Unconventional Monetary Policy in HANK

Greg Kaplan

University of Chicago

Ben Moll

Princeton University

Gianluca Violante

New York University

ECB Workshop on Current Monetary Policy Challenges – December 18th, 2016

HANK: Heterogeneous Agent New Keynesian models

• Equilibrium framework for quantitative analysis of monetary policy

HANK: Heterogeneous Agent New Keynesian models

- Equilibrium framework for quantitative analysis of monetary policy
- Two building blocks:
- (HA) Rich representation of hh portfolios and consumption behavior
 - Bewley-Imrohoroglu-Huggett-Aiyagari-Krusell & Smith + Kaplan & Violante
- (NK) Nominal price rigidities
 - Woodford's "cashless limit" insight

HANK: Heterogeneous Agent New Keynesian models

- Equilibrium framework for quantitative analysis of monetary policy
- Two building blocks:
- (HA) Rich representation of hh portfolios and consumption behavior
 - Bewley-Imrohoroglu-Huggett-Aiyagari-Krusell & Smith + Kaplan & Violante
- (NK) Nominal price rigidities
 - Woodford's "cashless limit" insight
- Goal: contrast monetary policy transmission in HANK and RANK

RANK

Conventional monetary policy in RANK

- Preferences: CRRA with $IES = \frac{1}{\gamma} > 0$ and discount rate $\rho > 0$
- Technology: $Y_t = N_t$
- Prices perfectly rigid: $p_t = 1 \quad \forall t$
- Monetary authority sets time path: $r_t = \rho + e^{-\eta t} (r_0 \rho), \quad \eta > 0$
- Equilibrium: $C_t(\{r_s, Y_s\}_{s \ge t}) = Y_t$, and $\lim_{t \to \infty} C_t = \overline{C}$

Conventional monetary policy in RANK

- Preferences: CRRA with $IES = \frac{1}{\gamma} > 0$ and discount rate $\rho > 0$
- Technology: $Y_t = N_t$
- Prices perfectly rigid: $p_t = 1 \quad \forall t$
- Monetary authority sets time path: $r_t = \rho + e^{-\eta t} (r_0 \rho), \quad \eta > 0$
- Equilibrium: $C_t(\{r_s, Y_s\}_{s \ge t}) = Y_t$, and $\lim_{t \to \infty} C_t = \overline{C}$
- Total effect of monetary policy:

$$C_t = \bar{C} \exp\left(-\frac{1}{\gamma} \int_t^\infty (r_s - \rho) ds\right) \quad \Rightarrow \quad \frac{d \log C_0}{dr_0} = -\frac{1}{\gamma \eta}$$

Monetary transmission in RANK

• Decompose C response by totally differentiating $C_0(\{r_t, Y_t\}_{t \ge 0})$

$$dC_0 = \underbrace{\int_0^\infty \frac{\partial C_0}{\partial r_t} dr_t dt}_{\text{direct response to } r} + \underbrace{\int_0^\infty \frac{\partial C_0}{\partial Y_t} dY_t dt}_{\text{indirect effects due to } Y}$$

Monetary transmission in RANK

• Decompose C response by totally differentiating $C_0(\{r_t, Y_t\}_{t \ge 0})$

• In our special case:

$$-\frac{d \log C_0}{dr_0} = \frac{1}{\gamma \eta} \left[\frac{\eta}{\rho + \eta} + \frac{\rho}{\rho + \eta} \right]$$

direct response to r indirect effects due to Y

• Plausible quarterly parameterization:

•
$$\rho = 0.005$$

• $\eta = 0.5$ (half-life $\simeq 2$ quarters) $\rightarrow direct \equiv \frac{\eta}{\rho + \eta} = 0.99$

Forward guidance puzzle in RANK

• Suppose Fed announces a cut in r at future date τ

Forward guidance puzzle in RANK

• Suppose Fed announces a cut in r at future date τ

$$C_0 = \bar{C} \exp\left(-\frac{1}{\gamma} \int_0^\infty (r_t - \rho) dt\right), \quad \text{with} \quad r_t = \begin{cases} \rho & \text{if } t < \tau \\ \rho + e^{-\eta(t-\tau)} (r_\tau - \rho) & \text{if } t \ge \tau \end{cases}$$

$$-\frac{d\log C_0}{dr_{\tau}} = \frac{1}{\gamma\eta} \left[\underbrace{e^{-\rho\tau} \frac{\eta}{\rho + \eta}}_{\text{I}_{\tau} + \eta} + \underbrace{1 - e^{-\rho\tau} \frac{\eta}{\rho + \eta}}_{\text{I}_{\tau} + \eta} \right].$$

direct response to r

- indirect effects due to Y
- FG equally as effective as conventional MP

Forward guidance puzzle in RANK

• Suppose Fed announces a cut in r at future date τ

$$C_0 = \bar{C} \exp\left(-\frac{1}{\gamma} \int_0^\infty (r_t - \rho) dt\right), \quad \text{with} \quad r_t = \begin{cases} \rho & \text{if } t < \tau \\ \rho + e^{-\eta(t-\tau)} (r_\tau - \rho) & \text{if } t \ge \tau \end{cases}$$

$$-\frac{d\log C_0}{dr_{\tau}} = \frac{1}{\gamma\eta} \left[\underbrace{e^{-\rho\tau} \frac{\eta}{\rho+\eta}}_{\text{direct operator for the standard to the function of the standard to the standard to$$

direct response to r

indirect effects due to Y

- FG equally as effective as conventional MP
- Relax perfect price rigidity
 → FG even more powerful
- FG triggers a rise in expected inflation that feeds back into lower real r₀, and a stronger rise in C₀ through int. substitution
 - ► Del Negro, Giannoni and Patterson, 2015

True also in medium-scale monetary DSGE (e.g., Smets-Wouters)

True also in medium-scale monetary DSGE (e.g., Smets-Wouters)

What is wrong with this logic?

True also in medium-scale monetary DSGE (e.g., Smets-Wouters)

What is wrong with this logic? A whole lot of evidence

True also in medium-scale monetary DSGE (e.g., Smets-Wouters)

What is wrong with this logic? A whole lot of evidence

- Weak sensitivity of C to $r \leftrightarrow$ "failure of aggregate EE"
 - Hall (1989), Campbell-Mankiw (1989), Attanasio-Weber (2010)
- Strong sensitivity of C to transitory $y \leftrightarrow$ "excess sensitivity"
 - Flavin (1981), Deaton (1992), Jappelli-Pistaferri (2010)

Mian-Sufi (2014), Kaplan-Violante-Wiedner (2014), Cloyne-Ferreira-Surico (2015), Auclert (2016), Wong (2016), Fagereng et al. (2016)

HANK

Model

Firms

- Monopolistic competition among intermediate-good producers
- Quadratic price-adjustment costs à la Rotemberg (1982)

Households

- Face uninsured idiosyncratic labor income risk
- Save in two assets (liquid and illiquid), consume and supply labor

Illiquid assets

• *K* and shares of intermediate producers (*no arbitrage condition*)

Government

Issues liquid debt, spends, taxes, and transfers lump-sum

Monetary authority

• Sets nominal rate on liquid assets based on a Taylor rule

Model generates high and heterogeneous MPCs

• Average quarterly MPC out of a \$500 windfall: 16%

EXPERIMENTS

Expansionary monetary policy

- Innovation $\epsilon < 0$ to the Taylor rule: $i = \bar{r}^b + \phi \pi + \epsilon$
- All experiments: $\epsilon_0 = -0.0025$, i.e. -1% annualized and $\eta = 0.5$

Expansionary monetary policy

- Innovation $\epsilon < 0$ to the Taylor rule: $i = \bar{r}^b + \phi \pi + \epsilon$
- All experiments: $\epsilon_0 = -0.0025$, i.e. -1% annualized and $\eta = 0.5$
- Conventional MP: surprise innovation at t = 0
- Forward Guidance: announcement at t = 0 of innovation at $\tau > t$
- RANK benchmark ($\gamma = 1$):

$$\frac{d\log C_0}{dr_\tau} = -\frac{1}{\gamma\eta} = -2$$

Transmission of conventional MP

 $\Delta C = \text{direct response to } r + \text{indirect GE response} \\ \text{RANK: 95\%} \\ \text{HANK: 20-40\%} \\ \text{HANK: 60-80\%} \end{cases}$

Transmission of conventional MP

 $\Delta C = \text{direct response to } r + \text{indirect GE response}$ RANK: 95% RANK: 5% HANK: 20-40% HANK: 60-80%

- RANK view:
 - High sensitivity of C to r: intertemporal substitution
 - Low sensitivity of C to Y: the RA is a PIH consumer

Transmission of conventional MP

 $\Delta C = \text{direct response to } r + \text{indirect GE response} \\ \text{RANK: 95\%} \\ \text{HANK: 20-40\%} \\ \text{HANK: 60-80\%} \end{cases}$

- RANK view:
 - High sensitivity of C to r: intertemporal substitution
 - Low sensitivity of C to Y: the RA is a PIH consumer

• HANK view:

- Low sensitivity to r: income effect of wealthy offsets int. subst.
- High sensitivity to Y: sizable share of hand-to-mouth agents
- Saving on interest payments on govt. debt \rightarrow transfers + high MPC of HtM \rightarrow higher demand for $C \rightarrow$ rise in wages $\rightarrow \dots$

Role of fiscal response in determining total effect

Role of fiscal response in determining total effect

	T adjusts (1)	G adjusts (2)	au adjusts (3)	B ^g adjusts (4)
Elasticity of C_0 to r^b	-2.25	-2.04	-2.11	-1.25
Share of Direct Effect:	19%	22%	21%	45%

- Fiscal response to lower interest payments on debt:
 - higher T or lower τ : stimulates AD through MPC of HtM hh
 - ► *G* adjusts: translates 1-1 into AD
 - \blacktriangleright B^g adjusts: no initial stimulus to AD from fiscal side

Forward guidance puzzle

Forward guidance puzzle

- Resolution by McKay-Nakamura-Steinsson (2015)
 - Model with uninsurable income risk and borrowing constraints
 - Precautionary motive tempers response of C_0 to future $\downarrow r$

Forward guidance puzzle

- Resolution by McKay-Nakamura-Steinsson (2015)
 - Model with uninsurable income risk and borrowing constraints
 - Precautionary motive tempers response of C_0 to future $\downarrow r$
- Our resolution
 - What makes MP potent is indirect GE effect through $\uparrow AD$
 - HtM are responsible for initial stimulus to AD via $\uparrow T$
 - When r cut is in the future, T accrues to hh only in the future

Forward Guidance in HANK

At t = 0, Fed announces a transitory cut in *i* occurring at t = 4

• When analyzed through the lenses of an heterogeneous-agent framework:

- When analyzed through the lenses of an heterogeneous-agent framework:
 - 1. Is the transmission mechanism of monetary policy different?
 - ► A: Yes, GE effects dominate intertemporal substitution

- When analyzed through the lenses of an heterogeneous-agent framework:
 - 1. Is the transmission mechanism of monetary policy different?
 - ► A: Yes, GE effects dominate intertemporal substitution
 - 2. Are the real effects of monetary policy larger or smaller?
 - A: It depends on the reaction of fiscal policy to lower interest payments

- When analyzed through the lenses of an heterogeneous-agent framework:
 - 1. Is the transmission mechanism of monetary policy different?
 - ► A: Yes, GE effects dominate intertemporal substitution
 - 2. Are the real effects of monetary policy larger or smaller?
 - A: It depends on the reaction of fiscal policy to lower interest payments
 - 3. Is forward guidance stronger or weaker?
 - ► A: Weaker, b/c hand-to-mouth hh provide initial AD stimulus

THANKS!

Evidende on MPCs – Norwegian Lotteries

Source: Fagereng, Holm and Natvik (2016)

Transmission of monetary policy shock to C

The distribution of the monetary transmission

• Aggr. elasticity = c-weighted average of (direct + indirect) at each b

Kaplan-Moll-Violante, "Unconventional Monetary Policy in HANK"