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Abstract

Temporal aggregation in general introduces a moving average (MA) component in

the aggregated model. A similar feature emerges when not all but only a few variables

are aggregated, which generates a mixed frequency model. The MA component is

generally neglected, likely to preserve the possibility of OLS estimation, but the

consequences have never been properly studied in the mixed frequency context. In

this paper, we show, analytically, in Monte Carlo simulations and in a forecasting

application on U.S. macroeconomic variables, the relevance of considering the MA

component in mixed-frequency MIDAS and UMIDAS models (MIDAS-ARMA and

UMIDAS-ARMA). Specifically, the simulation results indicate that the short-term

forecasting performance of MIDAS-ARMA and UMIDAS-ARMA is better than that

of, respectively, MIDAS and UMIDAS, and the empirical applications confirm this

ranking.
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1 Introduction

The use of mixed-frequency models has become increasingly popular among academics

and practitioners. It is in fact by now well recognised that a good nowcast or short-term

forecast for a low frequency variable, such as GDP growth and its components, requires

to exploit the timely information contained in higher frequency macroeconomic or finan-

cial indicators, such as surveys or spreads. A growing literature has flourished proposing

different methods to deal with the mixed-frequency feature. In particular, models cast in

state-space form, such as vector autoregressions (VAR) and factor models, can deal with

mixed-frequency data, taking advantage of the Kalman filter to interpolate the missing ob-

servations of the series only available at low frequency (see, among many others, Mariano

and Murasawa (2010) and Giannone et al. (2008) in a classical context, and Chiu et al.

(2011) and Schorfheide and Song (2015) in a Bayesian context). A second approach has

been proposed by Ghysels (2016). He introduces a different class of mixed-frequency VAR

models, in which the vector of endogenous variables includes both high and low frequency

variables, with the former stacked according to the timing of the data releases. A third

approach is the mixed-data sampling (MIDAS) regression, introduced by Ghysels et al.

(2006), and its unrestricted version (UMIDAS) by Foroni et al. (2015). MIDAS models are

tightly parameterized, parsimonious models, which allow for the inclusion of many lags of

the explanatory variables. Given their non-linear form, MIDAS models need to be esti-

mated by non-linear least squares (NLS). UMIDAS models are the unrestricted counterpart

of MIDAS models, which can be estimated by simple ordinary least squares (OLS), but

work well only when the frequency mismatch is small.1

In this paper, we start from the observation that temporal aggregation generally in-

troduces a moving average (MA) component in the model for the aggregate variable (see,

e.g., Marcellino (1999) and the references therein). A similar feature should be present in

the mixed frequency models, and indeed we show formally that this is in general the case.

The MA component is often neglected, both in same frequency and in mixed frequency

1The literature on mixed-frequency approaches is vast. The paper cited in the text are a non-exhaustive
list of key contributions to the field. For a review on mixed-frequency literature, see Bai et al. (2013) and
Foroni and Marcellino (2013) among many others.
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models, likely to preserve the possibility of OLS estimation and on the grounds that it can

be approximated by a sufficiently long autoregressive (AR) component.

The effects of neglecting the MA component have been rarely explicitly considered. In

a single frequency context, Lutkepohl (2006) shows that VARMA models are especially

appropriate in forecasting, since they can capture the dynamic relations between time se-

ries with a small number of parameters. Further, Dufour and Stevanovic (2013) showed

that a VARMA instead of VAR model for the factors provides better forecasts for several

key macroeconomic aggregates relative to standard factor models, as well as producing a

more precise representation of the effects and transmission of monetary policy. Leroux

et al. (2017) found that ARMA(1,1) models predict well the inflation change and outper-

form many data-rich models, confirming the evidence on forecasting inflation by Stock and

Watson (2007), Faust and Wright (2013) and Marcellino et al. (2006). Finally, VARMA

models are often the correct reduced form representation of DSGE models (see, for example,

Ravenna (2007)). For mixed frequency models, there are no results available.

We close this gap and analyze the relevance of the inclusion of an MA component

in MIDAS and UMIDAS models, with the resulting specifications labeled, respectively,

MIDAS-ARMA and UMIDAS-ARMA. We first compare the forecasting performance of

the mixed frequency models with and without the MA component in a set of Monte Carlo

experiments, using a variety of Data Generating Processes (DGPs). It turns out that the

short-term forecasting performance is better when including the MA component, and the

gains are higher the more persistent is the series.

Next, we carry out an empirical investigation, where we predict several quarterly macroe-

conomic variables using timely monthly indicators. In particular, we forecast the quarterly

GDP deflator using monthly CPI inflation and the interest rate on 3-month T-Bills. We

begin with this example because, as Stock and Watson (2007) show, the MA component

for US inflation is important, especially after 1984. In fact, while during the 1970s the

inflation process could be very well approximated by a low order AR, after the 1980s this

has become less accurate and the inclusion of an MA component more relevant. Evidence

on the importance of the MA component for the U.S. inflation is also found by Ng and

Perron (2001) and Perron and Ng (1996). Further, we look at two other very relevant

quarterly variables: GDP and personal consumption growth. We forecast them with two

related monthly variables: industrial production and a consumption index, respectively.

