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Forecaster’s Dilemma: Extreme
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and Tilmann Gneiting

Abstract. In public discussions of the quality of forecasts, attention typ-
ically focuses on the predictive performance in cases of extreme events.
However, the restriction of conventional forecast evaluation methods to
subsets of extreme observations has unexpected and undesired effects,
and is bound to discredit skillful forecasts when the signal-to-noise ra-
tio in the data generating process is low. Conditioning on outcomes is
incompatible with the theoretical assumptions of established forecast
evaluation methods, thereby confronting forecasters with what we re-
fer to as the forecaster’s dilemma. For probabilistic forecasts, proper
weighted scoring rules have been proposed as decision theoretically jus-
tifiable alternatives for forecast evaluation with an emphasis on extreme
events. Using theoretical arguments, simulation experiments, and a real
data study on probabilistic forecasts of U.S. inflation and gross domes-
tic product (GDP) growth, we illustrate and discuss the forecaster’s
dilemma along with potential remedies.

Key words and phrases: Diebold-Mariano test, likelihood ratio test,
Neyman-Pearson lemma, predictive performance, probabilistic forecast,
proper weighted scoring rule, rare and extreme events.

Quod male consultum cecidit feliciter, Ancus,
Arguitur sapiens, quo modo stultus erat.
Quod prudenter erat provisum, si male vortat,
Ipse Cato (populo iudice) stultus erat.1
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1. INTRODUCTION

Extreme events are inherent in natural or man-made systems and may pose
significant societal challenges. The development of the theoretical foundations
for the study of extreme events started in the middle of the last century and
has received considerable interest in various applied domains, including but not
limited to meteorology, climatology, hydrology, finance, and economics. Topical
reviews can be found in the work of Gumbel (1958), Embrechts et al. (1997),
Easterling et al. (2000), Coles (2001), Katz et al. (2002), Beirlant et al. (2004), and
Albeverio et al. (2006), among others. Not surprisingly, accurate predictions of
extreme events are of great importance and demand. In many situations distinct
models and forecasts are available, thereby calling for a comparative assessment of
their predictive performance with particular emphasis placed on extreme events.

In the public, forecast evaluation often only takes place once an extreme event
has been observed, in particular, if forecasters have failed to predict an event
with high economic or societal impact. Table 1 gives examples from newspapers,
magazines, and broadcasting corporations that demonstrate the focus on extreme
events in finance, economics, meteorology, and seismology. Striking examples in-
clude the international financial crisis of 2007/08 and the L’Aquila earthquake of
2009. After the financial crisis, much attention was paid to economists who had
correctly predicted the crisis, and a superior predictive ability was attributed to
them. In 2011, against the protest of many scientists around the world, a group
of Italian seismologists was put on trial for not warning the public of the dev-
astating L’Aquila earthquake of 2009 that caused 309 deaths (Hall, 2011). Six
scientists and a government official were found guilty of involuntary manslaugh-
ter in October 2012 and sentenced to six years of prison each. In November 2015,
the scientists were acquitted by the Supreme Court in Rome, whereas the sen-
tence of the deputy head of Italy’s civil protection department, which had been
reduced to two years in 2014, was upheld.

At first sight, the practice of selecting extreme observations, while discarding
non-extreme ones, and to proceed using standard evaluation tools appears to be
a natural approach. Intuitively, accurate predictions on the subset of extreme
observations may suggest superior predictive ability. However, the restriction of
the evaluation to subsets of the available observations has unwanted effects that
may discredit even the most skillful forecast available (Denrell and Fang, 2010;
Diks et al., 2011; Gneiting and Ranjan, 2011). In a nutshell, if forecast evalua-
tion proceeds conditionally on a catastrophic event having been observed, always
predicting calamity becomes a worthwhile strategy. Given that media attention
tends to focus on extreme events, skillful forecasts are bound to fail in the public
eye, and it becomes tempting to base decision-making on misguided inferential
procedures. We refer to this critical issue as the forecaster’s dilemma.2

Because what was badly advised fell out happily,
Ancus is declared wise, who just now was foolish;
Because of what was prudently prepared for, if it turns out badly,
Cato himself, in popular opinion, will be foolish.

