Bayesian Compressed Vector Autoregressions

Gary Koop ${ }^{\text {a }}$, Dimitris Korobilis ${ }^{b}$, and Davide Pettenuzzo ${ }^{\text {c }}$
${ }^{a}$ University of Strathclyde
${ }^{b}$ University of Glasgow
${ }^{c}$ Brandeis University

9th ECB Workshop on Forecasting Techniques
Forecast Uncertainty and Macroeconomic Indicators

June 2-3, 2016

Large VARs

- Since Sims (1980), Vector autoregressions (VARs) are an important tool in applied macroeconomics
- Recently, big focus on forecasting in "data-rich" environments, relying on large VARs with dozens of dependent variables
- Typically these large models have many more parameters than observations
- E.g., with $n=100$ variables and $p=12$ lags, there are 120,000 parameters to estimate (excluding intercepts)
- Solutions involve dynamic factor models, shrinkage methods (LASSO, Elastic net, etc.), Bayesian variable selection
- Recent studies indicate that large Bayesian VARs can be quite competitive in forecasting
- Banbura, Giannone and Reichlin (2010);
- Carriero, Kapetanios and Marcellino (2009, 2011, 2012);
- Koop (2011), Koop and Korobilis (2013); Korobilis (2013)

What we do in this paper

(1) We build on ideas from the machine learning literature and apply Bayesian "compressed regression" methods to large VARs Main idea:

- Compress the VAR regressors through random projection
- Use BMA to average across different random projections
(2) We apply Bayesian compressed VARs to forecast a 130-variable VARs with 13 lags (similar to Banbura et al (2010)), with more than 200, 000 parameters to estimate
- Find good forecasting performance, relative to a host of alternative methods including DFM, FAVAR, and BVAR with Minnesota priors
(3) Extend the Bayesian compressed VARs to feature time-varying coefficients and volatilities, and further improve forecasting performance

Bayesian Compressed Regression (BCR)

- Start with the case of a scalar dependent variable $y_{t}, t=1, \ldots, T$, predictor matrix $x_{t}=\left(x_{t, 1}, \ldots, x_{t, k}\right)^{\prime}$, and linear regression model

$$
y_{t}=x_{t}^{\prime} \beta+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
$$

When $k \gg T$, estimation is either impossible (e.g. MLE), or computationally very hard (e.g. Bayesian regression with natural conjugate priors)

- Guhaniyogi and Dunson (2015) consider a compressed regression specification

$$
y_{t}=\left(\Phi x_{t}\right)^{\prime} \beta^{c}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma_{\varepsilon}^{2}\right)
$$

where Φ is an $(m \times k)$ compression matrix with $m \ll k$

- Conditional on Φ, estimating β^{c} and forecasting y_{t+1} is now very straightforward, and can be carried out using standard (Bayesian) regression methods

Projection matrix

- The elements $\left\{\Phi_{i j}\right\}$ can be generated quickly, e.g.

$$
\Phi_{i j} \sim \mathcal{N}(0,1)
$$

Alternatively, Achlioptas (2003) use a sparse random projection

$$
\Phi_{i j}=\left\{\begin{array}{clc}
-\sqrt{\varphi} & \text { with probability } & 1 / 2 \varphi \\
0 & \text { with probability } & 1-1 / \varphi \\
\sqrt{\varphi} & \text { with probability } & 1 / 2 \varphi
\end{array}\right.
$$

where $\varphi=1$ or 3 .

- We follow the scheme of Guhaniyogi and Dunson (2015)

$$
\Phi_{i j}=\left\{\begin{array}{ccc}
-\frac{1}{\sqrt{\varphi}} & \text { with probability } & \varphi^{2} \\
0 & \text { with probability } & 2(1-\varphi) \varphi \\
\frac{1}{\sqrt{\varphi}} & \text { with probability } & (1-\varphi)^{2}
\end{array}\right.
$$

where $\varphi \in(0.1,0.9)$ and is estimated from the data; the rows of Φ are normalized using Gram-Schmidt orthonormalization.