Naturally, it would be possible to further improve upon these simple mixed frequency fore-

casting models. However, they already perform rather well, and the inclusion of an MA
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component generally improves the forecasting performance substantially. In particular,

we obtain good results for GDP deflator inflation and personal consumption growth, with

mean squared error (MSE) improvements up to 24% and 19% respectively. Adding the MA

part to forecast GDP growth one year ahead ameliorates the MSE up to 10%.

The remainder of the paper proceeds as follows. In Section 2 we show that temporal

aggregation generally creates an MA component also in mixed frequency models. In Section

3 we describe parameter estimators for the MIDAS-ARMA and UMIDAS-ARMA models.

In Section 4 we present the design and results of the simulation exercises. In Section 5

we develop the empirical applications on forecasting U.S. quarterly variables with monthly

indicators. In Section 6 we summarize our main results and conclude.

2 The rationale for an MA component in mixed fre-

quency models

The UMIDAS regression approach can be derived by aggregation of a general dynamic

linear model in high frequency, as shown by Foroni et al. (2015), while the MIDAS model

imposes specific restrictions on the UMIDAS coefficients in order to reduce their number,

which is particularly relevant when the frequency mismatch is large (for example, with

daily and quarterly series). In Section 2.1, we briefly review the derivation of the UMIDAS

model, highlighting that, in general, there should be an MA component, even though it is

generally disregarded. In Section 2.2, we provide two simple analytical examples in which,

starting from a high-frequency model without MA term, we end up with a mixed frequency

model in which the MA component is present. We discuss estimation of mixed frequency

models with an MA component in a separate section.

2.1 UMIDAS regressions and dynamic linear models

Let us assume that the Data Generating Process (DGP) for the variable y and the N

variables x is a V AR(p) process, as in Foroni et al. (2015): a(L)
1×1

−b(L)
1×N

−d(L)
N×1

C(L)
N×N


 ytm

1×1

xtm
N×1

 =

 eytm
1×1

extm
N×1

 . (1)
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Alternatively, the model can be written as:

a(L)ytm = b1(L)x1tm + ...+ bN(L)xNtm + eytm (2)

C(L)xtm = d(L)ytm + extm (3)

where a(L) = 1− a1L− ...− apL, b(L) = (b1(L), ..., bN(L)), bj(L) = bj1L+ ...+ bjpL
p, j =

1, ..., N , d(L) = (d1(L), ..., dN(L))′, dj(L) = dj1L+ ...+djpL
p, C(L) = I−C1L− ...−CpL

p,

and the errors are jointly white noise. We assume that the starting values y−p, ..., y0 and

x−p, ..., x0 are all fixed and equal to zero (that is, they are fixed at their unconditional

expected value). To keep the notation simple, we consider the same lag length of the

polynomial in (2) and (3), but different lag lengths can be easily handled.

We then assume that x can be observed for each period tm, while y can be only observed

every m periods. We define t = 1, ..., T as the low frequency (LF) time unit and tm =

1, ..., Tm as the high frequency (HF) time unit. The HF time unit is observed m times in

the LF time unit. As an example, if we are working with quarterly (LF) and monthly (HF)

data, it is m = 3 (i.e., three months in a quarter). Moreover, L indicates the lag operator

at tm frequency, while Lm is the lag operator at t frequency.

We also introduce the aggregation operator

ω(L) = ω0 + ω1L+ ...+ ωm−1L
m−1, (4)

which characterizes the temporal aggregation scheme. For example, ω(L) = 1 + L + ... +

Lm−1 indicates the sum of the high-frequency observations over the low-frequency period,

typically used in the case of flow variables, while ω(L) = 1 corresponds to point-in-time

sampling and is typically used for stock variables. As we will see, different aggregation

schemes will play a role in generating MA components.

To derive the generating mechanism for y at mixed frequency (MF), we introduce a

polynomial in the lag operator, β(L), whose degree in L is at most equal to pm − p and

which is such that the product h(L) = β(L)a(L) only contains powers of Lm, so that

h(L) = h(Lm). It can be shown that such a polynomial always exists, and its coefficients

depend on those of a(L), see Marcellino (1999) for details.

In order to determine the AR component of the MF process, we then multiply both

sides of (2) by ω(L) and β(L) to get

h(Lm)ω(L)ytm = β(L)b1(L)ω(L)x1tm + ...+ β(L)bN(L)ω(L)xNtm + β(L)ω(L)eytm . (5)
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Hence, the autoregressive component only depends on LF values of y. Let us consider now

the x variables, which are observable at high frequency tm. Each HF xitm influences the

LF variable y via a polynomial β(L)bj(L)ω(L) = bj(L)β(L)ω(L), j = 1, ..., N . We see that

it is a particular combination of high-frequency values of xj, equal to β(L)ω(L)xjtm , that

affects the low-frequency values of y.

Only under certain rather strict conditions, it is possible to recover the polynomials

a(L) and bj(L) that appear in the HF model for y from the MF model, and in these cases

also β(L) can be identified. Therefore, when β(L) cannot be identified, we can estimate a

model as

c(Lk)ω(L)ytm = δ1(L)x1tm−1 + ...+ δN(L)xNtm−1 + εtm , (6)

tm = m, 2m, 3m, ...

where c(Lm) = (1− c1Lm − ...− ccLmc), δj(L) = (δj,0 + δj,1L+ ...+ δj,vL
v), j = 1, ..., N .

