Banks' Response to Negative Interest Rates

 Evidence from the Swiss Exemption ThresholdChristoph Basten
UZH \& FINMA ${ }^{1}$
Mike Mariathasan
KU Leuven

ECB Workshop on Monetary Policy in Non-Standard Times
September 12, 2017

[^0]
Motivation. Negative Rates.

- reality in DNK, SWE, EUR, Switzerland since 2014/15
- long thought of as impracticable ("Zero Lower Bound")
- limited research explicitly on transmission in neg. rate environments
- theoretical: Brunnermeier \& Koby (2017)
- empirical: Heider et al., Demiralp et al., Lucas et al. (2017)

Motivation. Negative Rates.

- reality in DNK, SWE, EUR, Switzerland since 2014/15
- long thought of as impracticable ("Zero Lower Bound")
- limited research explicitly on transmission in neg. rate environments
- theoretical: Brunnermeier \& Koby (2017)
- empirical: Heider et al., Demiralp et al., Lucas et al. (2017)
- Why might the transmission of negative rates be special?
- cash provides a non-negative return
- reluctance to charge negative rates on household deposits
- (interaction of low rates \& capital req's; "reversal rate")

This Paper.

- Anatomy of negative rate transmission by retail banks in CH .
- exploites Swiss policy design for identification
- Results: banks' responses reflect two objectives
- to re-allocate costly reserves
- to compensate for the effect on income

This Paper.

- Anatomy of negative rate transmission by retail banks in CH .
- exploites Swiss policy design for identification
- Results: banks' responses reflect two objectives
- to re-allocate costly reserves
- to compensate for the effect on income
- More exposed banks

1. ... reduced balance sheet size more.
2. ... lend \& invested more in financial assets.

- also more than under rate cut in positive rate environment

3. ... raised mortgage rates more, primarily due to risk-taking.
4. ... generated more fee income.

The SNB's Negative Rate Policy.

- applied to each bank's SNB reserves $>$ 20*Min.Res.Req. (MRR)
- at the time, system-wide liquidity amounted to $24^{*} \sum \mathrm{MRRs}$
- idea: change marginal, but not total cost of holding liquidity

The SNB's Negative Rate Policy.

- applied to each bank's SNB reserves $>$ 20*Min.Res.Req. (MRR)
- at the time, system-wide liquidity amounted to $24^{*} \sum \mathrm{MRRs}$
- idea: change marginal, but not total cost of holding liquidity
- before: no interest payment on SNB reserves \& monetary policy targeted LIBOR (3m, CHF) via open market operations

The SNB's Negative Rate Policy.

rapid transmission from deposit facility rate to other assets

The SNB's Negative Rate Policy.

squeezed liability margins \& increasing asset margins

Empirical Strategy. Data.

- sample period: pre: 2013m7-2014m12, post: 2015m1-2016m6
- supervisory data
- monthly balance sheets
- quarterly risk-taking measures
- semi-annual income statements
- essentially universe of banks chartered in Switzerland
- focus on 50 domestically owned "retail banks" for identification
- retail banks: $\geq 55 \%$ of income from "balance sheet effective" activities (on average in past 3 yrs)
- drop: Wealth Mgmt., Universal, Cooperative \& foreign-owned banks

Empirical Strategy. Data.

Variable	Obs	Banks	Periods	Mean	SD	Min	Max
Exposed SNB Reserves/TA		$\mathbf{5 0}$		$\mathbf{- 5 . 7 6}$	$\mathbf{4 . 3 0}$	$\mathbf{- 1 2 . 9 4}$	$\mathbf{8 . 7 5}$
Net Interbank Pos: \% of TA	1800	50	36	-0.86	4.39	-16.92	10.07
Loan Assets: \% of TA	1800	50	36	8.49	4.23	1.58	22.29
Mortgage Assets: \% of TA	$\mathbf{1 8 0 0}$	$\mathbf{5 0}$	$\mathbf{3 6}$	$\mathbf{7 2 . 7 8}$	$\mathbf{9 . 7 2}$	$\mathbf{3 2 . 3 9}$	$\mathbf{8 8 . 6 9}$
Fin. Assets: \% of TA	1800	50	36	4.70	2.71	0.56	18.42
Deposit Funding: \% of TA	$\mathbf{1 8 0 0}$	$\mathbf{5 0}$	$\mathbf{3 6}$	$\mathbf{6 7 . 5 9}$	7.58	$\mathbf{3 9 . 1 1}$	$\mathbf{9 5 . 9 9}$
Bond Funding: \% of TA	1800	50	36	13.04	5.58	0.00	25.58
FX Share Total Assets	1800	50	36	2.73	3.33	0.01	17.57
FX Share Total Liabilities	1800	50	36	4.38	5.31	0.00	27.75
RWA Density	600	50	12	0.46	0.12	0.02	1.13
Credit Risk Share of Req. Equity	$\mathbf{6 0 0}$	$\mathbf{5 0}$	$\mathbf{1 2}$	$\mathbf{0 . 9 4}$	$\mathbf{0 . 2 1}$	$\mathbf{0 . 6 5}$	$\mathbf{2 . 5 6}$
Market Risk Share of Req. Equity	600	50	12	0.01	0.03	0.00	0.23
OpRisk Share of Req. Equity	600	50	12	0.06	0.02	0.04	0.20
CET1 / TA	600	50	12	7.69	1.58	4.02	12.33
CET1 / RWA	600	50	12	15.66	3.01	8.37	23.72
CET1/RWA - B3 Requirement	$\mathbf{6 0 0}$	$\mathbf{5 0}$	$\mathbf{1 2}$	$\mathbf{8 . 2 1}$	$\mathbf{3 . 0 4}$	$\mathbf{0 . 5 7}$	$\mathbf{1 6 . 3 2}$

