision maker based on past observations (e.g. using w1:J

proportional to the marginal likelihood). The main di↵erence between BMA and linear pooling is

about the domain of w1:J and the estimation approach adopted.

While this linear combination structure is conceptually and practically appealing, it does not

capture the fact that we expect and understand that each p(yt+k|Aj) to be biased and dependent

with each other. Arguably each subgroup p(yt+k|Aj) is always biased unless one of them is the data

generating process, which is something we cannot expect in applications in economics or finance.

Geweke and Amisano (2012) formally show that even when none of the constituent models are true,

linear pooling and BMA assign positive weights to several models.

The dependence between p(yt+k|Aj) and p(yt+k|Aq), for j 6= q, is also a crucial aspect of model

combination. As a matter of fact, optimal combination of weights should be chosen to minimise the

expected loss of the combined forecast, which, by definition, reflects both the forecasting accuracy of

each sub-model and the correlation across single forecasts. For instance, it is evident that the marginal

predictive power of macroeconomic variables related to the labor market is somewhat correlated with

the explanatory power of output and income. In addition, correlations across predictive densities are

arguably latent and dynamic. The linkages between liquidity, solvency, and aggregate macroeconomic
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variables changed before and after the great financial crisis of 2008/2009. Thus, an e↵ective recoupling

step must be able to sequentially learn and recover the latent biases and inter-dependencies between

the subgroups/sub-models.

To address these issues, we build on the theoretical foundations and recent developments proposed

in West and Crosse (1992); West (1992); McAlinn and West (2017). Each subgroup is considered to

be a latent state, whereby p(yt+k|Aj) represents a distinct prior on state j = 1, ..., J . As BPS treats

the latent states within the Bayesian paradigm, the biases and inter-dependencies between the latent

states can be learned and recovered via standard Bayesian updating. The di↵erence between BPS

and more general latent factor models, such as PCA, is that BPS allows to pin down each latent state,

using priors p(yt+k|Aj) at each time t, to a group that D specifies. In this respect, the underlying

assumption of BPS is that each latent state reflects information from each subgroup/sub-model, and

thus retains interpretability, which is the key component of D’s decision making process.

2.1 Bayesian Predictive Synthesis

In the general framework of BPS, the decision maker D is interested in predicting some quantity y and

aims to incorporate information from J individual models labeled Aj , (j = 1:J). D has some prior

information p(y) about the quantity of interest, and each Aj provides their own prior distribution

about what they believe the outcome of the quantity is in the form of a predictive distribution hj(xj) =

p(y|Aj); the collection of which defines the information set H = {h1(·), . . . , hJ(·)}. The question BPS

tackles is this: how should a Bayesian decision maker consolidate these prior distributions (D’s own

and of A1:J) and learn, update, and calibrate in order to improve forecasts?

A formal prior-posterior updating scheme posits that, for a given prior p(y), and (prior) informa-

tion set H provided by A1:J , we can update using the Bayes theorem to obtain a posterior p(y|H).

Due to the complexity of H– a set of J density functions with cross-sectional time-varying depen-

dencies as well as individual biases– p(y,H) = p(y)p(H|y) is impractical since p(H|y) is di�cult to

define. The works of West and Crosse (1992) and West (1992) extend the basic theorem of Genest

and Schervish (1985), in the context of incorporating multiple prior information provided by experts,

to show that, under a specific consistency condition, D’s posterior density takes the form

p(y|H) =

Z
↵(y|x)h(x)dx where h(x) =

JY

j=1

hj (xj) . (5)
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Here, x = x1:J = (x1, . . . , xJ)0 is a J�dimensional latent vector of states with priors provided by each

Aj , and ↵(y|x) is a conditional density function, which reflects how the decision maker believes these

latent states to be synthesised. The only requirement of Eq. (5), so that it is a coherent Bayesian

posterior, is that it must be consistent with D’s prior, i.e.,

p(y) =

Z
↵(y|x)m(x)dx where m(x) = E [h(x)] , (6)

the expectation in the last formula being over D’s belief of what p(H) should be. Critically, the

representation of Eq. (5) does not require a full specification of p(y,H), but only the conditional

density ↵(y|x) and the marginal expectation function m(x). These two functions alone allows to

incorporate any prior knowledge in the form of models’ predictions in terms of biases, predictive

accuracy, and more importantly, inter-dependencies among each other. It is important to note that

the theory does not specify the form of ↵(y|x). In fact, McAlinn and West (2017) show that many

forecast combination methods, from linear combinations (including Bayesian model averaging) to

more recently developed density pooling methods (e.g. Aastveit, Gerdrup, Jore, and Thorsrud, 2014;

Kapetanios, Mitchell, Price, and Fawcett, 2015; Pettenuzzo and Ravazzolo, 2016), are special cases of

BPS.

Now, suppose D is interested in the more critical and relevant task of one-step ahead forecasting.

D wants to predict yt and receives current forecast densities Ht = {ht1(xt1), . . . , htJ(xtJ)} from the set

of models. The full information set used by D is thus {y1:t�1,H1:t}, the past data of y and historical

information of predictive distributions coming from A1:J . Extending Eq. (5) to a dynamic context

(as done in McAlinn and West, 2017), D has a dynamic posterior distribution of the forecast of yt at

time t� 1 of the form

p(yt|�t,y1:t�1,H1:t) ⌘ p(yt|�t,Ht) =

Z
↵t(yt|xt,�t)

Y

j=1:J

htj(xtj)dxtj (7)

where xt = xt,1:J is a J�dimensional latent agent state vector at time t, ↵t(yt|xt,�t) is D’s conditional

synthesis function for yt given the latent states xt, and �t represents some time-varying parameters

learned and calibrated over 1:t.

This general framework implies that xt is the realisation of the inherent dynamic latent factors at

time t and a synthesis is achieved by recoupling these separate latent predictive densities to the time
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series yt through the time-varying conditional distribution ↵t(yt|xt,�t). Though the theory does

not specify ↵t(yt|xt,�t), a natural choice– as with McAlinn and West (2017)– is to impose linear

dynamics, such that,

↵t(yt|xt,�t) = N(yt|F
0
t✓t, vt) with F t = (1,x0

t)
0 and ✓t = (✓t0, ✓t1, ..., ✓tJ)

0
, (8)

where ✓t represents a (J + 1)�vector of time-varying synthesis coe�cients. Observation noise is

reflected in the innovation variance term vt, and the general time-varying parameters �t is defined

as �t = (✓t, vt). The evolution of these parameters is needed to complete the model specification.

We follow existing literature in dynamic linear models and assume that both ✓t and vt evolve as a

random walk to allow for stochastic changes over time as is traditional in the Bayesian time series

literature (see West and Harrison 1997; Prado and West 2010). Thus, we consider

yt = F
0
t✓t + ⌫t, ⌫t ⇠ N(0, vt), (9a)

✓t = ✓t�1 + !t, !t ⇠ N(0, vtW t), (9b)

where vtW t represents the innovations covariance for the dynamics of ✓t and vt the residuals variance

in predicting yt, which is based on past information and the set of models’ predictive densities. The

residuals ⌫t and the evolution innovations !s are independent over time and mutually independent

for all t, s. The dynamics of W t is imposed by a standard, single discount factor specification as in

West and Harrison (1997) (Ch.6.3) and Prado and West (2010) (Ch.4.3). The residual variance vt

follows a beta-gamma random-walk volatility model such that vt = vt�1�/�t, where � 2 (0, 1] is a

discount parameter, and �t ⇠ Beta (�nt�1/2, (1� �)nt�1/2) are innovations independent over time

and independent of vs,!r for all t, s, r, with nt = �nt�1 + 1, the degrees of freedom parameter.

With the xt vectors in each F t treated as latent variables, a dynamic latent factor model is defined

through Eqs. (9). When forecasting each t, the latent states are conceived as arising as single draws

from the set of models’ predictive densities htj(·), the latter becoming available at time t � 1 for

forecasting yt. Note that xtj are drawn independently (for t) from

p(xt|�t,y1:t�1,H1:t) ⌘ p(xt|Ht) =
Y

j=1:J

htj(xtj) (10)

with xt,xs conditionally independent for all t 6= s. Importantly, the independence of the xtj , condi-
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tional on htj , must not be confused with the question of modelling and estimation of the dependencies

among predictive densities. D’s modelling and estimation of the biases and inter-dependencies among

these models are e↵ectively mapped on and reflected through the parameters �t = (✓t, vt).