Model Averaging

- Guhaniyogi and Dunson (2015) show that BCR produces a predictive density for y_{t+1} that (under mild conditions) converges to its true predictive density (large k, small T asymptotics)
- To limit sensitivity of results to choice of m and φ, generate R random compressions based on different (m, φ) pairs.
- Use BMA to integrate out (m, φ) from predictive density of y_{t+1} :

$$
p\left(y_{t+1} \mid \mathcal{Y}^{t}\right)=\sum_{r=1}^{R} p\left(y_{t+1} \mid M_{r}, \mathcal{Y}^{t}\right) p\left(M_{r} \mid \mathcal{Y}^{t}\right)
$$

where $p\left(M_{r} \mid \mathcal{Y}^{t}\right)$ denotes model M_{r} posterior probability (computed using standard BMA formula) and M_{r} denotes the r-th pair of (m, φ) values, where:

$$
\begin{aligned}
& \text { - } \varphi \sim \mathcal{U}(0.1,0.9) \\
& \text { - } m \sim \mathcal{U}(2 \ln (k), \min (T, k))
\end{aligned}
$$

VAR setup

- $\operatorname{VAR}(p)$ for $n \times 1$ vector of dependent variables is:

$$
Y_{t}=a_{0}+\sum_{j=1}^{p} A_{j} Y_{t-j}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \mathcal{N}(0, \Omega)
$$

Rewrite this compactly as

$$
Y_{t}=B X_{t}+\varepsilon_{t}
$$

where B is an $n \times k$ matrix of coefficients, X_{t} is $k \times 1$, and $k=n p+1$. Also, note that Ω has $n(n+1) / 2$ free parameters

- Potentially, many parameters to estimate. E.g., when $n=130$ and $p=13, B$ has $220,000+$ parameters to estimate, while Ω has $8,500+$ unconstrained elements

Bayesian Compressed VAR (BCVAR)

- Define the Compressed VAR as

$$
Y_{t}=B^{c}\left(\Phi X_{t}\right)+\varepsilon_{t}
$$

where the projection matrix Φ is $m \times k, m \ll k$

- Conditional on a given Φ (its elements randomly drawn as before), estimation and forecasts for the compressed VAR above are trivial and very fast to compute
- Note:
- h-step ahead forecasts (for $h>1$) not available analytically. For those, rewrite compressed VAR as

$$
Y_{t}=\left(B^{c} \Phi\right) X_{t}+\varepsilon_{t}
$$

and iterate forward in the usual way

- The compressed VAR above imposes the same compression $\left(\Phi X_{t}\right)$ in all equations; may be too restrictive
- So far, no compression is applied to the elements of Ω

Compressing the VAR covariance matrix

- Ω has $n(n+1) / 2$ unconstrained elements, so we modify the BCVAR to allow also for their compression
- Following common practice (e.g., Primiceri, 2005 and Eisenstat, Chan and Strachan, 2015) we use a triangular decomposition of Ω

$$
A \Omega A^{\prime}=\Sigma \Sigma
$$

Σ is a diagonal matrix with diagonal elements σ_{i}
A is a lower triangular matrix with ones on the diagonal

- Define $A=I+\widetilde{A}$, where \widetilde{A} is lower triangular but with zeros on the diagonal, and rewrite uncompressed VAR as

$$
\begin{aligned}
Y_{t} & =\Gamma X_{t}+\widetilde{A}\left(-Y_{t}\right)+\Sigma E_{t} \\
& =\Theta Z_{t}+\Sigma E_{t}
\end{aligned}
$$

where $E_{t} \sim \mathcal{N}\left(0, I_{n}\right), Z_{t}=\left[X_{t},-Y_{t}\right]$ and $\Theta=[\Gamma, \widetilde{A}]^{\prime}$

Compressing the VAR covariance matrix - contn'd

- Compression can be accomplished as follows:

$$
Y_{t}=\Theta^{c}\left(\Phi Z_{t}\right)+\Sigma E_{t}
$$

where Φ is now an $m \times(k+n)$ random compression matrix Note that we would still be relying on the same compression matrix (Φ) for all equations

- Alternatively, we can allow each equation to have its own random compression matrix (of size $m_{i} \times(k+i-1)$):

$$
Y_{i, t}=\Theta_{i}^{c}\left(\Phi_{i} Z_{i, t}\right)+\sigma_{i} E_{i, t}
$$

Having n compression matrices (each of different dimension and with different randomly drawn elements) allows for the explanatory variables of different equations to be compressed in potentially different ways

Estimation and Predictions

- Estimation is performed equation-by-equation (Zellner, 1971), conditional on a known (generated) Φ_{i}
- We choose a standard natural conjugate prior:

$$
\begin{aligned}
\Theta_{i}^{c} & \sim \mathcal{N}\left(\underline{\Theta}_{i}^{c}, \sigma_{i}^{2} \underline{V}_{i}\right) \\
\sigma_{i}^{-2} & \sim \mathcal{G}\left(\underline{s}^{-2}, \underline{v}\right)
\end{aligned}
$$

where $i=1, \ldots, n$.
Posterior location and scale parameters for $\Theta_{i}^{c}, \sigma_{i}^{-2}$ are available analytically

- 1-step ahead forecasts are also available analytically
- h-step ahead forecasts (for $h>1$) require some extra work Rewrite compressed VAR as

$$
Y_{i, t}=\left(\Theta_{i}^{c} \Phi_{i}\right) Z_{i, t}+\sigma_{i} E_{i, t}
$$

and iterate forward in the usual way, one equation at a time

Model averaging

- We generate many random $\Phi^{(r)}\left(\right.$ or $\left.\Phi_{i}^{(r)}\right), r=1, \ldots, R$ based on different (m, φ) pairs, then implement BMA as follows
- First, we rely on BIC instead of the marginal likelihood.

We compute model M_{r} BIC as

$$
B I C_{r}=\ln \left(\left|\bar{\Sigma}_{r}\right|\right)+\frac{\ln (t)}{t}\left(n \times \sum_{i=1}^{n} m_{i}\right)
$$

Posterior model probability is approximated by

$$
\operatorname{Pr}\left(M_{r} \mid \mathcal{Y}^{t}\right) \approx \frac{\exp \left(-\frac{1}{2} B I C_{r}\right)}{\sum_{\zeta=1}^{R} \exp \left(-\frac{1}{2} B I C_{\zeta}\right)}
$$

- Next,

$$
p\left(Y_{t+h} \mid \mathcal{Y}^{t}\right)=\sum_{r=1}^{R} p\left(Y_{t+h} \mid M_{r}, \mathcal{Y}^{t}\right) p\left(M_{r} \mid \mathcal{Y}^{t}\right)
$$

where $h=1, \ldots, H$

Data

- We use the "FRED-MD" monthly macro data (McCracken and Ng, 2015), 2015-05 vintage
- 134 series covering: (1) the real economy (output, labor, consumption, orders and inventories), (2) money and prices, (3) financial markets (interest rates, exchange rates, stock market indexes).
- Series are transformed as in Banbura et al (2010) by applying logarithms, excepts when series are already expressed in rates
- Final sample is 1960M3-2014M12 (658 obs.)
- We focus on forecasting: Employment (PAYEMS), Inflation (CPIAUCSL), Federal fund rate (FEDFUNDS), Industrial production (INDPRO), Unemployment rate (UNRATE), Producer Price Index (PPIFGS), and 10 year US Treasury Bond yield (GS10).

VAR specifications

- We have three sets of VARs: Medium, Large, and Huge
- All VARs include seven key variables of interest: Employment, Inflation, Fed Fund rate, IPI, Unemployment, PPI, and 10 yr bond yield
- Medium VAR has 19 variables - similar to Banbura et al (2010)
- Large VAR has 46 variables - similar to Carriero et al (2011)
- Huge VAR has 129 variables
- Note: All four VARs produce forecasts for the variables of interest, but imply different information sets

Forecast evaluation

- We forecast $h=1$ to 12 months ahead
- Initial estimation based on first half of the sample, $t=1, \ldots, T_{0}$; forecast evaluation over the remaining half, $t=T_{0}+1, \ldots, T-h$ ($T_{0}=1987 \mathrm{M} 7, T=2014 \mathrm{M} 12$)
- Forecasts are computed recursively, using an expanding estimation window.
- We evaluate forecasts relative to an $\operatorname{AR}(1)$ benchmark and focus on
- Mean squared forecast error (MSFE)
- Cumulative sum of squared forecast errors (Cum SSE)
- Average (log) predictive likelihoods (ALPLs)
- Competing methods are DFM using PCA as in Stock and Watson (2002), FAVAR using PCA as in Bernanke et al (2005) with selection of lags and factors using BIC, and BVAR with Minnesota prior as in Banbura et al (2010)

