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1 Introduction

Multivariate macroeconomic time series data are often observed over long time horizons, but at low

frequencies. Methods based on the vector autoregression (VAR) model are probably the most widely

used tools for the modelling and forecasting of aggregate macroeconomic variables. In most practical

applications, the VAR model does not include more than five or six variables because otherwise

the number of parameters becomes too large. The endowment of coefficient matrices in a macro

VAR model with time-varying processes is even more challenging. It typically requires methods

to reduce the dimensionality. Nevertheless, these time-varying extensions often deliver important

insights. For example, a topical example is the study towards the dynamic, and potentially diverse,

spillover channels from financial markets to the real economy.

This paper suggests a simple, transparent methodology to estimate time-varying parameter VAR

models. We use an intuitive dynamic factor structure for the time-varying coefficient matrices. The

covariance matrix of the error terms follows flexible score-driven dynamics. Our approach is in the

spirit of the adaptive state space models of Delle Monache et al. (2016)

In the literature on time-varying coefficient VARs, often Bayesian approaches are employed, see

for instance, Primiceri (2005), Canova and Ciccarelli (2009) and Canova and Ciccarelli (2004). In

a recent article, Prieto et al. (2016) use the Bayesian time-varying parameter approach of Primiceri

(2005) to model the dynamic interactions of two macro and four financial time series. They find

that shocks to the financial variables and their transmission to the real economy, measured by GDP

growth, are amplified during crisis periods. We address a similar research question as they do, but

with a completely different, frequentist methodology.

[[[ An extended literature review will be inserted here. ]]]

The paper is structured as follows. The time-varying parameter model and our estimation ap-

proach are decribed in section 2. Section 3 presents a small Monte Carlo study, in which we inves-

tigate whether our method can filter out different patterns in the dynamic coefficient matrices. In

section 4, the method is applied to the macro-financial data set of Prieto et al. (2016). Section 5

concludes.
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2 The Time-Varying VAR model with dynamic factors

We denote the N -dimensional vector of time series variables by yt for time index t = 1, . . . , T where

T is the time series length. We define the vector autoregressive (VAR) model of order p, referred to

as the VAR(p) model, by yt = Φ[1]yt−1 + . . . + Φ[p]yt−p + εt, for t = p + 1, . . . , T , where Φ[i] is

the N ×N autoregressive coefficient matrix, for i = 1, . . . , p, and εt is the N -dimensional vector of

disturbances that is identically and independently distributed as a multivariate normal with mean zero

and variance matrix H , we can denote this by εt ∼ NID(0, H). Parameter estimation and impulse

response analysis are widely explored in textbooks such as Hamilton (1994) and Lutkepohl (2005).

The VAR(p) model can be efficiently formulated as yt = ΦYt−1:p + εt where Φ =
[
Φ[1], . . . ,Φ[p]

]
is

theN×Np coefficient matrix and Yt−1:p =
(
y′t−1, . . . , y

′
t−p
)′ is theNp×1 vector of lagged dependent

variables, for t = p+ 1, . . . , T . Throughout the discussions and developments below, we assume that

the initial observation set {y1, . . . , yp} is fixed and given.

The VAR(p) model with time-varying parameters is then given by

yt = Φt Yt−1:p + εt, εt ∼ NID(0, Ht), t = p+ 1, . . . , T, (1)

where Φt is the N ×Np time-varying matrix of autoregressive coefficients and Ht is the N ×N time-

varying variance matrix. The two time-varying matrices are modelled separately and very differently

in nature. We let Φt be dependent on a set of dynamic factors which are specified as stochastic

processes. We show that the resulting model can be formulated as a linear Gaussian state space

model. Hence this part of the analysis can be based on the Kalman filter and related methods, see

Harvey (1989) and Durbin and Koopman (2012). The specification of the time-varying variance

matrix Ht is based on the score-driven approach as introduced in Creal et al. (2013) and Harvey

(2013). In this approach, the variance matrix Ht is implicitly defined as a nonlinear function of past

observations {yp+1, . . . , yt−1} through the score function of the predictive loglikelihood function of

yt, with respect to Ht. We have opted for these different specifications of time-varying matrices

out of convenience; it facilitates the relatively easy and straightforward implementation of methods

for estimation, analysis and forecasting. This combination is explored in more generality by Delle