Further discussion on the dynamic synthesis function is in order. While we choose a simple and

flexible dynamic form for the synthesis function, ↵t(yt|xt,�t), in theory we do not need to imply

any certain structure for the synthesis of model-specific predictive densities. For instance, one can

set cross-sectional correlations to be high if di↵erent models are known to give identical predictions;

similarly, if we believe there are clear regime changes that favour certain models at given periods of

time, a regime switching approach or an indicator in the state equation might be suitable. We also

note that most methods in the forecast combination literature focus on weights that are restricted

to the unit simplex, as well as the weights summing to one. For weights summing to one, we can

apply the technique used in Irie and West (2016), where the sum of weights are always restricted to

the same value. For weights restricted to the unit simplex but not summing to one, it is significantly

more complicated, as we now have a non-linear state space model. Although the benefit of having

weights restricted to the unit simplex is interpretability, there is no real gain in terms of forecasting

accuracy in such restriction (Diebold, 1991), just as portfolios allowed to hold short positions can

improve on long only portfolios. In the dynamic setting in Eqs. (9), restricting the weights possibly

leads to an under-performance compared to the unrestricted case. For example, consider the case

where all models overestimate the quantity of interest by some positive value. Under the restrictive

case, there is no combination of weights that can achieve that quantity, while the unrestrictive case

can by imposing some negative coe�cients. For these reasons, we utilise the unrestricted dynamic

weighting scheme implied by Eqs. (9) instead of the conventional restricted variations.

2.2 Estimation Strategy and Forecasting

Estimation for the decouple step is straightforward, depending on the model assumptions for each

subgroup. For (dynamic) linear regressions, we can sample each hj(xj) = p(y|Aj) using conjugate up-

dates. As for the recouple step using BPS, some discussion is needed. In particular, the joint posterior

distribution of the latent states and the structural parameters is not available in closed form. In our

framework, the latent states are represented by the predictive densities of the models, Aj , j = 1, ..., J ,

and the synthesis parameters, �t. We implement a Markov Chain Monte Carlo (MCMC) approach
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using an e�cient Gibbs sampling scheme, which is detailed in Appendix A. Marginal posterior distri-

butions of quantities of interest are computed as mixtures of the model-dependent marginal predic-

tive densities weighted by the synthesis implied by ↵t(yt|xt,�t). Integration over the models space

is performed using our MCMC scheme, which provides consistent estimates of the latent states and

parameters.

Posterior estimates of the latent states xt provide insights into the nature of the conditional de-

pendencies across the subgroups, as well as subgroup characteristics. The MCMC algorithm involves

a sequence of standard steps in a customised two-component block Gibbs sampler: the first compo-

nent simulates from the conditional posterior distribution of the latent states given the data, past

forecasts from the subgroups, and the synthesis parameters. This is the “learning” step, whereby

we learn the biases and inter-dependencies of the latent states. The second step samples the pre-

dictive synthesis parameters, that is, we “synthesise” the models’ predictions by e↵ectively mapping

the biases and inter-dependencies learned in the first step onto parameters in a dynamic manner.

The second step involves the FFBS algorithm central to MCMC in all conditionally normal DLMs

(Frühwirth-Schnatter 1994; West and Harrison 1997, Sect 15.2; Prado and West 2010, Sect 4.5). At

each iteration of the sampler we sequentially cycle through the above steps. In our sequential learning

and forecasting context, the full MCMC analysis is redone at each time point as time evolves and new

data are observed. Standing at time T , the historical information {y1:T ,H1:T } is available and initial

prior ✓0 ⇠ N(m0,C0v0/s0) and 1/v0 ⇠ G(n0/2, n0s0/2), and discount factors (�, �) are specified.

In terms of forecasting, at time t, we generate predictive distributions of the object of interest

as follows: (i) For each sampled �t from the posterior MCMC above, draw vt+1 from its stochastic

dynamics, and then ✓t+1 conditional on ✓t, vt+1 from Eq. (9b)– this gives a draw �t+1 = {✓t+1, vt+1}

from p(�t+1|y1:t,H1:t); (ii) draw xt+1 via independent sampling from ht+1,j(xt+1,j), (j = 1:J); (iii)

conditional on the parameters and latent states draw yt+1 from Eq. (9a). Repeating, this generates a

random sample from the 1-step ahead forecast distribution for time t+ 1.

Forecasting over multiple horizons is often of equal or greater importance than 1-step ahead

forecasting. However, forecasting over longer horizons is typically more di�cult than over shorter

horizons, since predictors that are e↵ective in the short term might not be e↵ective in the long term.

The BPS modelling framework provides a natural and flexible procedure to recouple subgroups over

multiple horizons.
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In the BPS framework, there are two ways to forecast over multiple horizons, through traditional

DLM updating or through customised synthesis. The former, direct approach follows traditional

DLM updating and forecasting via simulation as for 1-step ahead, where the synthesis parameters are

simulated forward from time t to t+k. The latter, customised synthesis involves a trivial modification,

in which the model at time t�1 for predicting yt is modified so that the k-step ahead forecast densities

made at time t� k, i.e., ht�k,j(xtj) replace htj(xtj). While the former is theoretically correct, it does

not address how e↵ective predictors (and therefore subgroups) can drastically change over time as

it relies wholly on the model as fitted, even though one might be mainly interested in forecasting

several steps ahead. McAlinn and West (2017) find that, compared to the direct approach, the

customised synthesis approach significantly improves multi-step ahead forecasts, since the dynamic

model parameters, {✓t, vt}, are now explicitly geared to the k-step horizon.

3 Empirical Study

3.1 Research Design

To shed light on the predictive ability of our decouple-recouple model synthesis strategy, we calibrate

and test the models in two di↵erent scenarios: (1) a macroeconomic application, which relates to

the monthly forecast on the U.S. annual inflation using a large set of macroeconomic and financial

variables, and (2) a finance application concerning the forecasting of the monthly year-on-year stock

returns in excess of the risk-free rate across di↵erent industries. For both applications, for the decouple

step we use a dynamic linear model (DLM: West and Harrison, 1997; Prado and West, 2010), for each

subgroup, j = 1:J ,

yt = �
0
tjxtj + ✏tj , ✏tj ⇠ N(0, ⌫tj), (11)

�tj = �t�1,j + utj , utj ⇠ N(0, ⌫tjU tj), (12)

where the coe�cients follow a random walk and the observation variance evolves with discount stochas-

tic volatility, see, e.g., Dangl and Halling (2012), Koop and Korobilis (2013), Gruber and West (2016),

Gruber and West (2017) and Zhao, Xie, and West (2016). Priors for each decoupled predictive re-

gression are assumed rather uninformative, such as �0j |v0j ⇠ N(m0j , (v0j/s0j)I) with m0j = 00 and

15



1/v0j ⇠ G(n0j/2, n0js0j/2) with n0j = 10, s0 = 0.01. The discount factors for the conditional volatili-

ties in Eq. (11) are set to (�, �) = (0.95, 0.99). For the recouple step, we follow the synthesis function

in Eq. (8), with the following marginal priors: ✓0|v0 ⇠ N(m0, (v0/s0)I) with m0 = (0,10/J)0 and

1/v0 ⇠ G(n0/2, n0s0/2) with n0 = 10, s0 = 0.01. The discount factors are the same as in the decouple

step.

For both studies, we compare our framework against a variety of competing predictive strategies.