We can focus now on the error term of equation (5). In general, there is an MA

component in the MF model, q(Lm)uytm , with q(Lm) = (1 + q1L
m + ...+ qqL

mq). The order

of q(Lm), q, coincides with the highest multiple of m non zero lag in the autocovariance

function of β(L)ω(L)eytm . The coefficients of the MA component have to be such that the

implied autocovariances of q(Lm)uytm coincide with those of β(L)ω(L)eytm evaluated at all

multiples of m. Consequently, also the error term εtm in the approximate mixed frequency

model (6), which is the UMIDAS model, in general has an MA structure. It can be shown

that the maximum order of the MA structure is p for average sampling and p-1 for point-

in-time sampling, where p is the order of the AR component in the high frequency model

for ytm (see, e.g., Marcellino (1999) for a derivation of this results).

2.2 Two analytical examples

In this section, we consider two simple DGPs and show that, even in these basic cases,

an MA component appears in the mixed frequency model. In the first example, we consider

a bivariate VAR(1) with average sampling. In the second, we consider a bivariate VAR(2)

with point-in-time sampling. We consider the case of monthly and quarterly variables,

therefore m = 3, as in the empirical applications. However, the examples could be easily

generalized to consider N−variate VARs and different frequency mismatches m.
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VAR(1) with average sampling

Let us assume a VAR(1) as HF DGP:(
ytm
xtm

)
=

(
a b

c d

)(
ytm−1

xtm−1

)
+

(
eytm
extm

)
, (7)

where ytm is the low-frequency variable and xtm is the high-frequency variable,eytm and extm
are white noise processes, and tm is the high-frequency time index.

Let us focus on the dynamic of the LF variable:

ytm = aytm−1 + bxtm−1 + eytm , (8)

which can be rewritten as

(1− aL) ytm = bLxtm + eytm . (9)

We consider average sampling, and therefore we define ω (L) = 1 + L+ L2.

We first introduce a polynomial in the lag operator, β(L), which is such that the product

h(L) = β(L) (1− aL) only contains powers of L3. This polynomial exists and it is equal to

(1 + aL+ a2L2) . We then multiply both sides of equation (8) by ω (L) and β (L) and we

obtain:(
1 + aL+ a2L2

)
(1− aL)

(
1 + L+ L2

)
ytm =

(
1 + aL+ a2L2

)
bL
(
1 + L+ L2

)
xtm +(

1 + aL+ a2L2
) (

1 + L+ L2
)
eytm , (10)

or equivalently:(
1− L3a3

)
ỹtm =

(
1 + aL+ a2L2

)
bL
(
1 + L+ L2

)
xtm +(

1 + (a+ 1)L+
(
a2 + a+ 1

)
L2 +

(
a2 + a

)
L3 + a2L4

)
eytm , (11)

where ỹtm = (1 + L+ L2) ytm and tm = 3, 6, 9, ... .

As we saw it in Section 2.1, the order of the MA component coincides with the highest

multiple of 3 non zero lag in the autocovariance function of the error term in equation (11),

and it is bounded above by the AR order of the model for ytm . Actually, in this case the

mixed frequency UMIDAS model in equation (11) has an MA component of order 1.
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VAR(2) with point-in-time sampling

Let us now assume a VAR(2) as HF DGP:(
ytm
xtm

)
=

(
a1 b1

c1 d1

)(
ytm−1

xtm−1

)
+

(
a2 b2

c2 d2

)(
ytm−2

xtm−2

)
+

(
eytm
extm

)
, (12)

where ytm , xtm , ytm , extm and tm are defined as in the previous example.

The dynamic for the LF variable in this case is:

ytm = a1ytm−1 + a2ytm−2 + b1xtm−1 + b2xtm−2 + eytm , (13)

or, equivalently, (
1− a1L− a2L2

)
ytm =

(
b1L+ b2L

2
)
xtm + eytm . (14)

We consider point-in-time sampling, and therefore ω (L) = 1.

As in the previous example, we need to multiply both sides of equation (13) by ω(L) and

find a polynomial β(L) such that the product h(L) = β(L) (1− a1L− a2L2) only contains

powers of L3. In can be easily shown that β (L) exists and it is equal to(
1 + a1L+

(
a21 + a2

)
L2 − a1a2L3 + a22L

4
)
.

The resulting process for the low-frequency variable is:(
1−

(
a31 + 3a2a1

)
L3 − a32L6

)
ytm =

(
1 + a1L+

(
a21 + a2

)
L2 − a1a2L3 + a22L

4
) (
b1L+ b2L

2
)
xtm +(

1 + a1L+
(
a21 + a2

)
L2 − a1a2L3 + a22L

4
)
eytm . (15)

Hence, also in this case there is an MA component in the mixed frequency model for y. Its

order coincides with the highest multiple of 3 non zero lag in the autocovariance function

of (1 + a1L+ (a21 + a2)L
2 − a1a2L3 + a22L

4) eytm , and it is bounded above by the AR order

of the model for ytm minus one, which is 1 in this example. Actually, the MA component

is of order 1.
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3 UMIDAS-ARMA and MIDAS-ARMA: specification

and estimation

We describe now in more detail the model specifications we consider and the estimation

details. We first recall the main features of the standard MIDAS regression, introduced

by Ghysels et al. (2006), and its unrestricted version, as in Foroni et al. (2015). Then, we

discuss their extensions to allow for an MA component and we discuss the estimation of

the models.