Monache et al. (2016) who refer to this approach as adaptive state space models. We follow their

approach, but consider direct updating of the variance matrix, show the specific details for our model

specification and show that the required methods are basic and easy to implement.
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2.1 Time-varying autoregressive coefficient matrix

We specify Φt in (1) as the N ×Np matrix function Φ(·) with its argument being the r × 1 vector of

stochastic dynamic factors ft. We adopt a general linear specification for Φt and is given by

Φt = Φ(ft) = Φc + Φf
1ft,1 + · · ·+ Φf

rft,r (2)

where Φc and Φf
i are n×Np coefficient matrices, for i = 1, . . . , r, and ft,i is the ith element of vector

ft, for i = 1, . . . , r, that is ft = (ft,1 . . . , ft,r)
′. The coefficient matrices are subject to restrictions such

that possible unknown elements in these matrices can be treated as parameters that are identified. The

restrictions can be formulated on case-by-case basis. The stochastic dynamic factors can be specified

as stationary autoregressive processes. For example, we can have

ft+1 = ϕft + ηt, ηt ∼ NID(0,Ση), t = p, . . . , T, (3)

with r×r autoregressive coefficient matrix ϕ and r×1 disturbance vector ηt that is assumed normally

distributed with mean zero and r × r variance matrix Ση. To keep the model parsimonious but also

for identification purposes, we assume that the dynamic factors are independent and are standardised

(unconditional mean is zero vector and variance is identity matrix) by imposing Ση = I − ϕϕ′. All

elements of the disturbance vectors εt in (1) and ηt in (3) are serially and mutually uncorrelated, at all

leads and lags, that is E(εt η
′
s) = 0 for all t, s = p+1, . . . , T . It is implied that the initial condition for

fp is given by its unconditional properties, that is fp ∼ N(0, I). The generality of this specification

and additional generalisations for the dynamic specifications of ft are discussed in Appendix A.

When we assume that the sequence of variance matrices Hp+1, . . . , HT is known and fixed, we

can represent the model (1), (2) and (3) in space space form. In order to obtain the state space form

of the model, we define ỹt = yt − ΦcYt−1:p and consider the following equation equalities

ỹt =
[
Φf

1ft,1 + . . .+ Φf
rft,r

]
Yt−1:p + εt

=
[
Φf

1 , · · · ,Φf
r

]
(ft ⊗ INp)Yt−1:p + εt

=
(
Y ′t−1:p ⊗

[
Φf

1 , · · · ,Φf
r

])
vec (ft ⊗ INp) + εt

=
(
Y ′t−1:p ⊗

[
Φf

1 , · · · ,Φf
r

])
Qft + εt,
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where Iq is the q× q unity matrix and where the N2p2r× r matrix Q consists of zero and unity values

such that Qft = vec (ft ⊗ INp). We let

Zt =
(
Y ′t−1:p ⊗

[
Φf

1 , · · · ,Φf
r

])
Q,

to obtain the linear Gaussian state space form

ỹt = Ztft + εt, ft+1 = ϕft + ηt, (4)

where the properties of the disturbances εt and ηt are discussed above. The Kalman filter and related

methods can be applied towards the state space model (4); a textbook treatment on state space methods

is provided by Durbin and Koopman (2012).

The vector of prediction errors is defined as vt = yt − E(yt|Ft−1;ψ) where Ft is the set of all

information that is contained from the past upto time t, including all observations, and where ψ is the

parameter vector that collects all unknown coefficients in the autoregressive and variance matrices

including Φc, Φf
1 , . . ., Φf

r , Hp+1, . . ., HT , ϕ and Ση. Under correct model specification, the prediction

error series vp+1, . . . , vT is serially uncorrelated. The variance matrix of the prediction error is defined

as Ft = Var(vt|Ft−1;ψ) = Var(vt;ψ). For a given vector ψ, the Kalman filter can numerically be

implemented and the prediction error and its variance are computed by

vt = ỹt − Ztat, Ft = ZtPtZ
′
t +Ht, Kt = ϕPtZ

′
tF
−1
t ,

at+1 = ϕat +Ktvt, Pt+1 = ϕPt(ϕ−KtZt)
′ + Ση,

(5)

where the prediction of the state vector is given by at = E(ft|Ft−1;ψ) with variance matrix Pt =