First, we compare the aggregate predictive density from the BPS (see Eq.(9a)-(9b)) against the

predictive densities from each subgroup regressions calculated from Eq.(11)-(12). That is we test the

benefits of the recoupling step and the calibration of the aggregate model prediction upon latent bias

and interdependencies. Second, we compare our DRS strategy against a LASSO shrinkage regression

where the coe�cients in Eq.(1) are estimated in a expanding window fashion from a penalised least-

squares regression, i.e.,

�̂LASSO = argmin
�

k y1:t � �
0
x1:t k

2
2 +�

nX

i=1

| �i |

where the shrinkage parameter � is calibrated by a leave-one-out cross-validation, that is the model

is trained by using the whole sample up to t � 1 (cross-validation training set) and the shrinkage

parameter is selected based on the prediction accuracy at time t (cross-validation test set). Although

such an approach is computationally expensive, it provides an accurate out-of-sample calibration of

the shrinkage parameter (see, e.g., Shao 1993). A third competing predictive strategy relates to

dynamic factor modelling where factors are latent and extracted from the set of predictors. That

is we compare our DRS against a dense modelling benchmarking framework (see, e.g., Stock and

Watson 2002). More precisely, the factor model relates each yt to an underlying vector of q < n of

random variables f t, the latent common factors, via

yt = �
0
f t + ✏t, ✏t ⇠ N(0, ⌫t),

xt = �f t + ut, ut ⇠ N(0, ⌧),

where (i) the factors f t are independent with f t ⇠ N(0, Iq), (ii) the ✏t are independent and normally

distributed with a discount-factor volatility dynamics, (iii) ut ? f s8s, t, and (iv) � is the n⇥q matrix

of factor loadings. We recursively estimate the factor model by using an expanding window where the
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optimal number of factors is selected by a BIC information criterion. Also, we assume that the factor

regression betas on the latent factors are time-varying and follow a dynamic linear model consistent

with the DRS specification above. Precisely, at each time t we replace xtj with f t in Eq. (11) and

the slope parameters have a random walk dynamics as in Eq. (12).

The fourth competing strategy is a relatively standard Bayesian Model Averaging in which the

forecast densities are mixed with respect to sequentially updated model probabilities (e.g. Harrison

and Stevens, 1976; West and Harrison, 1997, Sect 12.2). In particular, subgroup-specific predictive

density can be interpreted as a model combination scheme, whereby the weights are restricted to be

inside the unit circle and the jth sub-model is restricted to have weight equal to one. This allows to

compare the benefit of the predictive density calibration that is featured the recoupling step of the

Bayesian predictive synthesis framework underlying our DRS.

A fifth competing predictive strategy is linear pooling of predictive densities such that,

p (yt+k) =
JX

j=1

wjp(yt+k|Aj),
JX

j=1

wj = 1, wj � 0

where the restrictions on the weights wi are necessary and su�cient to assure that p (yt+k) is a density

function for all values of the weights and all arguments of the sub-model density functions (see,

e.g., Geweke and Amisano 2011). Choice of weights in any forecast combination is widely regarded

as a di�cult and important question. Existing literature showed that, despite being theoretically

suboptimal, an equal weighting scheme generates a substantial outperformance with respect to optimal

weights based on log-score or in-sample calibration (see, e.g., Clemen 1989, Timmermann 2004, Smith

and Wallis 2009, and Diebold and Shin 2017). For this reason, we opt for a specification in which

pooling of predictive densities is such that each sub-model has the same weight in the aggregate

forecast, i.e., wj = 1/J . Finally, in the finance application related to predicting future stock returns

we also compare DRS against the prediction from the historical average, as suggested by Campbell

and Thompson (2007) and Goyal and Welch (2008).

3.2 Statistical Performance and Economic Significance

Following standard practice in the forecasting literature, we evaluate the quality of our predictive

strategy against competing models based on both point and density forecasts. In particular, we first
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compare predictive strategies based on a Root Mean Squared Error (RMSE). Ideally, one also wants

to compare the predictive densities across strategies. As a matter of fact, performance measures

based on the obtained predictive densities weigh and compare dispersion of forecast densities along

with location, and elaborate on raw RMSE measures; comparing both measurements, i.e., point and

density forecasts, gives a broader understanding of the predictive abilities of the di↵erent strategies.

We compare predictive strategies based on the log predictive density ratios (LPDR); at horizon k and

across time indices t, that is,

LPDRt(k) =
tX

i=1

log{p(yi+k|y1:i,Ms)/p(yi+k|y1:i,M0)}, (13)

where p(yt+k|y1:t,Ms) is the predictive density computed at time t for the horizon t + k under the

model or model combination aggregation strategy indexed by Ms, compared against our forecasting

framework labeled by M0. As used by several authors recently (e.g. Nakajima and West, 2013;

Aastveit, Ravazzolo, and Van Dijk, 2016), LPDR measures provide a direct statistical assessment of

relative accuracy at multiple horizons that extend traditional 1-step focused Bayes’ factors.

While it is not obvious how to measure economic gains when it comes to assess inflation predictions,

it is fairly natural to isolate the economic benefits of our DRS strategy against competing benchmark

within the context of predicting future stock returns. As often in the empirical finance literature we

evaluate the economic significance of return forecasts by considering the optimal portfolio choice of a

representative investor with moderate risk aversion.

An advantage of our Bayesian setting is that we are not reduced to considering only mean-variance

utility, but can use more general constant relative risk aversion preferences. In particular, we construct

a two asset portfolio with a risk-free asset (rf
t
) and a risky asset (yt; industry returns) for each t, by

assuming the existence of a representative investor that needs to solve the optimal asset allocation

problem

!
?

⌧ = argmax
w⌧

E [U (!⌧ , y⌧+1) |H⌧ ] , (14)

with H⌧ indicating all information available up to time ⌧ , and ⌧ = 1, ..., t. The investor is assumed
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to have power utility

U (!⌧ , y⌧+1) =

h
(1� !⌧ ) exp

⇣
r
f
⌧

⌘
+ !⌧ exp

⇣
r
f
⌧ + y⌧+1

⌘i1��

1� �
, (15)

here, � is the investor’s coe�cient of relative risk aversion. The time ⌧ subscript reflects the fact that

the investor chooses the optimal portfolio allocation conditional on his available information set at

that time. Taking expectations with respect to the predictive density in Eq. (7), we can rewrite the

optimal portfolio allocation as

!
?

⌧ = argmax
!⌧

Z
U (!⌧ , y⌧+1) p(y⌧+1|H⌧ )dy⌧+1, (16)

As far as DRS is concerned, the integral in Eq. (16) can be approximated using the draws from the

predictive density in Eq. (7). The sequence of portfolio weights !?
⌧ , ⌧ = 1, ..., t is used to compute the

investor’s realised utility for each model-combination scheme. Let Ŵ⌧+1 represent the realised wealth

at time ⌧ + 1 as a function of the investment decision,

Ŵ⌧+1 =
h
(1� !

?

⌧ ) exp
⇣
r
f

⌧

⌘
+ !

?

⌧ exp
⇣
r
f

⌧ + y⌧+1

⌘i
, (17)

The certainty equivalent return (CER) for a given model is defined as the annualised value that

equates the average realised utility. We follow Pettenuzzo, Timmermann, and Valkanov (2014) and

compare the the average realised utility of DRS Û⌧ to the average realised utility of the model based

on the alternative predicting scheme i, over the forecast evaluation sample:

CERi =

"P
t

⌧=1 Û⌧,iP
t

⌧=1 Û⌧

# 1
1��

� 1, (18)

with the subscript i indicating a given model combination scheme, Û⌧,i = Ŵ
1��

⌧,i
/(1 � �), and Ŵ⌧,i

the wealth generated by the competing model i at time ⌧ according to Eq. (17). We interpret a

negative CERi as evidence that model i generates a lower (certainty equivalent) return than our DRS

predictive modelling.
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3.3 Macroeconomic application: Forecasting Inflation

The first application concerns monthly forecasting of annual inflation in the U.S., a context of top-

ical interest (Cogley and Sargent, 2005; Primiceri, 2005; Koop, Leon-Gonzalez, and Strachan, 2009;

Nakajima and West, 2013). We consider a balanced panel of N = 128 monthly macroeconomic and

financial variables over the period 1986/1 to 2015/12. A detailed description of how variables are

collected and constructed is provided in McCracken and Ng (2016). These variables are classified

into eight main categories depending on their economic meaning: Output and Income, Labor Market,

Consumption and Orders, Orders and Inventories, Money and Credit, Interest Rate and Exchange

Rates, Prices, and Stock Market. The empirical application is conducted as follows; first, the de-

coupled models are analysed in parallel over 1986/1-1993/6 as a training period, simply estimating

the DLM in Eq. (11) to the end of that period to estimate the forecasts from each subgroup. This

continues over 1993/7-2015/12, but with the calibration of recouple strategies which, at each quarter

t during this period, is run with the MCMC-based DRS analysis using data from 1993/7 up to time

t. We discard the forecast results from 1993/7-2000/12 as training data and compare predictive per-

formance from 2001/1-2015/12. The time frame includes key periods that tests the robustness of the

framework, such as the inflating and bursting of the dot.com bubble, the building up of the Iraq war,

the 9/11 terrorist attacks, the sub-prime mortgage crisis and the subsequent great recession of 2008-

2009. These periods exhibit sharp shocks to the U.S. economy in general, and possibly provide shifts

in relevant predictors and their inter-dependencies. We consider both 1- and 3-step ahead forecasts,

in order to reflect interests and demand in practice.