The starting point for our MF models is equation (6). In order to simplify the nota-

tion, we assume ω(L) = 1 and only one explanatory variable xtm
2. Further, we allow for

incorporating leads of the high frequency variable in the projections.

The equation we are going to estimate to generate an hm-step ahead forecast is the

following:

ytm = c̃(Lm)ytm−hm + δ(L)xtm−hm+w + εtm , (16)

where c̃(Lm) is a modified lag structure of equation (6) to obtain a direct forecast and

w is the number of months with which x is leading y.

Equation (16) represents our UMIDAS-AR model. Given that the model is linear, the

UMIDAS-AR regression can be estimated by simple OLS. Empirically, the lag length of

the high frequency variable x is often selected by means of an information criterion, such

as the BIC.

When extending our UMIDAS to include an MA component, the UMIDAS-ARMA

model we estimate is the following:

ytm = c̃(Lm)ytm−hm + δ(L)xtm−hm+w + utm + q(Lm)utm−hm , (17)

where utm is a (weak) white noise with E(utm) = 0 and E(utmu
′
tm) = σ2

u < ∞, and all

the remaining terms stay the same as in equation (16). Given that MIDAS models are

2This is an innocuous simplification. It is equivalent to assume more generally ω(L) 6= 1 and redefine
ỹtm = ω(L)ytm
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direct forecasting tools, we decided to follow a direct approach also when modelling the

MA component.

OLS estimation of the UMIDAS-ARMA model is no longer possible, because of the MA

component in the residuals. We then have two possible options. First, we can estimate

the model as in the standard ARMA literature, by maximum likelihood or, as we will

actually do to be coherent with the MIDAS literature, by NLS. Second, we can adapt to

the UMIDAS-ARMA model the GLS method proposed in Dufour and Pelletier (2008),

which in turn generalizes the regression-based estimation method introduced by Hannan

and Rissanen (1983). In this latter case, we proceed as follows: first, we fit a long ARX

process to the data, then the lagged innovations in the UMIDAS-AR model are replaced

by the residuals of our first step regression. The residuals are, in other words, treated as

observables in the second regression3.

The MIDAS-AR specification is a restricted version of the UMIDAS-AR. The original

MIDAS-AR model as in Ghysels et al. (2006) can be written as follows:

ytm = c̃(Lm)ytm−hm + βB(L, θ)xtm−hm+w + εtm , (18)

where

B(L, θ) =
K∑
j=0

b(j, θ)Lj,

b(j, θ) =
exp(θ1j + θ2j

2)∑K
j=0 exp(θ1j + θ2j2)

,

and K is the maximum number of lags included of the explanatory variable.

As it is clear by comparing equation (16) and equation (18), the MIDAS model is nested

into the UMIDAS model.

The MIDAS-AR model in equation (18) is estimated by non-linear least squares (NLS).

Given that it is hm-dependent, as in the UMIDAS case it has to be re-estimated for each

forecast horizon.

Exactly as for the UMIDAS, we extend the MIDAS-AR in equation (18) to incorporate

an MA component:

3For the asymptotic properties of this estimator, please refer to Dufour and Pelletier (2008).
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ytm = c̃(Lm)ytm−hm + βB(L, θ)xtm−hm+w + utm + q(Lm)utm−hm , (19)

where the error term is defined as in (17). Given the nonlinearity of the model, we

estimate its parameters by NLS.

4 Monte Carlo evaluation

We now assess the forecasting relevance of including an MA component in MIDAS and

UMIDAS models by means of simulation experiments. We use two designs, closely related

to the two analytical examples described in Section 2.2. We present first the Monte Carlo

designs and then the results.

4.1 Monte Carlo design

In the first design, the DGP is the HF VAR(1):(
ytm
xtm

)
=

(
ρ δl

δh ρ

)(
ytm−1

xtm−1

)
+

(
ey,tm
ex,tm

)
, (20)

where ytm is only available at LF while xtm is the HF variable, tm is the HF time index, the

aggregation frequency is m = 3 (as in the case of quarterly and monthly frequencies), and

t is the LF time index, with t = 3tm. We assume that ω(L) = 1 + L + L2, corresponding

to average sampling.

The shocks ey,tm and ex,tm are sampled independently from normal distributions with

zero means and variances chosen such that the unconditional variance of y is equal to one.

We consider different combinations of ρ and δl, representing different degrees of persistence

and correlation between the HF and the LF variables. In detail, we evaluate the following

parameter sets:

(ρ, δl) = {(0.1, 0.1) , (0.5, 0.1) , (0.9, 1) , (0.94, 1)} . (21)

With no loss of generality, we fix δh = 0, so that the HF variable affects the LF variable,

but not vice versa. All together, the parameter values are chosen so as to make sure that

the VAR satisfies the stationarity condition.
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In the second design, the DGP is the HF VAR(2):(
ytm
xtm

)
=

(
ρ1 δl1

δh1 ρ1

)(
ytm−1

xtm−1

)
+

(
ρ2 δl2

δh2 ρ2

)(
ytm−2

xtm−2

)
+

(
ey,tm
ex,tm

)
. (22)

We still assume m = 3 but now ω(L) = 1, so that the LF variable is skip-sampled every

m = 3 observations.