Var(ft − at|Ft−1;ψ), for t = p + 1, . . . , T . The weighting matrix Kt is referred to as the Kalman

gain. The Kalman filter is instrumental for the computation of the loglikelihood function of the state

space model as given by

`(ψ) =
T∑

t=p+1

`t(ψ), `t(ψ) = −N
2

log 2π − 1

2
log |Ft| −

1

2
v′tF

−1
t vt. (6)

The maximum likelihood estimation of ψ reduces to the numerical maximisation of the likelihood

`(ψ) with respect to ψ.
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The parameter vector ψ can easily have a large dimension, even for a moderate value of N . A

practical and realistic model will treat matrix Φc as a full square matrix with unknown coefficients

that all need to be estimated. The unconditional expectation of Φt equals Φc in this specification

for ft in (3), that is E(Φt) = Φc since E(ft) = 0, for all t. The matrix Φc is then clearly related,

“in the long-run”, to Φ in the static VAR model as introduced in the beginning of this section. The

maximum likelihood estimation of Φ in a static VAR is simply obtained by an equation-by-equation

regression analysis. In this stationary framework, it can be argued that the static VAR regression

estimator of Φ is also a consistent estimator of Φc in a time-varying VAR model as discussed above.

Hence an estimate of Φc is available and maximum likelihood estimation only needs to apply to the

remaining unknown coefficients in the (sparse, selection) matrices Φf
i , for i = 1, . . . , r, and the r× r

autoregressive coefficient matrix ϕ which we typically assume to be a diagonal matrix.

2.2 Time-varying variance matrix

Each Kalman filter step at time t requires a value for Ht. We use the score-driven approach to let the

variance matrix Ht to change recursively over time. We define the N∗×1 vector fσt = vech(Ht) with

N∗ = N(N + 1)/2. Its dynamic specification is given by

fσt+1 = ω +B fσt + Ast, (7)

where ω is a constant vector, A and B are square coefficient matrices and st is the innovation vector

that let fσt change over time. The unknown coefficients in ω, A and B are placed in the parameter

vector ψ. The distinguishing feature of the score-driven model is the definition of the innovation

vector st as the scaled score vector of the predictive loglikelihood contribution at time t, that is

`t ≡ `t(ψ) in (6), with respect to fσt . In particular, we have st = St∇t where St is the scaling

matrix and∇t is the gradient vector. We first develop an expression for∇t and then an expression for

the scaling matrix St. The transpose of the gradient vector is given by

∇′t =
∂`t
∂fσ ′t

=
∂`t

∂vec(Ft)′
· ∂vec(Ft)

∂vech(Ht)′
=

∂`t
∂vec(Ft)′

· ∂vec(Ht)

∂vech(Ht)′
, (8)
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where the last equality holds since we have Ft = ZtPtZ
′
t + Ht for which Zt does not depend on Ht

and Pt is a function of Hp+1, . . . , Ht−1, but not Ht. The two terms of (8) can be expressed as

∂`t
∂vec(Ft)′

=
1

2
[vec(vt v

′
t)
′ − (vec(Ft))

′]
(
F−1t ⊗ F−1t

)
,

∂vec(Ht)

∂vech(Ht)′
= DN ,

where DN is the N2 × N∗ duplication matrix, see Magnus and Neudecker (2007) for this result and

for the definition of the duplication matrix. It follows that

∇t =
1

2
D′N

(
F−1t ⊗ F−1t

)
(vec(vt v

′
t)− vec(Ft)) . (9)

For many score-driven models, the inverse of the information matrix is taken as the scaling matrix St

for the gradient vector. We derive an expression of the information matrix by the following steps,

It = E[∇t∇′t|Ft−1]

=
1

4
D′N

(
F−1t ⊗ F−1t

)
Var [vec(vt v

′
t)− vec(Ft)|Ft−1]

(
F−1t ⊗ F−1t

)
=

1

4
D′N

(
F−1t ⊗ F−1t

)
(IN2 + CN)DN

=
1

2
D′N

(
F−1t ⊗ F−1t

)
DN ,

where we have exploited the properties Var[vec(vt v
′
t) − vec(Ft)|Ft−1] = (IN2 + CN) (Ft ⊗ Ft) and