Relative MSFE ratios, Large VAR

Variable	DFM	FAVAR	BVAR	BCVAR	$B C V A R{ }_{c}$	DFM	FAVAR	BVAR	BCVAR	$B C V A R{ }_{\text {c }}$
$h=1$						$h=2$				
PAYEMS	1.129	0.906	0.788**	0.888***	0.905**	0.871	0.698***	0.521***	0.805***	0.837***
CPIAUCSL	1.149	1.100	1.009	0.998	0.953	1.172	1.118	1.110	0.943	0.909**
FEDFUNDS	2.436	1.671	2.461	1.093	1.103	1.979	1.415	2.594	0.991	1.150
INDPRO	0.824**	0.890**	0.783***	0.838***	0.914***	0.852	0.966	0.772**	0.934*	0.929*
UNRATE	0.841*	0.786***	0.824*	0.798***	0.855**	0.677*	0.661***	0.666*	0.722***	0.758**
PPIFGS	1.039	1.013	1.045	0.987	0.986	1.149	1.056	1.162	1.012	1.004
GS10	1.010	0.983	1.106	1.006	0.992	1.020	0.987	1.149	1.052	1.044
	$h=3$					$h=6$				
PAYEMS	0.799	0.710***	0.489***	0.757***	0.748***	0.826	0.832**	0.647*	0.773**	0.762***
CPIAUCSL	1.129	1.067	1.154	0.948	0.913**	1.042	0.970	0.999	0.910**	0.902**
FEDFUNDS	1.695	1.026	2.241	1.034	1.108	1.252	0.944	1.224	1.098	1.088
INDPRO	0.911	0.943	0.862	0.957*	0.952	0.923	0.962	0.980	0.959	0.984
UNRATE	0.603*	0.631***	0.615*	0.677***	0.731**	0.600	0.663***	0.617	0.671***	0.712**
PPIFGS	1.151	1.018	1.177	1.021	1.013	1.108	1.014	1.095	1.012	0.998
GS10	1.041	1.030	1.222	1.057	1.059	1.033	1.018	1.115	1.043	1.029
	$h=9$					$h=12$				
PAYEMS	0.891	0.930	0.840	0.865	0.844**	0.919	0.966	0.999	0.972	0.940
CPIAUCSL	1.052	0.975	0.932	0.887**	0.867***	1.046	0.984	0.904	0.902**	0.879***
FEDFUNDS	1.085	0.999	1.139	1.060	1.028	1.065	0.994	1.259	1.092	1.041
INDPRO	0.963	0.972	1.018	1.004	0.999	0.956	0.979	1.056	1.002	1.020
UNRATE	0.663	0.684***	0.715	0.698**	0.739**	0.715*	0.710***	0.831	0.728**	0.756**
PPIFGS	1.063	1.000	1.051	0.985	0.992	1.082	1.002	1.039	1.004	0.972
GS10	1.005	1.001	1.050	1.009	1.019	1.011	1.001	1.054	1.023	1.014

Average (log) predictive likelihoods, Large VAR

Variable	DFM	FAVAR	BVAR	BCVAR	BCVARc	DFM	FAVAR	BVAR	BCVAR	$B C V A R c$
	$h=1$					$h=2$				
PAYEMS	0.064***	0.107***	0.259***	0.065***	0.063***	$0.136^{* * *}$	0.168***	0.399***	0.120***	0.113***
CPIAUCSL	-0.216	-0.239	-0.775	-0.078	0.104	-1.142	-0.581	-2.312	-0.222	-0.220
FEDFUNDS	0.016	0.060***	0.149***	-0.017	-0.018	-0.001	0.021**	-0.023	-0.004	-0.012
INDPRO	-0.057	-0.034	-0.059	-0.011	0.045***	0.054	0.105	0.240**	0.102*	0.146
UNRATE	0.114***	0.138***	0.122**	0.096***	$0.061^{* * *}$	0.211**	0.144**	0.235**	0.169***	0.144**
PPIFGS	-0.047	-0.030	-0.711	-0.023	0.028	-0.656	-0.213	-1.207	0.023	-0.144
GS10	0.040*	0.036	-0.012	0.001	0.011	-0.002	0.003	-0.010	-0.021	-0.027
	$h=3$					$h=6$				
PAYEMS	0.136***	0.141***	0.407***	$0.148^{* * *}$	0.149***	0.092**	0.068***	0.282***	0.114***	$0.157^{* * *}$
CPIAUCSL	-0.593	-0.232	-1.949	-0.446	-0.269	-0.058	0.048	-0.889	-0.189	-0.002
FEDFUNDS	-0.012	$0.027^{* *}$	0.032	0.001	-0.001	-0.011	0.007*	0.158***	-0.013	-0.014
INDPRO	0.060*	0.199	0.044	0.223	0.074*	0.023	-0.053	-0.294	-0.045	-0.081
UNRATE	0.401	0.116	0.356	0.357*	0.340*	0.977	0.495	0.502	0.958	0.869
PPIFGS	-0.228	0.004	-1.109	-0.020	-0.009	-0.147	-0.108	-0.857	-0.116	-0.060
GS10	0.011	0.002	-0.025	-0.002	-0.029	-0.006	0.002	-0.009	-0.021	-0.024
	$h=9$					h $h=12$				
PAYEMS	0.063**	0.027*	0.105*	0.065***	0.099***	0.052	0.039	0.016	0.041**	0.024
CPIAUCSL	-0.203	0.027	-0.943	-0.081	-0.228	0.029	-0.127	-0.784	-0.106	-0.053
FEDFUNDS	-0.004	-0.006	0.148***	-0.024	-0.022	-0.005	-0.005	0.136***	-0.028	-0.016
INDPRO	0.040	0.122	-0.168	0.092	-0.002	0.087	-0.057	-0.231	-0.109	0.058
UNRATE	1.437	1.495	0.180	1.326	1.136	1.097	1.878	-0.016	1.367	1.040
PPIFGS	-0.106	0.014	-0.629	0.029	0.061	-0.214	-0.185	-0.711	-0.150	-0.145
GS10	-0.011	-0.011	0.024	-0.022	-0.024	-0.017	-0.008	0.010	-0.018	-0.040

Forecast evaluation - contn'd

- We also look at the multivariate mean squared forecast error proposed by Christoffersen and Diebold (1998). Define the weighted forecast error of model i at time $\tau+h$ as

$$
w e_{i, \tau+h}=\left(e_{i, \tau+h}^{\prime} \times W \times e_{i, \tau+h}\right)
$$

$e_{i, \tau+h}=Y_{\tau+h}-\widehat{Y}_{i, \tau+h}$ is the $(N \times 1)$ vector of forecast errors, and W is an $(N \times N)$ matrix of weights

- We set the matrix W to be a diagonal matrix featuring on the diagonal the inverse of the variances of the series to be forecast
- Next, define

$$
\text { WMSFE }_{i h}=\frac{\sum_{\tau=\underline{t}}^{\bar{t}-h} w e_{i, \tau+h}}{\sum_{\tau=\underline{t}}^{\bar{t}-h} w e_{b c m k, \tau+h}}
$$

where t and \bar{t} denote the start and end of the out-of-sample period

Forecast evaluation - contn'd

- Finally, we consider the multivariate average log predictive likelihood differentials between model i and the benchmark $\operatorname{AR}(1)$,

$$
M V A L P L_{i h}=\frac{1}{\bar{t}-\underline{t}-h+1} \sum_{\tau=\underline{t}}^{\bar{t}-h}\left(M V L P L_{i, \tau+h}-M V L P L_{b c m k, \tau+h}\right)
$$

where:

- MVLPL ${ }_{i, \tau+h}$ denote the multivariate log predictive likelihoods of model i at time $\tau+h$
- and $M V L P L_{b c m k, \tau+h}$ denote the multivariate log predictive likelihoods of the benchmark model at time $\tau+h$
both computed under the assumption of joint normality.

Multivariate forecast comparisons

Fcst h.	Medium VAR									
	WTMSFE					MVALPL				
	DFM	FAVAR	BVAR	BCVAR	BCVARc	DFM	FAVAR	BVAR	BCVAR	BCVARc
$\mathrm{h}=1$	1.208	1.143	1.194	0.936***	0.938***	0.587***	$0.788^{* * *}$	1.005***	0.919***	0.318***
$\mathrm{h}=2$	1.079	1.125	1.154	0.937*	0.936**	0.935***	0.912***	1.222***	$1.120^{* * *}$	0.514***
$\mathrm{h}=3$	1.032	1.051	1.082	0.949	0.939*	1.031***	1.053***	1.362***	1.222***	0.575***
$\mathrm{h}=6$	1.029	0.961	1.005	0.936	0.938	0.983***	1.216***	1.472***	1.383***	0.690***
$\mathrm{h}=9$	1.021	0.934	0.973	0.926*	0.930*	0.890**	1.336***	1.502***	1.471***	0.703***
$\mathrm{h}=12$	1.025	0.941	1.002	0.954	0.960	0.833*	1.434**	1.425***	1.465***	0.699***
Large VAR										
	DFM	FAVAR	BVAR	BCVAR	BCVAR ${ }_{\text {c }}$	DFM	FAVAR	BVAR	BCVAR	BCVAR ${ }_{c}$
$\mathrm{h}=1$	1.217	1.080	1.172	0.968	0.975	0.705***	0.830***	0.913***	0.827***	0.257***
$\mathrm{h}=2$	1.175	1.051	1.224	0.961	0.979	0.974***	0.970***	0.937***	1.071***	0.323***
$\mathrm{h}=3$	1.121	0.969	1.192	0.962	0.964	1.091***	1.089***	1.024***	1.159***	0.424***
$\mathrm{h}=6$	1.019	0.949**	0.994	0.954	0.950*	1.176***	1.170***	1.347***	1.280***	0.551***
$\mathrm{h}=9$	0.996	0.967*	0.988	0.953	0.944*	1.270***	1.311***	1.337***	1.381***	0.574***
$\mathrm{h}=12$	0.995	0.971	1.033	0.980	0.960	1.222***	1.390***	1.134***	1.362***	0.476***
Huge VAR										
	DFM	FAVAR	BVAR	BCVAR	BCVAR ${ }_{\text {c }}$	DFM	FAVAR	BVAR	BCVAR	BCVARc
$\mathrm{h}=1$	1.094	1.050	1.055	0.920***	0.944***	0.938***	0.931***	0.760***	0.921***	0.272***
$\mathrm{h}=2$	1.081	1.023	1.098	0.916**	0.923**	1.124***	$1.148^{* * *}$	0.875***	1.203***	0.468***
$\mathrm{h}=3$	1.058	0.971	1.061	0.917*	0.924*	1.230***	1.282***	1.012***	1.276***	0.510***
$\mathrm{h}=6$	1.062	0.927*	0.993	0.924	0.920	1.233***	1.426***	1.018***	1.483***	0.675***
$\mathrm{h}=9$	1.045	0.930**	0.962	0.919	0.915*	$1.137^{* * *}$	1.542***	1.027***	1.555***	0.737***
$h=12$	1.058	0.955*	0.997	0.949	0.933	0.999***	1.631***	0.712	1.593***	0.645***

Weighted Cum. Sum SSE diffs (Huge VAR)

Time-variation in Parameters: The Compressed TVP-VAR

- We generalize the compressed VAR to the case of a VAR with time-varying parameters and volatilities (BCVAR-TVP)
- The model becomes

$$
Y_{i, t}=\Theta_{i, t}^{c}\left(\Phi_{i} Z_{i, t}\right)+\sqrt{\sigma_{i, t}^{2}} E_{i, t} .
$$

- To estimate $\Theta_{i, t}^{c}$ and $\sigma_{i, t}^{2}$, we assume that they evolve according to:

$$
\begin{aligned}
\Theta_{i, t}^{c} & =\Theta_{i, t-1}^{c}+\sqrt{\frac{\left(1-\lambda_{i, t}\right) \operatorname{var}\left(\Theta_{i, t \mid-1}^{c}\right)}{\lambda_{i, t}}} u_{i, t}, \\
\sigma_{i, t}^{2} & =\kappa_{i, t} \sigma_{i, t-1}^{2}+\left(1-\kappa_{i, t}\right) \widehat{E}_{i, t}^{2} .
\end{aligned}
$$

where $\lambda_{i, t}$ and $\kappa_{i, t}$ are the forgetting and decay factors, typically in the range of $(0.9,1)$, and control how quickly discounting of past data occurs.

Out-of-sample performance: Compressed TVP-VAR

Variable	Medium VAR											
	MSFE						ALPL					
	$h=1$	$h=2$	$h=3$	$h=6$	$h=9$	$h=12$	$h=1$	$h=2$	$h=3$	$h=6$	$h=9$	$h=12$
PAYEMS	0.691***	0.547***	0.525***	0.605**	0.704**	0.805	0.346***	0.409***	0.374***	0.155	-0.315	-0.593
CPIAUCSL	0.912***	0.871***	0.881***	0.857***	0.814***	0.827***	0.254	0.317*	0.286*	0.229**	0.283*	0.275
FEDFUNDS	0.888	0.932	0.931	0.958	0.952	1.022	0.679***	0.557*	0.490	0.315	0.057	0.360
INDPRO	0.912***	0.929	0.940	0.973	0.989	0.974	-0.064	0.067	-0.225	-0.220	-0.239	-0.139
UNRATE	0.807***	0.663***	0.599**	0.561**	0.596**	0.636**	0.132***	0.279***	0.478**	0.970	0.904	1.210
PPIFGS	0.977	0.984	0.989	1.014	0.999	1.019	0.323	0.281	0.346	0.372	0.336	0.318
GS10	1.023	1.022	1.048	1.027	1.020	1.039	0.008	0.018	-0.073	0.040**	-0.046	0.004
Multivariate	0.920***	0.894***	0.887***	0.891**	0.892**	0.922*	1.661***	1.791***	1.786***	1.680***	1.496***	1.240***
Large VAR												
	$h=1$	$h=2$	$h=3$	$h=6$	$h=9$	$h=12$	$h=1$	$h=2$	$h=3$	$h=6$	$h=9$	$h=12$
PAYEMS	0.692***	0.560***	0.573***	0.627***	0.715**	0.816*	0.330***	0.373***	0.243*	-0.007	-0.232	-0.924
CPIAUCSL	0.941	0.879***	0.878***	0.841***	0.811***	0.792***	0.221	0.242***	0.186	0.257	0.265**	0.252
FEDFUNDS	0.903*	0.861*	0.888	0.922	0.968	1.010	0.641***	0.729***	0.683***	0.437	0.164	0.210
INDPRO	0.922***	0.939*	0.963	0.933	0.967	0.985	-0.003	0.056	-0.150	-0.315	-0.378	-0.260
UNRATE	0.819***	0.709***	0.670***	0.664***	0.699***	0.741***	0.120***	0.223***	0.413**	0.732	0.407	-0.956
PPIFGS	0.969	0.984	0.991	0.991	0.980	0.972	0.295*	0.298	0.342	0.322	0.245	0.189
GS10	1.036	1.038	1.023	1.035	1.003	1.012	0.015	-0.053	-0.003	-0.040	-0.028	-0.088
Multivariate	0.930***	0.890***	0.887***	0.880***	0.891***	0.912**	1.580***	1.718***	1.680***	1.435***	1.167***	0.800
Huge VAR												
	$h=1$	$h=2$	$h=3$	$h=6$	$h=9$	$h=12$	$h=1$	$h=2$	$h=3$	$h=6$	$h=9$	$h=12$
PAYEMS	0.713***	0.604***	0.563***	0.669*	0.790	0.880	0.3 37***	$0.378^{* * *}$	0.314***	-0.007	-0.572	-0.701
CPIAUCSL	0.972	0.848***	0.876**	0.853*	0.835***	0.825***	0.149	0.353*	0.352	0.294	0.199	0.276
FEDFUNDS	0.869*	0.912	0.941	0.970	1.008	1.102	0.642**	0.586*	0.492	0.204	0.146	0.186
INDPRO	0.937	0.992	0.960	0.989	1.014	1.006	0.000	-0.078	-0.265	-0.379	-0.340	-0.199
UNRATE	0.839**	0.673**	0.590**	0.551**	0.596**	0.638**	0.110***	0.233***	0.426**	0.879	0.852	0.750
PPIFGS	0.985	1.021	1.009	1.010	0.990	1.024	0.291*	0.428	0.377	0.351	0.168	0.400
GS10	1.033	1.044	1.024	1.034	1.022	1.033	-0.005	-0.025	-0.013	0.052**	-0.002	-0.063
Multivariate	0.938***	0.913**	0.895**	0.906	0.922	0.950	1.566***	1.698***	1.754***	1.539***	1.235***	1.041***

Conclusions

- Apply Bayesian "compressed regression" methods to large VARs
- Method works by:
- Compressing the VAR regressors through random projection
- Averaging across different random projections
- BCVAR as an alternative to the existing dimension reduction and shrinkage methods for large VARs
- Apply BCVAR to forecast a 130-variable macro VARs
- BCVAR forecasts are quite accurate, in many instances improving over BVAR and FAVAR
- Computationally much faster than BVAR, but slower than FAVAR (based on PCA+OLS)
- Extension to time-varinyg parameters and volatilities is computationally very fast and leads to further improvements in forecast accuracy

Appendix

Random Projection vs. Principal Component Analysis

- Random Projection (RP) is a projection method similar to Principal Component Analysis (PCA)
- High-dimensional data is projected onto a low-dimensional subspace using a random matrix, whose columns have unit length
- Unlike PCA, "loadings" are not estimated from data, rather generated randomly ("Data Oblivious" method)
- Inexpensive in terms of time/space. Random projection can be generated without even seeing the data
- Theoretical results show that RP preserves volumes and affine distances, or the structure of data (e.g., clustering)
- Johnson-Lindenstrauss (1984) lemma: Any n point subset of Euclidean space can be embedded in $k=O\left(\log n / \epsilon^{2}\right)$ dimensions without distorting the distances between any pair of points by more than a factor of $1 \pm \epsilon$, for any $0<\epsilon<1$

Relative MSFE ratios, Medium VAR

Variable	DFM	FAVAR	BVAR	BCVAR	B^{\prime} VAR $_{\text {c }}$	DFM	FAVAR	BVAR	BCVAR	$B C V A R$ c
	$h=1$					$h=2$				
PAYEMS	1.076	1.041	0.892	0.799***	0.813***	0.915	0.871	0.571***	0.688***	0.711***
CPIAUCSL	1.139	1.102	0.925	0.951	0.935**	1.080	1.115	0.964	0.940	0.925**
FEDFUNDS	2.262	2.043	2.727	1.027	0.952	1.463	1.691	2.437	0.999	1.002
INDPRO	0.866**	0.896*	0.821**	0.830***	0.894***	0.924	0.997	0.835*	0.914*	0.934
UNRATE	0.866	0.758***	0.764**	0.762***	0.798***	0.772	0.626**	0.582**	0.626***	0.662***
PPIFGS	0.995	0.996	0.968	0.966	0.982	1.050	1.050	1.060	1.030	1.000
GS10	1.139	0.973	1.095	1.007	0.997	1.040	1.032	1.082	0.995	1.002
	$h=3$					$h=6$				
PAYEMS	0.834	0.827	0.530***	0.630***	0.649***	0.960	0.825	0.687*	0.694**	0.703**
CPIAUCSL	1.089	1.083	0.993	0.969	0.956	1.031	0.976	0.983	0.962	0.967
FEDFUNDS	1.282	1.372	1.862	1.063	1.030	1.195	0.998	1.230	0.976	0.987
INDPRO	0.923	0.959	0.924	0.917*	0.939	0.959	0.980	1.022	0.965	0.963
UNRATE	0.769	0.620**	0.526**	0.563***	0.603***	0.835	0.637*	0.512*	0.535**	0.575**
PPIFGS	1.033	1.034	1.070	1.051	1.026	1.047	1.021	1.092	1.046	1.042
GS10	1.027	1.040	1.144	1.058	1.031	1.014	1.019	1.123	1.054	1.038
	$h=9$					$h=12$				
PAYEMS	0.996	0.850	0.798	0.779*	0.798*	1.027	0.885	0.901	0.887	0.893
CPIAUCSL	1.004	0.958*	0.968	0.956	0.943	1.009	0.972	0.985	0.966	0.970
FEDFUNDS	1.160	0.926	1.065	0.904	0.925	1.137	0.925	1.135	0.960	0.990
INDPRO	0.965	0.952	1.022	0.953	0.969	0.970	0.965	0.992	0.965	0.975
UNRATE	0.897	0.645	0.569*	0.562**	0.601**	0.939	0.661*	0.640*	0.601**	0.636**
PPIFGS	1.020	0.994	1.075	1.051	1.031	1.029	1.001	1.105	1.062	1.046
GS10	1.016	1.006	1.047	1.023	1.016	1.010	1.006	1.054	1.031	1.019

4 Results

Relative MSFE ratios, Huge VAR

Variable	DFM	FAVAR	BVAR	BCVAR	BCVAR ${ }_{\text {c }}$	DFM	FAVAR	BVAR	BCVAR	$B C V A R_{c}$
	$h=1$					$h=2$				
PAYEMS	0.796**	0.956	0.702***	0.761***	0.779***	0.716*	0.679**	0.447***	0.641***	0.661***
CPIAUCSL	0.946	0.948	0.872*	0.947	0.943	1.006	1.003	0.939	0.890**	0.879**
FEDFUNDS	2.027	1.701	1.984	0.891	0.927	1.796	1.472	2.187	0.929	0.961
INDPRO	0.839**	0.830***	0.785***	0.856***	0.913***	0.852	0.844*	0.786**	0.924**	0.939
UNRATE	0.778**	0.736***	0.883	0.781***	0.813***	0.609**	0.558***	0.646**	0.644***	0.703***
PPIFGS	0.952	0.985	0.947	0.985	1.004	1.074	1.051	1.071	1.029	1.016
GS10	1.098	0.995	1.100	0.998	1.019	1.044	1.057	1.150	1.024	1.032
	$h=3$					$h=6$				
PAYEMS	0.719	0.616**	0.412***	0.591***	0.591***	0.910	0.742*	0.516**	0.645**	0.662**
CPIAUCSL	0.980	0.984	0.978	0.903	0.923	0.959	0.910	1.019	0.916	0.893
FEDFUNDS	1.581	1.182	1.848	0.961	0.985	1.380	0.957	1.275	0.995	0.986
INDPRO	0.941	0.917	0.865	0.951	0.947	1.033	0.952	0.972	0.961	0.970
UNRATE	0.550**	0.495***	0.540**	0.590***	0.643***	0.638	0.479**	0.435**	0.562***	0.601***
PPIFGS	1.096	1.032	1.089	1.040	1.043	1.111	1.037	1.130	1.058	1.055
GS10	1.070	1.104	1.212	1.058	1.057	1.070	1.047	1.176	1.053	1.033
	, h=9					$h=12$				
PAYEMS	1.006	0.863	0.649	0.744*	0.748*	1.079	0.949	0.788	0.854	0.842
CPIAUCSL	0.939	0.883**	0.994	0.876	0.871**	0.950	0.904***	0.992	0.880*	0.862**
FEDFUNDS	1.293	0.950	1.066	0.960	0.973	1.281	1.024	1.141	1.037	1.007
INDPRO	1.037	0.992	1.042	0.973	0.990	0.988	0.981	1.056	0.990	0.985
UNRATE	0.775	0.512***	0.448**	0.577***	0.610***	0.872	0.555***	0.497**	0.603***	0.640***
PPIFGS	1.064	1.003	1.127	1.062	1.019	1.104	1.023	1.159	1.069	1.037
GS10	1.022	1.013	1.070	1.025	1.003	1.039	1.021	1.084	1.035	1.016

4 Results