Panel A of Table 1 shows that our decouple-recouple strategy using BPS improves the one-step

ahead out-of-sample forecasting accuracy relative to the group-specific models, LASSO, PCA, equal-

weight averaging, and BMA. The RMSE of DRS is about half of the one obtained by LASSO-type

shrinkage, a quarter compared to that of PCA, and significantly lower than equal-weight linear pooling

and Bayesian model averaging. In general, our decouple-recouple strategy exhibits improvements of

4% up to over 250% in comparison to the competing predictive strategies considered. For each group-

specific model, we note that the Labor Market achieve similarly good point forecasts, which suggests

that the labor market and price levels might be intertwined and dominate the aggregate predictive

density. Also, past prices alone provide a good performance, consistent with the conventional wisdom
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that a simple AR(1) model often represent a tough benchmark to beat.

[Insert Table 1 about here]

Similarly, Panel B of Table 1 shows that DRS for the 3-step ahead forecasts reflect a critical benefit

of using BPS for the recoupling step for multi-step ahead evaluation. As a whole, the results are

relatively similar to that of the 1-step ahead forecasts, with DRS outperforming all other methods,

though the order of performance is changing.

Delving further into the dynamics of the LDPR, Figure 1 shows the one-step ahead out-of-sample

performance of DRS in terms of predictive density. The figure makes clear that the out-performance

of DRS with respect to the benchmarking model combination/shrinkage schemes tend to steadily

increase throughout the sample. Interestingly, the LASSO sensibly deteriorates when it comes to

predict the overall one-step ahead distribution of future inflation. Similarly, both the equal weight

and BMA show a significant -50% in terms of density forecast accuracy. Consistent with the results in

Table 1 both Labor Market and Prices on their own outperform the competing combination/shrinkage

schemes, except for DRS. Output and Income, Orders and Inventories, and Money and Credit, also

perform well, with Output and Income outperforming Labor Market in terms of density forecasts.

[Insert Figure 1 about here]

On the other hand, we note that Consumption, Interest Rate and Exchange Rates, and the Stock

Market, perform the worst compared to the rest by a large margin. LASSO fails poorly in this exercise

due to the persistence of the data, and erratic, inconsistent regularisation the LASSO estimator

imposes. Also, it is fair to notice that the LASSO predictive strategy is the only one that does not

explicitly consider time varying volatility of inflation. However, stochastic volatility is something that

has been shown to substantially a↵ect inflation forecasting (see, e.g., Clark 2011 and Chan 2017,

among others). In terms of equal-weight pooling and BMA, we observe that BMA does outperform

equal weight, though this is because the BMA weights degenerated quickly to Orders and Inventories,

which highlights the problematic nature of BMA, as it acts more as a model selection device rather

than a forecasting calibration procedure.

Top panel of Figure 2 highlights a first critical component of using BPS in the recouple step,
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namely learning the latent inter-dependencies among and between the subgroups in order to maintain

economic interpretability and reduce the overall model variance. Precisely, the figure reports the latent

BPS coe�cients rescaled such that they are bounded between zero and one and sum to one. This

allows to give a clearer interpretability of the relative importance of these latent interdependencies

through time. We note that prior to the dot.com bubble, Money and Credit, Output and Income, and

Order and Inventories have the largest weight although they quickly reduce their weight throughout

the rest of the testing period.

[Insert Figure 2 about here]

One large trend in coe�cients is with Labor Market, Prices, and Orders and Inventories. After the

dot.com crash, we see a large increase in weight assigned to Labor Market, making it the group with

the highest impact on the predictive density for most of the period. A similar pattern also emerges

with Interest and Exchange Rates at the early stages of the great financial crisis, though to a lesser

extent. Yet, Labor Market does not always represent the group with the largest weight towards the

end of the sample. In the aftermath of the the dot-com crash the marginal weight of Prices trends

significantly upwards, crossing Labor Market around the sub-prime mortgage crisis, making it by far

the highest weighted group and the end of the test period.

Compared to the results from the 1-step ahead forecasts, bottom panel of Figure 2 shows that

there are specific di↵erences in the dynamics of the latent interdependencies when forecasting inflation

on a longer horizon. More specifically, we note a significant decrease in importance of Labor Market

before and after the great recession, and a marked increase of the relative importance of Prices after

the great financial crisis, with Labor Market which is still quite significant towards the end of the

sample. This is a stark contrast to the results of the 1-step ahead forecasts and reflects an interesting

dynamic shift in importance of each subgroup that highlights the flexible specification of BPS for

multi-step ahead modelling.

Looking at the overall bias, i.e., the conditional intercept, Figure 3 clearly show that switch sign

in the aftermath of the short recession in the early 2000s and the financial crisis of 2008/2009.

[Insert Figure 3 about here]

Since the parameters of the recoupling step are considered to be latent states, the conditional intercept
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can be interpret as a free-roaming component, which is not directly pinned down by any group of

predictors. In this respect, and for this application, the time variation in the conditional intercept

of can be thought of as a reflection of unanticipated economic shocks, which then a↵ect inflation

forecasts with some lag. We note some specific di↵erences between the predictive bias for the one-

step ahead (solid light-blue line) and the three-step ahead (dashed light-blue line) forecasts. These

di↵erences are key to understand the long-term dynamics of inflation. For one, compared to the 1-step

ahead conditional intercept, the conditional intercept of the longer-run forecast is clearly amplified.

This is quite intuitive, as we expect forecast performance to deteriorate as the forecast horizon moves

further away, and thus more reliant on the free-roaming component of the latent states. Second, both

forecasts bias substantially change in the aftermath of both the mild recession in the US in the early

2000s and the great financial crisis. The lag here should not look suspicious as the persistent time

variation of both the sub-model predictive densities and the recoupling step imply some stickiness in

the bias adjustment.

3.4 Finance application: Forecasting Industry Stock Returns

We consider a large set of predictors to forecast monthly total excess returns across di↵erent industries

from 1970/1 to 2015/12. The choice of the predictors is guided by previous academic studies and

existing economic theory with the goal of ensuring the comparability of our results with these studies

(see, e.g., Lewellen 2004, Avramov 2004, Goyal and Welch 2008, Rapach et al. 2010, and Dangl and

Halling 2012, among others). We collect monthly data on more than 70 pre-calculated financial ratios

for all U.S. companies across eight di↵erent categories. Both returns and predictors are aggregated

at the industry level by constructing value-weighted returns in excess of the risk-free rate and value-

weighted aggregation of the single-firm predictors. Industry aggregation is based on the four-digit

SIC codes of the existing firm at each time t. We use the ten industry classification codes obtained

from Kenneth French’s website. Those 70 ratios are classified in eight main categories: Valuation,

Profitability, Capitalisation, Financial Soundness, Solvency, Liquidity, E�ciency Ratios, and Other.

Together with industry-specific predictors, we use additional 14 aggregate explanatory variables

which are divided in two additional categories; aggregate financials and macroeconomic variables. In

particular, following Goyal and Welch (2008) and Rapach et al. (2010), the market-level, aggregate,

financial predictors consist of the monthly realised volatility of the value-weighted market portfolio
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(svar), the ratio of 12-month moving sums of net issues divided by the total end-of-year market

capitalisation (ntis), the default yield spread (dfy) calculated as the di↵erence between BAA and

AAA-rated corporate bond yields, and the term spread (tms) calculated as the di↵erence between

the long term yield on government bonds and the Treasury-bill. Additionally, we consider the traded

liquidity factor (liq) of Pástor and Stambaugh (2003), and the year-on-year growth rate of the amount

of loans and leases in Bank credit for all commercial banks.