(IN2 + CN)DN = 2DN , where CN is the N2 × N2 commutation matrix; see Chapter 3 in Magnus

and Neudecker (2007) for definition and discussions. The inverse of the information matrix is used

for the scaling of the score function and is given by

I−1t = 2D+
n (Ft ⊗ Ft)D+ ′

N , (10)

where D+
N = (D′N DN)−1D′N is the elimination matrix for symmetric matrices, see Magnus and

Neudecker (1980). We set the scaling as St = I−1t and hence the scaled score st = I−1t ∇t becomes

st = D+
N(Ft ⊗ Ft)D+

NDN(F−1t ⊗ F−1t )[vec(vt v
′
t)− vec(Ft)]

= D+
N [vec(vt v

′
t)− vec(Ft)]

= vech(vt v
′
t)− vech(Ft).
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The derivation above relies on the same arguments as those used in Theorem 13 of Magnus and

Neudecker (2007). For the score-driven update of the variance factors in fσt of (7), we obtain

fσt+1 = ω + A [vech(vt v
′
t)− vech(Ft)] +B fσt , (11)

for t = p+ 1, . . . , T .

The score updating function (11) can easily be incorporated in the Kalman filter (5) as follows:

vt = ỹt − Ztat, Ft = ZtPtZ
′
t +Ht, Kt = ϕPtZ

′
tF
−1
t ,

at+1 = ϕat +Ktvt, Pt+1 = ϕPt(ϕ−KtZt)
′ + Ση, Ut = vt v

′
t − Ft,

fσt+1 = ω + Avech(Ut) +Bfσt , Ht+1 = unvech(fσt+1),

for t = p+ 1, . . . , T . The loglikelihood function (6) for a given parameter vector ψ can be computed

in a similar way via equation (6). The additional unknown parameters in this development are vector

ω and matrices A and B. In a stationary setting, we have E(fσt ) = (I − B)−1ω since E(Ut) = 0.

This “long-run” variance can be associated with the variance matrix of the static VAR as discussed

at the beginning of this section. We may argue that the variance estimate of H , as obtained from

the equation-by-equation regression computations, is the consistent estimate of (I − B)−1ω, after

vectorisation vech. Hence, we have ω̂ = (I − B)Ĥ where Ĥ is the regression residual variance

estimate of H in the static VAR model. Then the maximum likelihood estimation only needs to be

extended for the parameters in the (sparse) matrices A and B.

2.3 Direct updating of time-varying variance matrix

For the purpose of obtaining a direct updating equation for the variance matrix Ht, we have that

vec(Ht) = DN vech(Ht) = DN f
σ
t and we obtain

vec(Ht+1) = DN ω +DN AD
+
N [vec(vt v

′
t)− vec(Ft)] +DN BD+

Nvec(Ht),

for t = p + 1, . . . , T . When we specify the matrices A and B in (7) such that DN AD
+
N = A∗ ⊗ A∗

and DN BD+
N = B∗ ⊗B∗, we have

Ht+1 = Ω + A∗ (vt v
′
t − Ft)A∗ ′ +B∗HtB

∗ ′, (12)
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where Ω is a symmetric matrix such that vech(Ω) = ω. In case, the matrices A and B are diagonal,

the matrices A∗ and B∗ are also diagonal with their diagonal elements equal to the square root values

of the corresponding diagonal values of A and B, respectively. In case A = a · IN∗ and B = b · IN∗ ,

the updating reduces simply to

Ht+1 = Ω + a (vt v
′
t − Ft) + bHt.

This time-varying variance matrix updating equation can even more conveniently be incorporated

within the Kalman filter. Assume that the parameter vector ψ is given, such that the coefficient

matrices Φc, Φf
i , ϕ, Ω, A, and B are known, for i = 1, . . . , p, we are then able to simply add the

updating for Ht into the Kalman filter equations of (5), that is

vt = ỹt − Ztat, Ft = ZtPtZ
′
t +Ht,

Kt = ϕPtZ
′
tF
−1
t ,

at+1 = ϕat +Ktvt, Pt+1 = ϕPt(ϕ−KtZt)
′ + Ση,

Ht+1 = Ω + A∗ (vt v
′
t − Ft)A∗ ′ +B∗HtB

∗ ′,

(13)

On the basis of this Kalman filter, the loglikelihood function `(ψ) can be computed as in (6) and the

unknown parameter vector ψ can be estimated via the numerical maximisation of `(ψ) with respect to

ψ. Furthermore, from the predicted estimates at, we obtain the estimated paths for the time-varying

Φt in (2) while simultaneously we obtain the time-varying variances Ht.

3 Monte Carlo study

To verify whether the proposed methodology is capable to identify the underlying dynamic processes

and the unknown parameters in finite samples, we have designed and carried out the following Monte

Carlo study. We simulate a vector time series from a VAR(p) model with p = 1, a time-varying

coefficient matrix Φt based on a single factor ft, and a time-varying variance matrix Ht. The data

generation process is given by

yt = Φtyt−1 + εt, εt ∼ NID(0, Ht), t = 1, . . . , T,
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with

Φt = Φfft, ft+1 = ϕft + ηt, ηt ∼ NID(0, 1− ϕ2).

with the initial observation set to y0 = 0, the initial factor has value f1 = 0.95 and with the parameter

values set to Φf
ii = 1, Φf

i,j = 0, ϕ = 0.95, for i, j = 1, . . . , N and i 6= j. The time-varying variance

matrix is set equal to Ht = Hfσt where the diagonal values of H are set to 1, the off-diagonal values

of H are set to 0.1, and the time-varying fσt is some deterministic pattern. We consider the following

two possible patterns for fσt :

the sine function: fσt = 1 + 0.95 cos(2πt/150),

the step function: fσt = 1.5− I(t > T/2),

for t = 1, . . . , T , and where I(·) denotes the indicator function. The sample sizes in the simulation

study are given byN = 5, 7 and T = 250, 500. In Figure 1 we present two examples of simulations of

data sets with N = 5 and T = 500, one for the sine and one for step variance function. The impact of

the variance factors is clearly visible: we can observe the two distinctive patterns of heteroskedasticity

in the time series. Furthermore, the common factor in the autoregressive coefficients leads to co-

movements in the time series.

Given a simulated time series vector, we apply our methodology in a straightforward manner. We

use the amended Kalman filter equations (13) for the computation of the loglikelihood function (6);

the maximum likelihood estimates for ϕ and Φf are obtained by its numerical maximisation. The final

step is to construct the time-varying Φt and Ht with ψ replaced by its maximum likelihood estimate.

In the Monte Carlo study we repeat this process 200 times and record all parameter estimates and

extracted paths for Φt and Ht. We compute the mean squared error (MSE) for the 200 individual

parameter estimates and the 200 paths of the time-varying elements of Φt and Ht. In case of the

parameters, we consider the difference between the true parameter and its estimates. In case of the

time-varying elements, we consider the difference between the true path and the filtered estimates,

and the MSE over the time dimension. The results are presented in Table 1.

In Figure 2 we present the true processes for ft and fσt together with the median of their corre-

sponding 200 extracted estimated paths, also with the 5% and 95% quantiles. It reflects the capabili-

ties of our procedure to capture the underlying dynamics, both in the serial dependence as well as the

variance (or volatility) factors. We believe that the procedure is rather successful in identifying the
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Figure 1: Two examples of simulated data sets with N = 5 from sine variance pattern (upper panel)
and step variance pattern (lower panel)
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Table 1: Simulation results
Mean squared errors for individual parameter estimates and time-varying factor estimates for ft, over the 200 Monte Carlo
replications. The cases of N = 5, 7 and T = 250, 500 are considered. Further, we consider two deterministic patterns of
a time-varying variance: sine function and step function.

variance pattern “sine”
N=5 N=7

T=250 T=500 T=250 T=500
ϕ 0.01177 9e-04 0.00991 0.00048

Φf 0.41609 0.15935 0.33568 0.18428
ft 0.06768 0.06491 0.06332 0.06485

variance pattern “step”
N=5 N=7

T=250 T=500 T=250 T=500
ϕ 0.01122 0.00076 0.00828 0.00063

Φf 0.24277 0.06938 0.20426 0.07465
ft 0.07205 0.06799 0.06396 0.06871

dynamic structures accurately in a small-sample setting.

4 Empirical illustration: Dynamic macro-financial linkages

We estimate a six-dimensional time-varying parameter VAR. The data set is the same as used in

Prieto et al. (2016).1 It contains two macroeconomic variables, nominal GDP growth and inflation

(the GDP deflator), as well as four financial variables: real house price inflation, the Baa-Aaa spread

of corporate bonds, real stock price inflation, and the federal funds rate as monetary policy variable.

The sample ranges from 1958Q1 until 2012Q2. Plots of the data are shown in Figure 3.

Our most general empirical specification is a VAR(2) model with two factors for the coefficient

dynamics and a time-varying covariance matrix:

yt = Φ1tyt−1 + Φ2tyt−2 + εt εt ∼ N(0, Ht), (14)

Φjt = Φc
j + Φf

j,1ft,1 + Φf
j,2ft,2, j = 1, 2,

ft+1,j = ϕjft,j + ηt,j ηt,j ∼ N(0, 1− ϕ2
j), j = 1, 2 (15)

where we assume that Φc
1 and Φc

2 are full matrices, Φf
1,1 and Φf

2,1 are diagonal matrices and Φf
1,2

and Φf
2,2 have zero entries except for the four coefficients that measure the impact of the financial

1We obtain their data from the website of the Journal of Applied Econometrics; see the online appendix to Prieto et al.
(2016) for a description.
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Figure 2: Upper panel: True AR(1) process for the factor driving the time-variation in the coefficient
matrices, with median filtered path (red) and empirical 5% and 95% quantiles (green) over 200 sim-
ulation replications. Lower panel: True variance patterns (sine and step) with median filtered path
(red) and empirical 5% and 95% quantiles (green) over 200 simulation replications.

variables on GDP growth. Consequently, ft,1 captures the changing persistence in the six variables

and ft,2 indicates how financial-macro spillovers vary over time.

We also consider restricted versions of (14)-(15). Table 2 lists a goodness-of-fit comparison of

several model specifications. Allowing for score-driven dynamics in the covariance matrix of the

disturbances clearly improves the model fit. We find that in terms of the Akaike information criterion

(AICc), the VAR model with one lag and time-variation in the coefficient matrices according to the

two factors fits the data best.

Figure 4 shows a plot of the two VAR coefficient factors implied by the VAR model specification

(4) in Table 2. Table 3 contains the parameter estimates of the final model.

Finally, Figure 5 shows plots of the estimated time-varying variances in our VAR model.
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Figure 3: Plots of the macro and financial variables that enter the time-varying parameter VAR model.
Table 2: Specification

Comparison of the goodness-of-fit of eight empirical specifications: Static vs dynamic covariance matrices, static coeffi-
cient matrices vs coefficient matrices that are driven by one or two factors, respectively. We consider one and two lags for
the VAR. Before estimation, the data are centered and scaled by their unconditional variances.

one lag two lags
(1) (2) (3) (4) (5) (6) (7) (8)

H X X
Ht X X X X X X
ft,1 X X X X
ft,2 X X
Φc X X X X X X X X

# parameters 36 40 47 52 72 76 89 98
LogLik -1496.2 -1437.2 -1429.5 -1414.5 -1437.5 -1393.7 -1356.3 -1348.5
AICc 3079.2 2973.1 2979.7 2966.6 3092.1 3022.9 3016.8 3057.5

5 Conclusion
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Table 3: Parameter estimates
Parameter estimates for the VAR model with one lag, two factors for the coefficient matrices, and a time-varying covari-
ance matrix. For the parameters ω1, ω2, A, B, ϕ1, and ϕ2, we use transform for numerical stability within the estimation.
Therefore, we report both the unconstrained estimates, and the constrained estimates with their standard errors in brackets.
The nonzero entries in the loading matrices Φf

1 and Φf
2 are not constrained in the estimation and are therefore reported

directly with their standard errors.

ω1 0.6964 -0.3618 Φf
1,11 -1.1224 Φf

2,13 -0.0830
(1.0357) (0.2342) (1.2251)

ω2 -0.0163 -0.0467 Φf
1,22 -0.5944 Φf

2,14 -0.1355
(1.1812) (0.3513) (1.5007)

A 0.3255 -0.7284 Φf
1,33 0.5313 Φf

2,15 0.2935
(2.2364) (0.4356) (1.3403)

B 0.9171 2.4032 Φf
1,44 0.0149 Φf

2,16 0.1391
(1.2238) (0.5280) (0.9997)

ϕ1 0.3554 -0.5952 Φf
1,55 0.0319

(0.2646) (0.4720)
ϕ2 0.9197 2.4380 Φf

1,66 0.9570
(0.0970) (0.2649)
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Figure 4: Filtered factors
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