2Our notion of the forecaster’s dilemma differs from a previous usage of the term in the
marketing literature by Ehrman and Shugan (1995), who investigated the problem of influential
forecasting in business environments. The forecaster’s dilemma in influential forecasting refers
to potential complications when the forecast itself might affect the future outcome, for example,
by influencing which products are developed or advertised.
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Table 1

Media coverage illustrating the focus on extreme events in public discussions of the quality of
forecasts. A version of the table with links to the sources is provided in an online supplement.

Year Headline Source

2008 Dr. Doom The New York Times
2009 How did economists get it so wrong? The New York Times
2009 He told us so The Guardian
2010 Experts who predicted US economy crisis see recovery Bloomberg

in 2010
2010 An exclusive interview with Med Yones - The expert who CEO Q Magazine

predicted the financial crisis
2011 A seer on banks raises a furor on bonds The New York Times
2013 Meredith Whitney redraws ‘map of prosperity’ USA Today

2007 Lessons learned from Great Storm BBC
2011 Bad data failed to predict Nashville flood NBC
2012 Bureau of Meteorology chief says super storm ‘just blew up The Courier-Mail

on the city’
2013 Weather Service faulted for Sandy storm surge warnings NBC
2013 Weather Service updates criteria for hurricane warnings, Washington Post

after Sandy criticism
2015 National Weather Service head takes blame for forecast NBC

failures

2011 Italian scientists on trial over L’Aquila earthquake CNN
2011 Scientists worry over ‘bizarre’ trial on earthquake Scientific American

prediction
2012 L’Aquila ruling: Should scientists stop giving advice? BBC

To demonstrate the phenomenon, we let N (μ, σ2) denote the normal distri-
bution with mean μ and standard deviation σ and consider the following simple
experiment. Let the observation Y satisfy

(1.1) Y |μ ∼ N (μ, σ2) where μ ∼ N (0, 1− σ2).

Table 2 introduces forecasts for Y , showing both the predictive distribution, F ,
and the associated point forecast, X, which we take to be the respective me-
dian or mean.3 The perfect forecast has knowledge of μ, while the unconditional
forecast is the unconditional standard normal distribution of Y . The deliberately
misguided extremist forecast shows a constant bias of 5

2 . As expected, the perfect
forecast is preferred under both the mean absolute error (MAE) and the mean
squared error (MSE). However, these results change completely if we restrict at-
tention to the largest 5% of the observations, as shown in the last two columns of
the table, where the misguided extremist forecast receives the lowest mean score.

In this simple example, we have considered point forecasts only, for which there
is no obvious way to abate the forecaster’s dilemma by adapting existing forecast
evaluation methods appropriately, such that particular emphasis can be put on
extreme outcomes. Probabilistic forecasts in the form of predictive distributions
provide a suitable alternative. Probabilistic forecasts have become popular over
the past few decades, and in various key applications there has been a shift of
paradigms from point forecasts to probabilistic forecasts, as reviewed by Tay and

3The predictive distributions are symmetric, so their mean and median coincide. We use X
in upper case, as the point forecast may depend on μ and τ and, therefore, is a random variable.
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Table 2

Forecasts in the simulation study, where the observation Y satisfies (1.1) with σ2 = 2
3
being

fixed. The mean absolute error (MAE) and mean squared error (MSE) for the point forecast X
are based on a sample of size 10 000; the restricted versions rMAE and rMSE are based on the

subset of observations exceeding 1.64 only. The lowest value in each column is in bold.

Forecast Predictive Distribution X MAE MSE rMAE rMSE

Perfect N (μ, σ2) μ 0.64 0.67 1.35 2.12

Unconditional N (0, 1) 0 0.80 0.99 2.04 4.30

Extremist N (μ+ 5
2
, σ2) μ+ 5

2
2.51 6.96 1.16 1.61

Wallis (2000), Timmermann (2000), Gneiting (2008), and Gneiting and Katzfuss
(2014), among others. As we will see, the forecaster’s dilemma is not limited to
point forecasts and occurs in the case of probabilistic forecasts as well. However,
in the case of probabilistic forecasts extant methods of forecast evaluation can be
adapted to place emphasis on extremes in decision theoretically coherent ways.
In particular, it has been suggested that suitably weighted scoring rules allow for
the comparative evaluation of probabilistic forecasts with emphasis on extreme
events (Diks et al., 2011; Gneiting and Ranjan, 2011).

The remainder of the article is organized as follows. In Section 2 theoretical
foundations on forecast evaluation and proper scoring rules are reviewed, serving
to analyse and explain the forecaster’s dilemma along with potential remedies. In
Section 3 this is followed up and illustrated in simulation experiments. Further-
more, we elucidate the role of the fundamental lemma of Neyman and Pearson,
which suggests the superiority of tests of equal predictive performance that are
based on the classical, unweighted logarithmic score. A case study on probabilis-
tic forecasts of gross domestic product (GDP) growth and inflation for the United
States is presented in Section 4. The paper closes with a discussion in Section 5.

2. FORECAST EVALUATION AND EXTREME EVENTS

We now review relevant theory that is then used to study and explain the
forecaster’s dilemma.

2.1 The joint distribution framework for forecast evaluation

In a seminal paper on the evaluation of point forecasts, Murphy and Winkler
(1987) argued that the assessment ought to be based on the joint distribution
of the forecast, X, and the observation, Y , building on both the calibration-
refinement factorization,

[X,Y ] = [X] [Y |X],

and the likelihood-baserate factorization,

[X,Y ] = [Y ] [X|Y ].

Gneiting and Ranjan (2013), Ehm et al. (2016), and Strähl and Ziegel (2015) ex-
tend and adapt this framework to include the case of potentially multiple prob-
abilistic forecasts. The joint distribution of the probabilistic forecasts and the
observation is then defined on a probability space (Ω,A,Q), where the elements
of the sample space Ω can be identified with tuples

(F1, . . . , Fk, Y ),
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the distribution of which is specified by the probability measure Q. The σ-algebra
A can be understood as encoding the information available to forecasters. The
predictive distributions F1, . . . , Fk are cumulative distribution function (CDF)-
valued random quantities on the outcome space of the observation, Y . They
are assumed to be measurable with respect to their corresponding information
sets, which can be formalized as sub-σ-algebras A1, . . . ,Ak ⊆ A. The predictive
distribution Fi is ideal relative to the information set Ai if Fi = [Y |Ai] almost
surely. Thus, an ideal predictive distribution makes the best possible use of the
information at hand. In the setting of eq. (1.1) and Table 2, the perfect forecast
is ideal relative to knowledge of μ, the unconditional forecast is ideal relative to
the empty information set, and the extremist forecast fails to be ideal.

Considering the case of a single probabilistic forecast, F , the above factoriza-
tions have immediate analogues in this setting, namely, the calibration-refinement
factorization

(2.1) [F, Y ] = [F ] [Y |F ]

and the likelihood-baserate factorization

(2.2) [F, Y ] = [Y ] [F |Y ].

The components of the calibration-refinement factorization (2.1) can be linked
to the sharpness and the calibration of a probabilistic forecast (Gneiting et al.,
2007). Sharpness refers to the concentration of the predictive distributions and is
a property of the marginal distribution of the forecasts only. Calibration can be
interpreted in terms of the conditional distribution of the observation, Y , given
the probabilistic forecast, F .

Various notions of calibration have been proposed, with the concept of auto-
calibration being particularly strong. Specifically, a probabilistic forecast F is
auto-calibrated if

(2.3) [Y |F ] = F

almost surely (Tsyplakov, 2013). This property carries over to point forecasts,
in that, given any functional T, such as the mean or expectation functional,
or a quantile, auto-calibration implies T ([Y |F ]) = T(F ). Furthermore, if the
point forecast X = T(F ) characterizes the probabilistic forecast, as is the case
in Table 2, where T can be taken to be the mean or median functional, then
auto-calibration implies

(2.4) T ([Y |X]) = T ([Y |F ]) = T(F ) = X.

This property can be interpreted as unbiasedness of the point forecast X = T(F )
that is induced by the predictive distribution F .