Empirical Strategy. Identification.

- Difference-in-Difference Model

$$
Y_{i, t}=\alpha+\beta \cdot E R_{i}+\gamma \cdot \text { Post }_{t}+\delta \cdot\left(E R_{i} \times \text { Post }_{t}\right)+u_{i, t}
$$

- Exposed Reserves: $E R_{i}=\frac{\text { SNB Reserves }_{i, 12 / 2014} \text {-SNB Exemption }}{i}$

Empirical Strategy. Identification.

- Difference-in-Difference Model

$$
Y_{i, t}=\alpha+\beta \cdot E R_{i}+\gamma \cdot \operatorname{Post}_{t}+\delta \cdot\left(E R_{i} \times \operatorname{Post}_{t}\right)+u_{i, t}
$$

- Exposed Reserves: $E R_{i}=\frac{\text { SNB Reserves }_{i, \mathbf{1 2 / 2 0 1 4}} \text {-SNB Exemption }}{i}$
- Assumptions:
- timing \& threshold design \Rightarrow banks did not anticipate exposure
- cont. \& symmetric treatment: $\triangle E R_{i}$ is equally costly for $E R_{i} \gtrless 0$
- loosing spare capacity $\left(E R_{i}<0\right)=$ giving up an arbitrage opp.
- no differential exposure to FX shock
- \Rightarrow narrow sample, parallel trends, dummies for $E R_{i} \gtrless 0$

Exposed Reserves. Benchmark.

Exposed Reserves in \% of TA per 2014m12

Exposed Reserves + Interbank Exposure.

Exposed Reserves in \% of TA per 2014m12

Exposed Reserves. Foreign-Owned Retail Banks.

Exposed Reserves in \% of TA per 2014m12

Parallel Trends. Liquid Assets.

Withdraw from SNB \& Move Liquidity to IB Market.

- 1 sd increase in $E R_{i} \Rightarrow$ 2.32pp [1.12pp] lower SNB Res./TA [NIB Pos/TA]
- some evidence of negative net effect on LCR

	(1)	(2)	(3)	(4)					
	SNB								
Reserves					\quad NIB Pos	SNB	Reserves	NIB Pos	
:---:	:---:	:---:	:---:						
Post*ER	$-0.54^{* * *}$	$0.24^{* * *}$	$-0.54^{* * *}$						
	(0.07)	(0.07)	(0.04)						
Post	0.08	-0.15	-						
	(0.40)	(0.47)							
ER	$0.77^{* * *}$	-0.03	-						
	(0.10)	(0.11)							
Obs.	1,800	1,800	1,800						
R2	0.49	0.05	-						
Bank FE	No	No	Yes						
Year FE	No	No	Yes						

outcomes in \% of TA // SE's clustered by bank

Withdraw from SNB \& Move Liquidity to IB Market.

$$
Y_{i, t}=\alpha+\beta \cdot E R_{i}+\bar{\gamma} \cdot 1_{t=\{2013 m 8, \ldots\}}+\delta_{1} \cdot\left(E R_{i} \times 1_{t=2013 m 8}\right)+\delta_{2} \cdot\left(E R_{i} \times 1_{t=2013 m 9}\right)+\ldots+\varepsilon_{i, t}
$$

outcomes in \% of TA // SE's clustered by bank

Results. Reduce Balance Sheet Size.

- 1 sd increase in $E R_{i} \Rightarrow 1.03 p p$ [0.60pp] lower TA growth [Bonds/TA]
- more stable dep. funding \Rightarrow fraction of Dep./TA increases

	(1) Deposit Funding	(2) Bond Funding	(3) TA (yoy growth)	(4) Deposit Funding	(5) Bond Funding	(6) (yoy TA (yowth)
Post*ER	$0.25^{* * *}$	$-0.10^{* *}$	$-0.39^{* * *}$	$0.22^{* * *}$	$-0.14^{* * *}$	$-0.24^{* * *}$
	(0.09)	(0.04)	(0.09)	(0.06)	(0.03)	(0.07)
Post	0.26	0.36	$-1.33^{* *}$	-	-	-
	(0.55)	(0.27)	(0.52)			
ER	0.08	$-0.47^{* *}$	0.03	-	-	-
	(0.45)	(0.19)	(0.11)			
Obs.	1,800	1,800	1,800	1,800	1,800	1,800
R2	0.02	0.16	0.07	-	-	-
Bank FE	No	No	No	Yes	Yes	Yes
Year FE	No	No	No	Yes	Yes	Yes

outcomes in \% of TA // SE's clustered by bank

Results. Lend \& Invest More.