In this second DGP, we consider the following parameter combinations:

(ρ1, ρ2, δl1, δl2) = {(0.05, 0.1, 0.5, 1) , (0.125, 0.5, 0.125, 0.5) , (0.25, 0.5, 0.5, 1)} . (23)

As in the first DGP, with no loss of generality, we fix δh1 = δh2 = 0. All the other design

features are as in the first DGP.

We focus on typical sample sizes for the estimation sample, with T = 50, 100. The size

of the evaluation sample is set to 50, and the estimation sample is recursively expanded as

we progress in the recursive forecasting exercise. The number of replications is 500.

The competing forecasting models are the following:

1. A MIDAS-AR model, with 12 lags in the exogenous HF variable and 1 lag in the AR

component;

2. A MIDAS-ARMA model, as in the previous point but with the addition of an MA

component;

3. A MIDAS-ARMA model, with only 3 lags in the exogenous HF variable and 1 AR

lag;

4. A UMIDAS-AR model, with lag length selected according to the BIC criterion, where

the maximum lag length is set equal to 12;

5. A UMIDAS-ARMA model, as in the previous point, with the addition of an MA

component, estimated by the GLS method presented above (we will refer to this

model as UMIDAS-ARMA-GLS)

6. The same model estimated by NLS (we will refer to this model as UMIDAS-ARMA-

NLS);
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7. The UMIDAS-ARMA-NLS, fixing at 3 the number of lags of the HF exogenous vari-

able.

In all ARMA models there is an MA(1) component, but an higher order can be allowed.

We evaluate the competing one-step ahead forecasts on the basis of their associated

mean square prediction error (MSE), assuming that information on the first two months

of the quarter is available (as it is common in nowcasting exercises).

4.2 Results

In Tables 1 to 4 we report the mean relative MSE across simulations, and numbers

smaller than one indicate that the model is better than the benchmark (model 1, the

standard MIDAS). We also report the 10th, 25th, 50th, 75th and 90th percentiles, to provide

a measure of the dispersion in the results.

Tables 1 and 2 present the results for the first DGP (the VAR(1) with average sampling),

using T = 100 in Table 1 and T = 50 in Table 2. The corresponding Tables 3 and 4 are

based on the second DGP (the VAR(2) with point-in-time sampling).

A few key findings emerge. First, adding an MA component to the MIDAS model

generally helps. The gains are not very large but they are visible at all percentiles, with a

few exceptions for the second DGP. The gains are larger either with substantial persistence

(ρ = 0.9 or ρ = 0.94 in the first DGP and ρ1 = 0.25, ρ2 = 0.5 in the second DGP) or with

low persistence in the first DGP (ρ = 0.1), but in the latter case the result is mainly due

to a deterioration in the absolute performance of the standard MIDAS model. The more

parsimonious specification with 3 lags only of the HF variable is generally better, except

when ρ = 0.5.

Second, adding an MA component to the UMIDAS model is also generally helpful,

though the gains remain small. NLS and GLS estimation yield comparable results, sug-

gesting that the second can be preferable as it is simpler.

Third, in general the MIDAS-ARMA specifications are slightly better than the UMIDAS-

ARMA specifications, though the differences are minor. This pattern is in contrast with

the findings in Foroni et al. (2015), and suggests that adding the MA component to the

MIDAS model helps somewhat in reducing the potential misspecification due to imposing

a specific lag polynomial structure.

Finally, results are consistent across sample sizes, and the models do not seem sensitive

to short sample sizes.
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5 Empirical applications

In this section, we look at the performance of our MA augmented mixed frequency mod-

els in a forecasting exercise with actual data. We start with our main empirical application,

which consists in forecasting U.S. GDP deflator inflation using monthly CPI inflation and

3-month interest rate on T-Bill. The literature suggests that after the 1980s inflation in the

U.S. became harder to approximate with an AR process (see Stock and Watson (2007)).

Therefore, adding an MA component can be particularly relevant in this context. Next,

we will also discuss forecasting quarterly GDP growth and real consumption growth using,

respectively, monthly industrial production and a index for consumption (the real personal

consumption expenditures).

The total sample spans over 50 years of data, from the first quarter of 1960 to the

end of 2015. The forecasts are computed on progressively expanding samples, with the

evaluation period going from 1980Q1 to the end of the sample, covering therefore roughly

35 years. The complete description of data sources and data transformation is available in

Table 5. We use the most recent historical data for all series. At each point in time, we

compute forecasts up to 4 quarters ahead. The forecasting object is the annualized growth

rate. Although the information contained in the monthly variables updates every month,

we focus on the case in which the first two months of the quarter are already available.4

We evaluate the forecasts both in terms of mean squared errors (MSE) and in terms of

mean absolute errors (MAE). We then compare the forecasting performance relative to a

standard MIDAS model with an autoregressive component and 12 lags of the explanatory

variable (as the model (1) in Section 4).

In Tables 6 to 8 we report the results for, respectively, the GDP deflator inflation

rate, the real GDP growth, and the real consumption growth. Each table is organized in

the same way: it reports the value of MSE and MAE for each model, the ratio of those

criteria for each model relative to the MIDAS-AR, our benchmark model, and the value of

the Diebold-Mariano test, to check the statistical significance of the differences in forecast

measures with respect to the benchmark (see Diebold and Mariano (1995)). For the sake

of conciseness, we report the results for h = 1, 2, 4 quarters ahead.

4With the MIDAS setup, we could also report the results when no information or only one month of
information is available. However, for the sake of conciseness we focus only on the case in which we are
two months into the quarter, to have the shortest nowcast horizon. Given that our models are all mixed
frequency, we do not advantage any specification with this setup anyways.
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The figures and the tables are broadly supportive of the inclusion of the MA component

in the mixed frequency models, as the MSE and MAE ratios are often smaller than one

for the MIDAS-ARMA and UMIDAS-ARMA models when compared with their versions

without MA.5 More in detail: first, results of MF models with an MA component are

good when forecasting GDP deflator growth and real consumption. The best improvement

achieves 14% in terms of MSE for GDP deflator inflation when forecasted with the monthly

CPI inflation, while it goes up to 24% in case of 3-month TBill. The improvements of the

MA models when forecasting the real consumption growth with industrial production or

the monthly consumption index growth are more uniform across horizons and top at 19%

in terms of both MSE and MAE. Adding the MA part to predict the GDP growth with

industrial production does not help at short horizons but improves the MSE up to 10%

at four quarters ahead. Second, in many cases the improvement in the forecasting per-

formance is also statistically significant. Third, there is no single model specification that

systematically outstands all the others, though models with fewer lags of the explanatory

variables seem generally better. The inclusion of the MA component likely compensates

for the need of many lags. Fourth, the improvements with the MA component, whenever

present, are present at each forecast horizon. Finally, if we decompose the MSE in bias

and variance, we find that the MA part helps especially in reducing the bias, suggesting

that the MA part is important to well approximate the conditional mean of y (the optimal

forecast under the quadratic loss). When the models with the MA component are not

performing well, this is due especially to the variance term, instead. Detailed results on

the bias/variance decomposition are presented in Table 9.

To have a visual representation of the results, in Figure 1 we report the MSE of the

different models relative to the benchmark at 1 to 4 quarters ahead. The figure shows that

in most of the cases the relative MSE stays below 1 at the different forecasting horizons.

Moreover, the best results (indicated by the grey envelope line in the figure) are in general

obtained by models with an MA component.

The MSE and MAE are computed over the entire evaluation sample. We are interested

also to check whether the performance of our models is driven by few data points or

periods, or it remains good across the entire sample. In Figure 2, we then report the one-

quarter ahead forecasts of the benchmark MIDAS-AR model and of one other model, the

UMIDAS-ARMA estimated by GLS, together with the realized series. In Figure 3, instead,

5The models which include an MA component are indicated in bold in the tables.
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we report the 4-quarters ahead forecasts.6 It turns out that, on average, MIDAS models

perform well throughout the sample, both with and without an MA component, except

for the striking case of real consumption, where the MA part improves substantially the

forecasting performance. However, when looking at the estimated coefficients of the MA

components, in all the cases the coefficients are quite different from zero, see Figure 4).

Further, except for the period of the early ’80s, for most variables and models the estimated

MA coefficients remain rather stable across the sample, although their magnitude (and in

some cases their sign) change according to the forecast horizon, which is not surprising

because of direct estimation.

6 Conclusions

In this paper, we start from the observation that temporal aggregation in general in-

troduces a moving average component in the aggregated model. We show that a similar

feature emerges when not all but only a few variables are aggregated, which generates a

mixed frequency model. Hence, an MA component should be added to mixed frequency

models, while this is generally neglected in the literature.

We illustrate in a set of Monte Carlo simulations that indeed adding an MA compo-

nent to MIDAS and UMIDAS models further improves their nowcasting and forecasting

abilities, though in general the gains are limited and particularly evident in the presence

of persistence. Interestingly, the relative performance of MIDAS versus UMIDAS further

improves when adding an MA component, with the latter attenuating the effects of impos-

ing a particular polynomial structure in the dynamic response of the low frequency to the

high frequency variable.

A similar pattern emerges in an empirical exercise based on actual data. Specifically,

we find that the inclusion of an MA component can substantially improve the forecasting

performance of GDP deflator growth and real personal consumption growth, while the

results for GDP growth are more mixed.

6Figures 2 and 3 focus only on a small portion of results that we have available. The same figures for
other models, other forecast horizons and other explanatory variables are available upon request.
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Table 1: Monte Carlo simulations results - DGP: VAR(1) with average sampling, T = 100

PANEL (A):
ρ = 0.94, δl = 1, δh = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.974 0.986 0.981 0.968 0.970 0.967
MIDAS-ARMA-3 (3) 0.966 0.981 0.969 0.962 0.959 0.966
UMIDAS-AR (4) 0.997 0.997 0.986 1.005 0.994 0.990
UMIDAS-ARMA-GLS (5) 0.971 0.973 0.979 0.974 0.968 0.973
UMIDAS-ARMA-NLS (6) 0.969 0.983 0.974 0.970 0.961 0.973
UMIDAS-ARMA-NLS-3 (7) 0.971 0.977 0.974 0.971 0.964 0.975

PANEL (B):
ρ = 0.9, δl = 1, δh = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.976 0.989 0.984 0.979 0.973 0.976
MIDAS-ARMA-3 (3) 0.975 0.983 0.988 0.969 0.978 0.971
UMIDAS-AR (4) 1.030 1.024 1.023 1.029 1.038 1.040
UMIDAS-ARMA-GLS (5) 1.014 1.019 1.019 1.019 1.019 1.026
UMIDAS-ARMA-NLS (6) 1.019 1.018 1.023 1.012 1.024 1.028
UMIDAS-ARMA-NLS-3 (7) 0.976 0.979 0.984 0.977 0.977 0.981