Finally, a probabilistic forecast F is probabilistically calibrated if the proba-
bility integral transform F (Y ) is uniformly distributed, with suitable technical
adaptations in cases in which F may have a discrete component (Gneiting et al.,
2007; Gneiting and Ranjan, 2013). An ideal probabilistic forecast is necessar-
ily auto-calibrated, and an auto-calibrated predictive distribution is necessarily
probabilistically calibrated (Gneiting and Ranjan, 2013; Strähl and Ziegel, 2015).
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Figure 1. The sample illustrates the conditional distribution of the perfect forecast (green) and
the extremist forecast (red) given the observation in the setting of eq. (1.1) and Table 2, where
σ2 = 2

3
. The vertical stripe, which is enlarged at right, corresponds to cases where the respective

point forecast exceeds a threshold value of 2.

In contrast, the interpretation of the second component [F |Y ] in the likelihood-
baserate factorization (2.2) is much less clear. While the conditional distribution
of the forecast given the observation can be viewed as a measure of discrimination
ability, it was noted by Murphy andWinkler (1987) that forecasts can be perfectly
discriminatory although they are uncalibrated. Therefore, discrimination ability
by itself is not informative, and forecast assessment might be misguided if one
stratifies by the realized value of the observation. To demonstrate this, we return
to the simpler setting of point forecasts and revisit the simulation example of
eq. (1.1) and Table 2, with σ2 = 2

3 being fixed. Figure 1 shows the perfect
forecast, the deliberately misspecified extremist forecast, and the observation in
this setting. The bias of the extremist forecast is readily seen when all forecast
cases are taken into account. However, if we restrict attention to cases where the
observation exceeds a high threshold of 2, it is not obvious whether the perfect
or the extremist forecast is preferable.4

In this simple example, we have seen that if we stratify by the value of the
realized observation, a deliberately misspecified forecast may appear appealing,
while an ideal forecast may appear flawed, even though the forecasts are based on
the same information set. Fortunately, unwanted effects of this type are avoided if
we stratify by the value of the forecast. To see this, note that ideal predictive dis-
tributions and their induced point forecasts satisfy the auto-calibration property
(2.3) and, subject to conditions, the unbiasedness property (2.4), respectively.

2.2 Proper scoring rules and consistent scoring functions

In the previous section we have introduced calibration and sharpness as key
aspects of the quality of probabilistic forecasts. Proper scoring rules assess cali-
bration and sharpness simultaneously and play key roles in the comparative eval-
uation and ranking of competing forecasts (Gneiting and Raftery, 2007). Specif-
ically, let F denote a class of probability distributions on ΩY , the set of possible

4To provide analytical results, Xperfect|Y = y ∼ N (
(1− σ2)y, σ2(1− σ2)

)
and Xextremist|Y =

y ∼ N (
(1− σ2)y + 5

2
, σ2(1− σ2)

)
.
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values of the observation Y . A scoring rule is a mapping S : F ×ΩY −→ R∪{∞}
that assigns a numerical penalty based on the predictive distribution F ∈ F and
observation y ∈ ΩY . Generally, we identify a predictive distribution with its CDF.
A scoring rule is proper relative to the class F if

(2.5) EG S(G, Y ) ≤ EG S(F, Y )

for all probability distributions F,G ∈ F . It is strictly proper relative to the class
F if the above holds with equality only if F = G. In what follows we assume that
ΩY = R. Scoring rules provide summary measures of predictive performance,
and in practical applications, competing forecasting methods are compared and
ranked in terms of the mean score over the cases in a test set. Propriety is a
critically important element that encourages honest and careful forecasting, as
the expected score is minimized if the quoted predictive distribution agrees with
the actually assumed, under which the expectation in (2.5) is computed.

The most popular proper scoring rules for real-valued quantities are the loga-
rithmic score (LogS), defined as

(2.6) LogS(F, y) = − log f(y),

where f denotes the density of F (Good, 1952), which applies to absolutely con-
tinuous distributions only, and the continuous ranked probability score (CRPS),
which is defined as

(2.7) CRPS(F, y) =

∫ ∞

−∞
(F (z)− �{y ≤ z})2 dz

directly in terms of the predictive CDF (Matheson andWinkler, 1976). The CRPS
can be interpreted as the integral of the proper Brier score (Brier, 1950; Gneiting
and Raftery, 2007),

(2.8) BSz(F, y) = (F (z)− �{y ