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http://www.spectator.co.uk/features/8959941/whats-wrong-with-the-met-office/
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Probabilistic forecasts

Probabilistic forecasts, i.e., forecasts in the form of probability
distributions over future quantities or events,

I provide information about inherent uncertainty

I allow for optimal decision making by obtaining deterministic
forecasts as target functionals (mean, quantiles, . . . ) of the
predictive distributions

I have become increasingly popular across disciplines:
meteorology, hydrology, seismology, economics, finance,
demography, political science, . . .



Probabilistic vs. point forecasts
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What is a good probabilistic forecast?

0 2 4 6 8 10

The goal of probabilistic forecasting is to maximize the sharpness
of the predictive distribution subject to calibration.

Gneiting, T., Balabdaoui, F. and Raftery, A. E. (2007) Probabilistic forecasts,
calibration and sharpness. Journal of the Royal Statistical Society Series B,
69, 243–268.



Calibration and sharpness

0 2 4 6 8 10

Calibration: Compatibility between the forecast and the
observation; joint property of the forecasts and observations

Sharpness: Concentration of the forecasts; property of the
forecasts only



Evaluation of probabilistic forecasts: Proper scoring rules

A proper scoring rule is any function

S(F , y)

such that
EY∼GS(G ,Y ) ≤ EY∼GS(F ,Y )

for all F ,G ∈ F .

We consider scores to be negatively oriented penalties that
forecasters aim to minimize.

Proper scoring rules prevent hedging strategies.

Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction,

and estimation. Journal of the American Statistical Association, 102, 359–378.



Examples

Popular examples of proper scoring rules include

I the logarithmic score

LogS(F , y) = − log(f (y)),

where f is the density of F ,

I the continuous ranked probability score

CRPS(F , y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2dz ,

where the probabilistic forecast F is represented as a CDF.
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Media attention often exclusively falls on prediction
performance in the case of extreme events

Bad Data Failed To Predict Nashville Flood NBC, 2011

Weather Service Faulted for Sandy Storm NBC, 2013
Surge Warnings

How Did Economists Get It So Wrong? NY Times, 2009

Nouriel Roubini: The economist who predicted Guardian, 2009
worldwide recession

An exclusive interview with Med Yones - The CEOQ Mag, 2010
expert who predicted the financial crisis

A Seer on Banks Raises a Furor on Bonds NY Times, 2011



Toy example

We compare Alice’s and Bob’s forecasts for Y ∼ N (0, 1),

FAlice = N (0, 1), FBob = N (4, 1)

Based on all 10 000 replicates,

Forecaster CRPS LogS

Alice 0.56 1.42
Bob 3.53 9.36

When the evaluation is restricted to the largest ten observations,

Forecaster CRPS LogS

Alice 2.70 6.29
Bob 0.46 1.21



Verifying only the extremes erases propriety

Some econometric papers use the restricted logarithmic score

R-LogS≥r (F , y) = −1{y ≥ r} log f (y).

However, if h(x) > f (x) for all x ≥ r ,
then

ER-LogS≥r (H,Y ) < ER-LogS≥r (F ,Y )

independent of the true density. −2 0 2 4
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Indeed, if the forecaster’s belief is F , her best prediction under
R-LogS≥r is

f ∗(z) =
1(z ≥ r)f (z)∫∞

r f (x)dx
.



The forecaster’s dilemma

Given any (non-trivial) proper scoring rule S and any non-constant
weight function w , any scoring rule of the form

S∗(F , y) = w(y)S(F , y)

is improper.

The expected value EY∼GS
∗(F , y) is minimized for

f ∗(z) =
w(z)g(z)∫
w(x)g(x)dx

.

Forecaster’s dilemma: Forecast evaluation based on a subset of
extreme observations only corresponds to the use of an improper
scoring rule and is bound to discredit skillful forecasters.
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Proper weighted scoring rules I

Proper weighted scoring rules provide suitable alternatives.

Gneiting and Ranjan (2011) propose the threshold-weighted CRPS

twCRPS(F , y) =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2w(z) dz

w(z) is a weight function on the real line.

Gneiting, T. and Ranjan, R. (2011) Comparing density forecasts using

threshold- and quantile-weighted scoring rules. Journal of Business and

Economic Statistics, 29, 411–422.



Proper weighted scoring rules II

Diks et al. (2011) propose the conditional likelihood score,

CL(F , y) = −w(y) log

(
f (y)∫

w(z)f (z) dz

)
,

and the censored likelihood score,

CSL(F , y) = −w(y) log f (y)−(1−w(y)) log

(
1−

∫
w(z)f (z) dz

)
.

w(z) is a weight function on the real line.

Diks, C., Panchenko, V. and van Dijk, D. (2011) Likelihood-based scoring

rules for comparing density forecasts in tails. Journal of Econometrics, 163,

215–233.



Role of the weight function

The weight function w can be tailored to the situation of interest.

For example, if interest focuses on the predictive performance in
the right tail,

windicator(z) = 1{z ≥ r}, or

wGaussian(z) = Φ(z |µr , σ2r )

Choices for the parameters r , µr , σr can be motivated and justified
by applications at hand.
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Case study: Macroeconomic forecasting

I Probabilistic fore-
casts of quarterly
GDP growth for
the U.S.

I Evaluation period
1985 – 2011.

I Prediction horizon
of 1 and 4 quarters
ahead.
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Clark, T. E. and Ravazzolo, F. (2015) Macroeconomic forecasting

performance under alternative specifications of time-varying volatility.

Journal of Applied Econometrics, 30, 551–575.



Models for GDP growth

I Baseline autoregressive (AR) model:

Yt | y<t , b0, . . . , bp, σ ∼ N

(
b0 +

p∑
i=1

biyt−i , σ
2

)

I AR-TVP-SV model of Cogley and Sargent (2005)

Yt | y<t , b0,t , . . . , bp,t , λt ∼ N

(
b0,t +

p∑
i=1

bi ,tyt−i , λt

)
,

bi ,t | bi ,t−1, τ ∼ N
(
bi ,t−1, τ

2
)
, i = 0, . . . , p,

log λt |λt−1, σ ∼ N
(
log λt−1, σ

2
)
.



Probabilistic 1-quarter ahead forecasts of GDP growth
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Verification

Based on all observations,

Model CRPS LogS
h = 1 h = 4 h = 1 h = 4

AR 0.330 0.359 1.044 1.120
AR-TVP-SV 0.292 0.329 0.833 1.019

When the evaluation is restricted to observations ≤ 0.1,

Model R-CRPS≤0.1 R-LogS≤0.1
h = 1 h = 4 h = 1 h = 4

AR 0.654 0.870 1.626 2.010
AR-TVP-SV 0.659 0.970 2.016 3.323



Verification with proper weighted scoring rules

twCRPS =

∫ ∞
−∞

(F (z)− 1{y ≤ z})2w(z) dz

windicator(z) = 1{z ≤ 0.1}
wGaussian(z) = 1− Φ(z |µr = 0.1, σ2

r = 1)

Model twCRPS
windicator wGaussian

h = 1 h = 4 h = 1 h = 4

AR 0.062 0.068 0.111 0.120
AR-TVP-SV 0.052 0.062 0.101 0.115



Diebold-Mariano tests

Formal test of equal predictive performance of Ft and Gt for an
observation yt+k that lies k time steps ahead.

Denote the mean scores on a test set ranging from t = 1, . . . , n by

S̄F
n =

1

n

n∑
t=1

S(Ft , yt+k) and S̄G
n =

1

n

n∑
t=1

S(Gt , yt+k),

Diebold-Mariano test: Under the null hypothesis of a vanishing expected
score difference and standard regularity conditions

tn =
√
n
S̄F
n − S̄G

n

σ̂n

is asymptotically standard normal.

σ̂2
n is an estimator of the asymptotic variance of the score difference.

Diebold, F. X. and Mariano, R. S. (1995) Comparing predictive accuracy.

Journal of Business and Economics Statistics, 13, 253–263.



Simulation study: Setting

Motivation: Neyman-Pearson lemma suggests superiority of tests
of equal predictive performance based on unweighted LogS.

Simulation setting tailored to benefit proper weighted scoring rules

I compare two forecast distributions neither of which
corresponds to the true sampling distribution

I forecast distributions only differ on the positive half-axis

I sample size is fixed at n = 100

Compare three forecast distributions with densities:

I φ(x), standard normal density,

I h(x) = 1{x ≤ 0}φ(x) + 1{x > 0}t4(x),

I f (x) = 0.5φ(x) + 0.5 h(x)

using two-sided DM tests.



Simulation study: Variant 1

Truth = Φ, compare F and H (F should be preferred)
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Simulation study: Variant 2

Truth = H, compare F and Φ (F should be preferred)
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Tail dependence of proper weighted scoring rules

Consider wr (z) = 1{z ≥ r} and a threshold r such that yi < r for
all i = 1, . . . , n.

Then all proper weighted scoring rules do not depend on the
observations and are solely determined by the tail probabilities.

CL
F
n = 0

CSL
F
n = − log F (r)

twCRPS
F
n =

∫ ∞
r

(F (z)− 1)2 dz

The forecast distribution with the lighter tail then receives the
better score, irrespectively of the true distribution.



Summary and conclusions
I Forecaster’s dilemma: Verification on extreme events only is

bound to discredit skillful forecasters.
I The only remedy is to consider all available cases when

evaluating predictive performance.
I Proper weighted scoring rules emphasize specific regions of

interest, such as tails, and facilitate interpretation, while
avoiding the forecaster’s dilemma.

I In particular, the weighted versions of the CRPS share (almost
all of) the desirable properties of the unweighted CRPS.

I Practical benefits of using proper weighted scoring rules in
terms of power may be limited.

Lerch, S., Thorarinsdottir, T. L., Ravazzolo, F. and Gneiting, T. (2015)
Forecaster’s dilemma: Extreme events and forecast evaluation. Preprint
available at http://arxiv.org/abs/1512.09244.

Thank you for your attention!

http://arxiv.org/abs/1512.09244