As far as the aggregate macroeconomic predictors are concerned, we utilise the inflation rate

(infl), measured as the monthly growth rate of the CPI All Urban Consumers index, the real interest

rate (rit) measured as the return on the treasury bill minus inflation rate, the year-on-year growth

rate of the initial claims for unemployment (icu), the year-on-year growth rate of the new private

housing units authorised by building permits (house), the year-on-year growth of aggregate industrial

production (ip), the year-on-year growth of the manufacturers’ new orders (mno), the M2 monetary

aggregate growth (M2), and the year-on-year growth of the consumer confidence index (conf) based

on a survey of 5,000 US households.

The DLM specification in Eq.(11) is attractive due to its parsimony, ease to compute, and the

smoothness it induces to the parameters (see, e.g., Jostova and Philipov 2005, Nardari and Scruggs

2007, Adrian and Franzoni 2009, Pastor and Stambaugh 2009, Binsbergen, Jules, and Koijen 2010,

Dangl and Halling 2012, Pastor and Stambaugh 2012, and Bianchi, Guidolin, and Ravazzolo 2017b,

among others). For the recouple step, we follow the synthesis function in Eq. (8), with the following

priors: ✓0n|v0n ⇠ N(m0n, (v0n/s0n)I) with m0n = 00 and 1/v0n ⇠ G(n0n/2, n0ns0n/2) with n0n =

12, s0n = 0.01. The discount factors are (�, �) = (0.99, 0.95).

The empirical application is designed similarly to the macroeconomic study. We used, as training

period for the decoupled models, the sample 1970/1-1992/9, fitting the liner regression in a expanding

window manner for each industry. Over the period 1992/10-2015/12 we continue the calibration of

the recouple strategies. We discard the forecast results from 1993/7-2000/12 as training data and

compare predictive performance from 2001/1-2015/12. The time frame includes key periods, such as

the early 2000s– marked by the passing of the Gramm-Leach-Bliley act, the inflating and bursting

of the dot.com bubble, the ensuing financial scandals such as Enron and Worldcom and the 9/11

attacks– and the great financial crisis of 2008/2009, which has been previously led by the burst of

the sub-prime mortgage crisis (see, e.g., Bianchi, Guidolin, and Ravazzolo 2017a). Arguably, these
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periods exhibit sharp changes in financial markets, and more generally might lead to in both biases

and the dynamics of the latent inter-dependencies among relevant predictors.

Panel A of Table 2 shows that our decouple-recouple strategy improves the out-of-sample forecast-

ing accuracy relative to the group-specific models, LASSO, PCA, equal-weight averaging, and BMA.

Consistent with previous literature, the recursively computed equal-weighted linear-pooling is a chal-

lenging benchmark to beat by a large margin (see, e.g., Diebold and Shin 2017). The performance gap

between Equal Weight and DRS is not as significant compared to others across industries. The out-

of-sample performance of the LASSO and PCA are worse than other competing model combination

schemes as well as the HA. These results hold for all the ten industries under investigation.

[Insert Table 2 about here]

Similar to the macroeconomic study, the performance gap in favour of DRS is quite luminous related

to the log predictive density ratios. In fact, as seen in Panel B of Table 2, none of the alterna-

tive specifications come close to DRS when it comes to predicting one-step ahead. With the only

partial exception of the Energy sector, DRS strongly outperforms both the competing model combi-

nation/shrinkage schemes and the group-specific predictive densities.

Two comments are in order. First, while both the equal-weight linear pooling and the sequential

BMA tend to outperform the group-specific predictive regressions, the LASSO strongly underperforms

when it comes to predicting the density of future excess returns. This result is consistent with the

recent evidence in Diebold and Shin (2017). They show that simple average combination schemes are

highly competitive with respect to standard LASSO shrinkage algorithm. In particular, they show

that good out-of-sample performances are hard to achieve in real-time forecasting exercise, due to the

intrinsic di�culty of small-sample real-time cross validation of the LASSO tuning parameter.

Delving further into the dynamics of the LPDR, Figure 4 shows the whole out-of-sample path

of density forecasting accuracy across modelling specifications. For the ease of exposition we report

the results for Consumer Durable, Consumer Non-Durable, Manufacturing, Telecomm, HiTech, and

Other industries. The results for the remaining industries are quantitatively similar and available

upon request. Top-left panel shows the out-of-sample path for the Consumer Durable sector. The

DRS compares favourably against alternative predictive strategies. Similar results appear in other

sectors.
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As a whole, Figure 4 shows clear evidence of how the competing model combination/shrinkage

schemes possibly fails to rapidly adapt to structural changes. Although the performance, pre-crisis,

is good, it is notable that there is a large loss in predictive performance after the great recession in

2008/2009. DRS consistently shows a performance robust to shifts and shocks and stays in the best

group of forecasts throughout the testing sample.

[Insert Figure 4 about here]

The out-of-sample performance of the LASSO sensibly deteriorates when it comes to predicting the

overall one-step ahead distribution of excess returns. The equal-weight linear-pooling turns out to

out-perform the competing combination schemes but DRS, as well as the group-specific predictive

regressions. Arguably, the strong outperformance of DRS is due to its ability to quickly adjust

to di↵erent market phases and structural changes in the latent inter-dependencies across groups of

predictors, as highlighted by the DLM-type of dynamics in Eqs. (9). In addition, unlike others, the

LASSO-type predictive strategy does not explicitly take into consideration stochastic volatility in the

predictive regression, which possibly explains the substantial and persistent underperformance in the

aftermath of the great financial crisis, a period of abrupt market fluctuations.

Figure 5 shows that there is a substantial flexibility in the DRS coe�cients and some interesting

aspects related to returns predictability emerge.2 For instance, the role of Value and Financial

Soundness is highly significant in predictive stock returns, with substantial fluctuations and di↵erences

around the great financial crisis of 2008/2009. Financial Soundness indicators involve variables such

as cash flow over total debt, short-term debt over total debt, current liabilities over total liabilities,

long-term debt over book equity, and long-term debt over total liabilities, among others. These

variables arguably capture a company’s risk level in the medium-to-long term as evaluated in relation

to the company’s debt level, and therefore collectively capture the ability of a company to manage

its outstanding debt e↵ectively to keep its operations. Quite understandably, the interplay between

debt (especially medium term debt) and market value increasingly a↵ect risk premia, and therefore

the predicted value of future excess returns in a significant manner.

[Insert Figure 5 about here]

2As above, the figure reports the latent interdependencies rescaled such that they are bounded between zero and one
and sum to one.
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Although the interpretation of the dynamics of the latent interdependencies is not always clean, some

interesting picture emerge. Take the Other sector as an example; in the 10-industry classification we

used, the Other sector is composed by business services, constructions, building materials, financial

services, and banking. The financial capacity of all these industries, especially the banking and

finance sector, has been significantly a↵ected after the collapse of Lehman in the fall of 2008. As

a matter of fact, on the one hand, anecdotal evidence and policy making commentaries highlighted

how the increasing burden, due to a huge amount of non-performing loans in the banking sectors,

ultimately a↵ected those sectors more dependent on bank financing, such as construction and building

materials. On the other hand, while the regime of low policy rates might have, in the short term,

helped to prevent a disorderly adjustment of balance sheets in distressed banks and provided relief

in terms of lower interest payments in those more exposed to mortgages, they also weakened the

incentive to repair balance sheets of banks and building societies in the first place. As a result, the

joint e↵ect of moral-hazard issues and the massive amount of non-performing loans and the subsequent

risk capacity of financial intermediaries represented significant sources of financial risk.

Although there are some similarities in the recoupling dynamics across industries, some cross-

sectional heterogeneity emerge as well. For instance, for few industries, e.g., other, manufacturing,

and consumer non-durable, profitability tend to play a significant role in the aggregate predictive

density until the great financial crisis of 2008/2009.

As a whole, Figure 5 provide substantial evidence on the out-of-sample instability in the latent

interdependencies across group of predictive densities over time. However, one comment is in order.

It should be clear that our goal here is not to over-throw other results from the empirical finance

literature with respect to the correlation among predictors, but to deal with the crucial aspect of

modelling the dynamic interplay between di↵erent, economically motivated, predictive densities in

forecasting excess stock returns.

The time variation in the latent interdependencies is reflected in the aggregate dynamic bias which

is sequentially corrected within the BPS framework. Figure 6 shows the dynamics of the calibrated

bias across di↵erent industries.