PANEL (C):
ρ = 0.5, δl = 0.1, δh = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.986 0.990 0.994 0.984 0.983 0.978
MIDAS-ARMA-3 (3) 1.184 1.197 1.178 1.174 1.202 1.176
UMIDAS-AR (4) 1.005 1.000 1.003 1.006 1.013 0.995
UMIDAS-ARMA-GLS (5) 1.000 1.012 0.994 0.998 0.992 0.991
UMIDAS-ARMA-NLS (6) 1.000 1.005 0.992 0.998 0.993 0.992
UMIDAS-ARMA-NLS-3 (7) 1.182 1.212 1.185 1.175 1.198 1.179

PANEL (D):
ρ = 0.1, δl = 0.1, δh = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.981 0.985 0.989 0.983 0.980 0.972
MIDAS-ARMA-3 (3) 0.833 0.848 0.846 0.834 0.827 0.828
UMIDAS-AR (4) 0.825 0.837 0.834 0.823 0.824 0.819
UMIDAS-ARMA-GLS (5) 0.832 0.841 0.844 0.830 0.831 0.834
UMIDAS-ARMA-NLS (6) 0.832 0.841 0.844 0.833 0.831 0.836
UMIDAS-ARMA-NLS-3 (7) 0.833 0.846 0.846 0.834 0.829 0.829

Note: The four panels report the results for four different DGPs for 1-quarter ahead horizon (with the infor-
mation of the first two months of the quarter available). The numbers (2) to (7) refer to the corresponding
models described in Section 4. The results reported are the average, median and the 10th, 25th, 75th, 90th

percentiles of the MSE of the indicated model relative to the average, median and the 10th, 25th, 75th, 90th

percentiles of the MSE of the benchmark MIDAS (model (1) in Section 4) computed over 500 replications.
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Table 2: Monte Carlo simulations results - DGP: VAR(1) with average sampling, T = 50

PANEL (A):
ρ = 0.94, δl = 1, δh = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.985 0.975 0.996 0.983 0.990 0.968
MIDAS-ARMA-3 (3) 0.957 0.949 0.982 0.947 0.957 0.944
UMIDAS-AR (4) 0.982 0.984 0.998 0.968 0.986 0.979
UMIDAS-ARMA-GLS (5) 0.967 0.966 0.983 0.949 0.969 0.971
UMIDAS-ARMA-NLS (6) 0.957 0.950 0.984 0.954 0.965 0.939
UMIDAS-ARMA-NLS-3 (7) 0.968 0.950 1.003 0.962 0.975 0.955

PANEL (B):
ρ = 0.9, δl = 1, δh = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.997 1.001 1.012 0.994 0.986 0.982

MIDAS-ARMA-3 (3) 0.973 0.978 1.006 0.964 0.961 0.977
UMIDAS-AR (4) 1.033 1.074 1.041 1.025 1.034 1.013
UMIDAS-ARMA-GLS (5) 1.031 1.056 1.050 1.022 1.032 1.014
UMIDAS-ARMA-NLS (6) 1.020 1.041 1.040 1.018 1.019 1.016
UMIDAS-ARMA-NLS-3 (7) 0.981 0.982 1.023 0.968 0.971 0.983

PANEL (C):
ρ = 0.5, δl = 0.1, δh = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.013 1.007 1.010 1.022 0.999 1.014
MIDAS-ARMA-3 (3) 1.188 1.182 1.172 1.179 1.168 1.249
UMIDAS-AR (4) 1.038 1.056 1.054 1.026 1.046 1.064
UMIDAS-ARMA-GLS (5) 1.054 1.060 1.056 1.053 1.044 1.051
UMIDAS-ARMA-NLS (6) 1.061 1.089 1.059 1.049 1.049 1.062
UMIDAS-ARMA-NLS-3 (7) 1.197 1.186 1.181 1.181 1.173 1.241

PANEL (D):
ρ = 0.1, δl = 0.1, δh = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.984 0.987 0.989 0.983 0.989 0.973
MIDAS-ARMA-3 (3) 0.824 0.809 0.807 0.825 0.830 0.846
UMIDAS-AR (4) 0.810 0.791 0.814 0.819 0.814 0.820
UMIDAS-ARMA-GLS (5) 0.827 0.824 0.833 0.820 0.827 0.857
UMIDAS-ARMA-NLS (6) 0.834 0.824 0.826 0.831 0.834 0.853
UMIDAS-ARMA-NLS-3 (7) 0.830 0.826 0.816 0.827 0.832 0.859

Note: See Table 2.
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Table 3: Monte Carlo simulations results - DGP: VAR(2) with point-in-time sampling,
T = 100

PANEL (A):
ρ1 = 0.05, ρ2 = 0.1, δl1 = 0.5, δl2 = 1, δh1 = 0, δh2 = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.007 1.010 1.003 1.007 1.010 1.025
MIDAS-ARMA-3 (3) 1.006 1.006 0.997 1.003 1.014 1.018
UMIDAS-AR (4) 1.014 1.007 1.016 1.005 1.006 1.030
UMIDAS-ARMA-GLS (5) 1.019 1.009 1.023 1.017 1.018 1.033
UMIDAS-ARMA-NLS (6) 1.015 1.000 1.014 1.007 1.014 1.026
UMIDAS-ARMA-NLS-3 (7) 1.007 0.998 1.004 1.006 1.016 1.023