- 1 sd increase in $E R_{i} \Rightarrow 0.60 \mathrm{pp}$ [0.68pp] more Loans/TA [Mortg/TA]
- no such effect in response to 08/2011 rate cut
- same picture for Financial Assets/TA

	(1)	(2)	(3) Loans	(4) Mortg. (yoy	(5)	(6)	(7)	(8)
	Loans	Mortg.	Mortg. (yoy growth) growth)	Loans	Mortg.			
Post*T	$0.14^{* * *}$	$0.16^{* * *}$	$0.62^{* *}$	0.07	$0.11^{* * *}$	$0.16^{* * *}$	-0.04	-0.03
T	(0.02)	(0.05)	(0.28)	(0.05)	(0.02)	(0.03)	(0.03)	(0.06)
Obs.	1,800	1,800	1,800	1,800	1,800	1,800	1,800	1,800
Bank FE	Yes							
Year FE	Yes							

outcomes in \% of TA // SE's clustered by bank

Results. Lend \& Invest More.

$$
Y_{i, t}=\alpha+\beta \cdot E R_{i}+\bar{\gamma} \cdot 1_{t=\{2013 m 8, \ldots\}}+\delta_{1} \cdot\left(E R_{i} \times 1_{t=2013 m 8}\right)+\delta_{2} \cdot\left(E R_{i} \times 1_{t=2013 m 9}\right)+\ldots+\varepsilon_{i, t}
$$

outcomes in \% of TA // SE's clustered by bank

Results. Maintain Profitability ...

- maintain profitability through higher fees \& mortgage rates
- no comparable effect in response to 08/2011 rate cut
- profitability of WM banks is more negatively affected

	(1)	(2)	(3)	(4)	(5)	(6)	(7) Gross
	NII	Int. Earned	Net Fees	Mortg. 5 yrs	Mortg. 15 yrs	Mortg. Libor	Profits (yoy growth)
Post*ER	$0.01^{* * *}$	$0.03^{* * *}$	$0.17 * * *$	$0.04^{* * *}$	$0.06^{* * *}$	0.00	$2.77^{* * *}$
Obs.	(0.00)	(0.00)	(0.05)	(0.00)	(0.01)	(0.00)	(0.67)
Bank FE	Yes	300	300	1,280	171	512	300
Year FE	Yes						

outcomes in \% of TA // SE's clustered by bank

Results. ... through Risk-Taking.

- lending \& higher rates seem to reflect risk-taking
- banks closer to risk-weighted cap. req. (despite higher CET1/TA)
- some evidence that market power helps to cut deposit rates \& raise fees

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	RWA	Credit	Market	Op.	IRR:	IRR:	IRR:
	Density	Risk	Risk	Risk	Bank	Avg.	2 y
Post*ER	$0.35^{* * *}$	-0.03	$0.02^{* * *}$	0.03^{*}	$0.10^{* * *}$	-0.02	$0.18^{* * *}$
	(0.11)	(0.22)	(0.01)	(0.02)	(0.04)	(0.04)	(0.04)
Obs.	600	600	600	600	600	600	600
Bank FE	Yes						
Year FE	Yes						

SE's clustered by bank

Robustness. Alternative Treatments.

- Exposed Reserves + Net Interbank Borrowing
- close substitutes \& rapid transmission to IB market
- more easily comparable to rate cut in 08/2011
- Distance of Deposit Rates in 12/2014 from Zero
- Heider et al. (2017)
- cannot use deposit ratio b/c of exemption threshold
- (Liquidity Requirements - SNB Exemption)/TA
- on avg. 84% of HQLA $=$ SNB Reserves
- phase in by 2019; req. in 2016: 60\% of NOs
- exposed banks reduce their LCR

Further Analyses.

- comparison with 2011 rate cut shows stronger expansion now
- Retail vs. Wealth Management Banks: WM are more severely affected by negative rates
- role of ex post capitalization ("reversal rate") inconclusive banks are well-capitalized

Conclusion.

- (transmission to the interbank market as intended)
- evidence of reduced size, but (at least) maintained lending
- compensation of squeezed margins through fees \& risk-taking
- possible conflict with financial stability: capital regulation (risk-taking), LCR phase-in
- rate cut is more expansionary \& implies more compensatory behaviour than cut in positive rate territory

Thank you for your attention.

[^0]: ${ }^{1}$ The views expressed in this presentation do not necessarily represent the perspectives of FINMA $_{\overline{\bar{I}}}$