[Insert Figure 6 about here]

The figure makes clear that there is a substantial change in the aggregate bias in the aftermath of

both the dot.com bubble and the great financial crisis. That is, the aggregate predictive density
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that is synthesised from each class of predictors is significantly recalibrated around periods of market

turmoil.

3.4.1 Economic Significance. We now investigate the economic significance of our DRS com-

pared to the competing predictive strategies. Throughout the empirical analysis we take the perspec-

tive of a representative investor with power utility and moderate relative risk aversion, � = 5. Panel

A of Table 3 shows the results for portfolios with unconstrained weights, i.e. short sales are allowed

to maximise the portfolio returns.

[Insert Table 3 about here]

The economic performance of our decouple-recouple strategy is rather stark in contrast to both

group-specific forecasts and the competing forecasts combination schemes. The realised CER from

DRS is much larger than virtually any of the other model specifications across di↵erent industries.

Not surprisingly, given the statistical accuracy of a simple recursive historical mean model is not

remarkable, the HA model leads to a very low CER. Interestingly, the equally-weighted linear pooling

and Bayesian model averaging turn out to be both strong competitors, although still generate lower

CERs.

Panel B of Table 3 shows that the performance gap in favour of DRS is again confirmed under

the restriction that the portfolio weights have to be positive, i.e., long-only strategy. Our decouple-

recouple model synthesis scheme allows a representative investor to obtain a larger performance than

BMA and equal-weight linear pooling. Notably, both the performance of other benchmark strategies

such as the LASSO and dynamic PCA substantially improve by imposing no-short sales constraints.

In addition to the full sample evaluation above, we also study how the di↵erent models perform

in real time. Specifically, we first calculate the CERi⌧ at each time ⌧ as

CERi⌧ =

"
Û⌧,i

Û⌧

# 1
1��

� 1, (19)

Similarly to Eq (18), we interpret a negative CERi⌧ as evidence that model i generates a lower

(certainty equivalent) return at time ⌧ than our DRS strategy. Panel A of Table 4 shows the average

annualised, single-period CER for the forecasting sample for an unconstrained investor. The results
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show that the out-of-sample performance is robustly in favour of the DRS model-combination scheme.

As for the whole-sample results reported in Table 3, the equal-weighted linear pooling turns out to

be a challenging benchmark to beat. Yet, DRS generates constantly higher average CERs throughout

the sample.

[Insert Table 4 about here]

Panel B shows the results for a short-sales constrained investor. Although the gap between DRS and

the competing forecast combination schemes is reduced, DRS robustly generates higher performances

in the order of 10 to 40 basis points, depending on the industry and the competing strategy.

As a whole, Tables 3-4 suggest that by sequentially learn latent interdependencies and biases

improve the out-of-sample economic performance within the context of typical portfolio allocation

example. To parallel the LPDR in Eq. (13), we also inspect the economic performance of the individual

model combination schemes by reporting the cumulative sum of the CERs over time:

CCERit =
tX

⌧=1

log (1 + CERi⌧ ) , (20)

where CERit is calculated as in Eq. (19). Figure 7 shows the out-of-sample cumulative CER across

the forecasting sample and for the Consumer durable, Consumer non-durable, Telecomm, Health,

Shops and Other industrial sectors. Except few nuances, e.g., the pre-crisis period for Telecomm and

Other, the DRS combination scheme constantly outperforms the other predictive strategies.

[Insert Figure 7 about here]

Interestingly, although initially generate a good certainty equivalent return, the LASSO failed to

adjust to the abrupt underlying changes in the predictability of industry returns around the crisis.

As a matter of fact, despite the initial cumulative CER is slightly in favour of the LASSO vis-a-vis

DRS, such good performance disappears around the great financial crisis and in the aftermath of

the consequent aggregate financial turmoil. As a result, the DRS generates a substantially higher

cumulative CER by the end of the forecasting sample, showing much stronger real-time performance.

Results are virtually the same by considering an investor with short-sales constraints. Figure 8

shows the out-of-sample cumulative CER across the forecasting sample and for the Consumer durable,

Consumer non-durable, Telecomm, Health, Shops and Other industrial sectors, but now imposing that
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the vector of portfolio weights should be positive and sum to one, i.e. no-short sale constraints.

[Insert Figure 8 about here]

The picture that emerges is the same. Except a transitory period during the great financial crisis for

the Health sector, the DRS strategy significantly outperforms all competing specifications. As before,

by imposing no-short constraints the gap between DRS the competing specifications is substantially

reduced.

4 Conclusion

In this paper, we propose a framework for predictive modelling when the decision maker is confronted

with a large number of predictors. Our new approach retains all of the information available by first

decoupling a large predictive model into a set of smaller predictive regressions, which are constructed

by similarity among classes of predictors, then recoupling them by treating each of the subgroup of

predictors as latent states; latent states, which are learned and calibrated via Bayesian updating, to

understand the latent inter-dependencies and biases. These inter-dependencies and biases are then

e↵ectively mapped onto a latent dynamic factor model, in order to provide the decision maker with

a dynamically updated forecast of the quantity of interest.

This is a drastically di↵erent approach from the literature where there were mainly two strands

of development; shrinking the set of active regressors by imposing regularization and sparsity, e.g.,

LASSO and ridge regression, or assuming a small set of factors can summarise the whole information

in an unsupervised manner, e.g., PCA and factor models.

We calibrate and implement the proposed methodology on both a macroeconomic and a finance

application. We compare forecasts from our framework against sequentially updated Bayesian model

averaging (BMA), equal-weighted linear pooling, LASSO-type regularization, as well as a set of simple

predictive regressions, one for each class of predictors. Irrespective of the performance evaluation

metric, our decouple-recouple model synthesis scheme emerges as the best for forecasting both the

annual inflation rate for the U.S. economy as well as the total excess returns across di↵erent industries

in the U.S market.
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Ročková, V., and E. I. George. 2016. The spike-and-slab lasso. Journal of the American Statistical
Association .

Shao, J. 1993. Linear model selection by cross-validation. Journal of the American statistical Asso-
ciation 88:486–494.

Smith, J., and K. F. Wallis. 2009. A simple explanation of the forecast combination puzzle. Oxford
Bulletin of Economics and Statistics 71:331–355.

Stambaugh, R. F. 1999. Predictive regressions. Journal of Financial Economics 54:375–421.

Stevanovic, D. 2017. Macroeconomic forecast accuracy in a data-rich environment. Working Paper .

33



Stock, J. H., and M. W. Watson. 2002. Forecasting using principal components from a large number
of predictors. Journal of the American statistical association 97:1167–1179.

Stock, J. H., and M. W. Watson. 2007. Why has US inflation become harder to forecast? Journal of
Money, Credit and Banking 39:3–33.

Timmermann, A. 2004. Forecast combinations. In G. Elliott, C. W. J. Granger, and A. Timmermann
(eds.), Handbook of Economic Forecasting, vol. 1, chap. 4, pp. 135–196. North Holland.

West, M. 1984. Bayesian aggregation. Journal of the Royal Statistical Society (Series A: General)
147:600–607.

West, M. 1992. Modelling agent forecast distributions. Journal of the Royal Statistical Society (Series
B: Methodological) 54:553–567.

West, M., and J. Crosse. 1992. Modelling of probabilistic agent opinion. Journal of the Royal Statistical
Society (Series B: Methodological) 54:285–299.

West, M., and P. J. Harrison. 1997. Bayesian Forecasting & Dynamic Models. 2nd ed. Springer Verlag.

Zhao, Z. Y., M. Xie, and M. West. 2016. Dynamic dependence networks: Financial time series
forecasting & portfolio decisions (with discussion). Applied Stochastic Models in Business and
Industry 32:311–339. ArXiv:1606.08339.

34



Appendix

A MCMC Algorithm

In this section we provide details of the Markov Chain Monte Carlo (MCMC) algorithm implemented

to estimate the BPS recouple step. This involves a sequence of standard steps in a customized two-

component block Gibbs sampler: the first component learns and simulates from the joint posterior

predictive densities of the subgroup models; this the “learning” step. The second step samples the

predictive synthesis parameters, that is we “synthesize” the models’ predictions in the first step

to obtain a single predictive density using the information provided by the subgroup models. The

latter involves the FFBS algorithm central to MCMC in all conditionally normal DLMs ( Frühwirth-

Schnatter 1994; West and Harrison 1997, Sect 15.2; Prado and West 2010, Sect 4.5).

In our sequential learning and forecasting context, the full MCMC analysis is performed in an

extending window manner, re-analyzing the data set as time and data accumilates. We detail MCMC

steps for a specific time t here, based on all data up until that time point.

A.1 Initialization:

First, initialize by setting F t = (1, xt1, ..., xtJ)0 for each t = 1:T at some chosen initial values of the

latent states. Initial values can be chosen arbitrarily, though following McAlinn and West (2017) we

recommend sampling from the priors, i.e., from the forecast distributions, xtj ⇠ htj(xtj) independently

for all t = 1:T and j = 1:J .

Following initialization, the MCMC iterates repeatedly to resample two coupled sets of condi-

tional posteriors to generate the draws from the target posterior p(x1:T ,�1:T |y1:T ,H1:T ). These two

conditional posteriors and algorithmic details of their simulation are as follows.
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A.2 Sampling the synthesis parameters �1:T

Conditional on any values of the latent agent states, we have a conditionally normal DLM with known

predictors. The conjugate DLM form,

yt = F
0
t✓t + ⌫t, ⌫t ⇠ N(0, vt),

✓t = ✓t�1 + !t, !t ⇠ N(0, vtW t),

has known elements F t,W t and specified initial prior at t = 0. The implied conditional posterior

for �1:T then does not depend on H1:T , reducing to p(�1:T |x1:T , y1:T ). Standard Forward-Filtering

Backward-Sampling algorithm can be applied to e�ciently sample these parameters, modified to

incorporate the discount stochastic volatility components for vt (e.g. Frühwirth-Schnatter 1994; West

and Harrison 1997, Sect 15.2; Prado and West 2010, Sect 4.5).

A.2.1 Forward filtering:. One step filtering updates are computed, in sequence, as follows:

1. Time t� 1 posterior:

✓t�1|vt�1,x1:t�1, y1:t�1 ⇠ N(mt�1,Ct�1vt�1/st�1),

v
�1
t�1|x1:t�1, y1:t�1 ⇠ G(nt�1/2, nt�1st�1/2),

with point estimates mt�1 of ✓t�1 and st�1 of vt�1.

2. Update to time t prior:

✓t|vt,x1:t�1, y1:t�1 ⇠ N(mt�1,Rtvt/st�1) with Rt = Ct�1/�,

v
�1
t

|x1:t�1, y1:t�1 ⇠ G(�nt�1/2,�nt�1st�1/2),

with (unchanged) point estimates mt�1 of ✓t and st�1 of vt, but with increased uncertainty

relative to the time t � 1 posteriors, where the level of increased uncertainty is defined by the

discount factors.

3. 1-step predictive distribution: yt|x1:t, y1:t�1 ⇠ T�nt�1(ft, qt) where

ft = F
0
tmt�1 and qt = F

0
tRtF t + st�1.
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4. Filtering update to time t posterior:

✓t|vt,x1:t, y1:t ⇠ N(mt,Ctvt/st),

v
�1
t

|x1:t, y1:t ⇠ G(nt/2, ntst/2),

with defining parameters as follows:

i. For ✓t|vt : mt = mt�1 +Atet and Ct = rt(Rt � qtAtA
0
t),

ii. For vt : nt = �nt�1 + 1 and st = rtst�1,

based on 1-step forecast error et = yt� ft, the state adaptive coe�cient vector (a.k.a. “Kalman

gain”) At = RtF t/qt, and volatility estimate ratio rt = (�nt�1 + e
2
t /qt)/nt.

A.2.2 Backward sampling:. Having run the forward filtering analysis up to time T, the backward

sampling proceeds as follows.

a. At time T : Simulate�T = (✓T , vT ) from the final normal/inverse gamma posterior p(�T |x1:T , y1:T )

as follows. First, draw v
�1
T

from G(nT /2, nT sT /2), and then draw ✓T from N(mT ,CT vT /sT ).

b. Recurse back over times t = T � 1, T � 2, . . . , 0 : At time t, sample �t = (✓t, vt) as follows:

i. Simulate the volatility vt via v
�1
t

= �v
�1
t+1 + �t where �t is an independent draw from

�t ⇠ G((1� �)nt/2, ntst/2),

ii. Simulate the state ✓t from the conditional normal posterior p(✓t|✓t+1, vt,x1:T , y1:T ) with

mean vector mt + �(✓t+1 �mt) and variance matrix Ct(1� �)(vt/st).

A.3 Sampling the latent states x1:T

Conditional on the sampled values from the first step, the MCMC iterate completes with resampling

of the posterior joint latent states from p(x1:t|�1:t, y1:t,H1:t). We note that xt are conditionally

independent over time t in this conditional distribution, with time t conditionals

p(xt|�t, yt,Ht) / N(yt|F
0
t✓t, vt)

Y

j=1:J

htj(xtj) where F t = (1, xt1, xt2, ..., xtJ)
0
. (A.1)

Since htj(xtj) has a density of Tntj (htj , Htj), we can express this as a scale mixture of Normal,

N(htj , Htj), with Ht = diag(Ht1/�t1, Ht2/�t2, ..., HtJ/�tJ), where �tj are independent over t, j with

gamma distributions, �tj ⇠ G(ntj/2, ntj/2).
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The posterior distribution for each xt is then sampled, given �tj , from

p(xt|�t, yt,Ht) = N(ht + btct,Ht � btb
0
tgt) (A.2)

where ct = yt � ✓t0 � h
0
t✓t,1:J , gt = vt + ✓

0
t,1:Jqt✓t,1:J , and bt = qt✓t,1:J/gt. Here, given the previous

values of �tj , we have Ht = diag(Ht1/�t1, Ht2/�t2, ..., HtJ/�tJ) Then, conditional on these new sam-

ples of xt, updated samples of the latent scales are drawn from the implied set of conditional gamma

posteriors �tj |xtj ⇠ G((ntj +1)/2, (ntj + dtj)/2) where dtj = (xtj � htj)2/Htj , independently for each

t, j. This is easily computed and then sampled independently for each 1:T to provide resimulated

agent states over 1:T.

B Further Results on Latent Interdependencies

Finally, we explore the retrospective dependencies of the latent states for the one-step ahead inflation

forecasting exercise. For this, we measure the MC-empirical R2, which is the variation of one of the

retrospective posterior latent states explained by the other latent states. Retrospective, here, means

that these measures are computed using all of the data in the testing period, rather than the one-step

ahead coe�cients of Figure 2. Figure B.1 shows the MC-empirical R2 for one of the latent states, given

all of the other latent states; e.g., variation of Output and Income given Labor Market, Consumption

and Orders, etc. There are some clear patters that emerge. Most latent states are highly dependent

with each other, with Output and Income, Labor Market, Orders and Inventories, Money and Credit,

and Prices grouping up over the whole period, with increased dependencies measure after the crisis

of 2008/2009.

[Insert Figure B.1 about here]

We also note that there are clear trends in terms of decrease in dependencies before the crisis

and sharp increase after. This is indicative of the closeness of these groups, as well as how they shift

through di↵erent economic paradigms. Most interesting is how Interest Rate and Exchange Rates

increase during the dot.com bubble, almost to the level of the other highly dependent states, and drops

down, and then syncs almost perfectly with Stock Market after 2008. We can infer from this that

the dependency characteristics of Interest Rate and Exchange Rates and Stock Market have changed

dramatically over the testing period, with the Stock Market being significantly less dependent to the
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broader macroeconomy, including Interest Rate and Exchange Rates, the crisis of 2008/2009 shifting

the two characteristics to be similar, and finally tapering o↵ at the end again to be less dependent to

the other latent states (though we note this is a general trend in all of the latent states).

Figure B.2 further explores the retrospective dependencies showing the pairwise MC-empirical R2,

which measures the variation explained of one state given another, but now focusing solely on the

pair of states. Based on the results in Table 1 we focus on two of the most prominent states: Labor

Market (top panel) and Prices (bottom panel). Notice that, due to the symmetry in the dependence

structure of the latent predictive densities, the relationship between Labor Market vs Prices and

Prices vs Labor Market are the same. The rest have relatively low dependence, with some notable

exceptions.

[Insert Figure B.2 about here]

For one, we find that Labor Market and Output and Income to be highly dependent around the

build up of the sub-prime mortgage bubble and the consequent great financial crisis of 2008/2009.

Money and Credit almost has an inverse relationship, with it decreasing during that period and

increasing otherwise. On the other hand, we find that, in terms of Prices, there is a gradual increase

of Money and Credit and Orders and Inventories. These changes in coe�cients, as well as the

retrospective dependencies, are indicative of the structural changes in the economy brought on by

crises and shocks, showing that recoupling using BPS successfully learns these trends and is able to

provide economic interpretability to the analysis, compared to, for example, BMA, which degenerated

to one of the groups, or LASSO, which dogmatically shrinks certain factors to zero.
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Table 1. Out-of-sample forecast performance: Forecasting inflation.

This table reports the out-of-sample comparison of our decouple-recouple framework against each individual model,
LASSO, PCA, equal weight average of models, and BMA for inflation forecasting. Performance comparison is based
on the Root Mean Squared Error (RMSE), and the Log Predictive Density Ratio (LPDR) as in Eq. (13). The testing
period is 2001/1-2015/12, monthly.

Panel A: Forecasting 1-Step Ahead Inflation

Group-Specific Models LASSO PCA EW BMA DRS

Output &

Income

Labor

Market
Consump.

Orders &

Invent.

Money

& Credit

Int. Rate &

Ex. Rates
Prices

Stock

Market

RMSE 0.2488 0.2247 0.7339 0.2721 0.2624 0.4258 0.2223 0.5027 0.3348 0.9329 0.2945 0.2721 0.2051

(%) -7.35% -7.37% -122.06% -8.73% -15.75% -40.56% -6.83% -59.59% -63.24% -354.85% -43.59% -32.68% -

LPDR -40.48 -42.05 -233.09 -59.15 -56.34 -134.18 -20.00 -171.21 -3785.15 -285.41 -88.81 -60.40 -

Panel B: Forecasting 3-Step Ahead Inflation

Group-Specific Models LASSO PCA EW BMA DRS

Output &

Income

Labor

Market
Consump.

Orders &

Invent.

Money

& Credit

Int. Rate &

Ex. Rates
Prices

Stock

Market

RMSE 0.3594 0.3595 0.7435 0.3640 0.3875 0.4706 0.3577 0.5343 0.3991 0.9223 0.3777 0.3640 0.3348

(%) -21.32% -9.57% -257.86% -32.68% -27.95% -107.66% -8.39% -145.14% -19.21% -175.45% -12.87% -8.73% -

LPDR -78.65 -225.75 -156.59 -61.96 -122.27 -77.76 -101.55 -101.82 -3804.35 -203.12 -41.00 -78.54 -
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Figure 1. US inflation rate forecasting: Out-of-sample log predictive density ratio

This figure shows the dynamics of the out-of-sample Log Predictive Density Ratio (LPDR) as in Eq. (13) obtained
for each of the group-specific predictors, by taking the results from a set of competing model combination/shrinkage
schemes, e.g., Equal Weight, and Bayesian Model Averaging (BMA). LASSO not included due to scaling. The sample
period is 01:2001-12:2015, monthly. The objective function is the one-step ahead density forecast of annual inflation.
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Figure 2. US inflation forecasting: Posterior means of rescaled latent interdependencies.

This figure shows the latent interdependencies across groups of predictive densities– measured through the predictive
coe�cients– used in the recoupling step for both the one- and three-month ahead forecasting exercise. These latent
components are sequentially computed at each of the t = 1:180 months then rescaled such that they are bounded between
zero and one, and sum to one. Top panel shows the results for the one-step ahead forecasting exercise, while bottom
panel shows the same results but now for a three-period ahead forecast objective function.

(a) 1-step ahead

(b) 3-step ahead
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Figure 3. US inflation rate forecasting: Out-of-Sample Dynamic Predictive Bias

This figure shows the dynamics of the out-of-sample predictive bias obtained as the time-varying intercept from the
recoupling step of the DRS strategy. The sample period is 01:2001-12:2015, monthly. The objective function is the
one-step ahead density forecast of annual inflation.
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Figure 4. US equity return forecasting: Out-of-sample log predictive density ratio

This figure shows the dynamics of the out-of-sample Log Predictive Density Ratio (LPDR) as in Eq. (13) obtained for
each of the group-specific predictors, by taking the historical average of the stock returns (HA), and the results from
a set of competing model combination/shrinkage schemes, e.g., LASSO, Equal Weight, and Bayesian Model Averaging
(BMA). For the ease of exposition we report the results for four representative industries, namely, Consumer Durables,
Consumer Non-Durables, Telecomm, Health, Shops, and Other. Industry aggregation is based on the four-digit SIC
codes of the existing firm at each time t following the industry classification from Kenneth French’s website. The sample
period is 01:1970-12:2015, monthly.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Telecomm (d) Other

(e) Health (f) Shops
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Figure 5. US equity return forecasting: Posterior means of rescaled latent interdependencies.

This figure shows the one-step ahead latent interdependencies across groups of predictive densities– measured through the
predictive coe�cients– used in the recoupling step. For the ease of exposition we report the results for four representative
industries, namely, Consumer Durables, Consumer non-Durables, Manufacturing, Shops, Utils and Other. Industry
aggregation is based on the four-digit SIC codes of the existing firm at each time t following the industry classification
from Kenneth French’s website. The sample period is 01:1970-12:2015, monthly.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Manufacturing (d) Other

(e) Utils (f) Shops
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Figure 6. US equity return forecasting: Out-of-Sample Dynamic Predictive Bias

This figure shows the dynamics of the out-of-sample predictive bias obtained as the time-varying intercept from the
recoupling step of the DRS strategy. The figure reports the results across all industries. The sample period is 01:2001-
12:2015, monthly. The objective function is the one-step ahead density forecast of stock excess returns across di↵erent
industries. Industry classification is based on 4-digit SIC codes.
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Figure 7. US equity return forecasting: Out-of-sample cumulative CER without Constraints

This figure shows the dynamics of the out-of-sample Cumulative Certainty Equivalent Return (CER) for an uncon-
strained as in Eq. (20) obtained for each of the group-specific predictors, by taking the historical average of the stock
returns (HA), and the results from a set of competing model combination/shrinkage schemes, e.g., LASSO, Equal Weight,
and Bayesian Model Averaging (BMA). For the ease of exposition we report the results for four representative industries,
namely, Consumer Durables, Consumer Non-Durables, Telecomm, Health, Shops, and Other. Industry aggregation is
based on the four-digit SIC codes of the existing firm at each time t following the industry classification from Kenneth
French’s website. The sample period is 01:1970-12:2015, monthly.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Telecomm (d) Other

(e) Health (f) Shops
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Figure 8. US equity return forecasting: Out-of-sample cumulative CER with short-sale constraints

This figure shows the dynamics of the out-of-sample Cumulative Certainty Equivalent Return (CER) for a short-sale
constrained investor as in Eq. (20) obtained for each of the group-specific predictors, by taking the historical average of the
stock returns (HA), and the results from a set of competing model combination/shrinkage schemes, e.g., LASSO, Equal
Weight, and Bayesian Model Averaging (BMA). For the ease of exposition we report the results for four representative
industries, namely, Consumer Durables, Consumer Non-Durables, Telecomm, Health, Shops, and Other. Industry
aggregation is based on the four-digit SIC codes of the existing firm at each time t following the industry classification
from Kenneth French’s website. The sample period is 01:1970-12:2015, monthly.

(a) Consumer Durable (b) Cons. Non-Durable

(c) Telecomm (d) Other

(e) Health (f) Shops
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Figure B.1. US inflation rate forecasting: Retrospective latent dependencies

This figure shows the retrospective latent interdependencies across groups of predictive densities used in the recoupling
step. The latent dependencies are measured using the MC-empirical R2, i.e., variation explained of one model given the
other models. These latent components are sequentially computed at each of the t = 1:180 months.
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Figure B.2. US inflation rate forecasting: Retrospective latent dependencies (paired)

This figure shows the retrospective paired latent interdependencies across groups of predictive densities used in the
recoupling step. The latent dependencies are measured using the paired MC-empirical R2, i.e., variation explained of
one model given another model, for Labor Market (top) and Prices (bottom). These latent components are sequentially
computed at each of the t = 1:180 months.
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