PANEL (B):
ρ1 = 0.125, ρ2 = 0.5, δl1 = 0.125, δl2 = 0.5, δh1 = 0, δh2 = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.956 0.955 0.960 0.963 0.949 0.959
MIDAS-ARMA-3 (3) 0.940 0.932 0.950 0.950 0.931 0.943
UMIDAS-AR (4) 0.938 0.921 0.938 0.945 0.929 0.946
UMIDAS-ARMA-GLS (5) 0.920 0.916 0.921 0.920 0.906 0.939
UMIDAS-ARMA-NLS (6) 0.921 0.927 0.922 0.926 0.908 0.939
UMIDAS-ARMA-NLS-3 (7) 0.943 0.921 0.950 0.947 0.932 0.948

PANEL (C):
ρ1 = 0.25, ρ2 = 0.5, δl1 = 0.5, δl2 = 1, δh1 = 0, δh2 = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 0.984 0.968 0.981 0.985 0.991 0.998
MIDAS-ARMA-3 (3) 0.980 0.981 0.982 0.968 0.981 0.999
UMIDAS-AR (4) 1.021 1.032 1.020 1.006 1.032 1.036
UMIDAS-ARMA-GLS (5) 0.991 0.988 0.997 0.979 1.005 1.014
UMIDAS-ARMA-NLS (6) 0.992 0.987 0.986 0.988 1.001 1.004
UMIDAS-ARMA-NLS-3 (7) 0.983 0.978 0.979 0.980 0.985 0.998

Note: The four panels report the results for three different DGPs. The numbers (2) to (7) refer to
the corresponding models described in Section 4. The results reported are the average, median and the
10th, 25th, 75th, 90th percentiles of the MSE of the indicated model relative to the average, median and the
10th, 25th, 75th, 90th percentiles of the MSE of the benchmark MIDAS (model (1) in Section 4) computed
over 500 replications.
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Table 4: Monte Carlo simulations results - DGP: VAR(2) with point-in-time sampling,
T = 50

PANEL (A):
ρ1 = 0.05, ρ2 = 0.1, δl1 = 0.5, δl2 = 1, δh1 = 0, δh2 = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.020 1.003 1.024 1.021 1.009 1.017
MIDAS-ARMA-3 (3) 1.003 0.990 1.015 1.014 0.986 0.994
UMIDAS-AR (4) 1.006 0.982 1.036 1.019 1.011 0.988
UMIDAS-ARMA-GLS (5) 1.023 0.986 1.050 1.040 1.018 1.032
UMIDAS-ARMA-NLS (6) 1.018 0.955 1.033 1.037 1.023 1.030
UMIDAS-ARMA-NLS-3 (7) 1.018 1.000 1.024 1.028 1.021 1.010

PANEL (B):
ρ1 = 0.125, ρ2 = 0.5, δl1 = 0.125, δl2 = 0.5, δh1 = 0, δh2 = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.017 0.980 1.006 1.004 1.019 1.042
MIDAS-ARMA-3 (3) 0.967 0.934 0.970 0.995 0.953 0.991
UMIDAS-AR (4) 0.971 0.973 0.979 0.979 0.961 0.997
UMIDAS-ARMA-GLS (5) 0.965 0.979 0.968 0.969 0.948 0.972
UMIDAS-ARMA-NLS (6) 0.983 0.983 0.977 1.000 0.958 0.980
UMIDAS-ARMA-NLS-3 (7) 1.009 0.970 1.002 1.016 1.000 1.023

PANEL (C):
ρ1 = 0.25, ρ2 = 0.5, δl1 = 0.5, δl2 = 1, δh1 = 0, δh2 = 0

mean 10 prct 25 prct median 75 prct 90 prct

MIDAS-ARMA-12 (2) 1.016 1.003 0.991 1.005 1.012 1.010
MIDAS-ARMA-3 (3) 0.990 0.993 0.965 0.984 0.988 0.979
UMIDAS-AR (4) 1.046 1.024 1.016 1.047 1.059 1.039
UMIDAS-ARMA-GLS (5) 1.200 1.013 1.031 1.029 1.049 1.032
UMIDAS-ARMA-NLS (6) 1.041 1.051 1.035 1.018 1.045 1.038
UMIDAS-ARMA-NLS-3 (7) 1.016 1.008 1.014 0.991 1.024 1.018

Note: see Table 3.
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Table 5: Data description

Series Source Source Code Transformation Frequency
GDP Deflator FRED GDPDEF Log-difference Quarterly
Real GDP FRED GDP Log-difference Quarterly
Real Consumption FRED PCECC96 Log-difference Quarterly
CPI FRED CPIAUCSL Log-difference Monthly
Industrial Production FRED INDPRO Log-difference Monthly
3-month T-bill FRED TB3MS Level Monthly
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Figure 1: Relative MSE at different forecasting horizons
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Note: In the figure we report for each model under analysis the ratio of its MSE relative to the benchmark
MIDAS-AR. Black lines represent MIDAS models, blue lines UMIDAS models. The grey line connects the
lowest MSE at each horizon: it thus represent the best models across horizons.
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Figure 4: MA coefficients
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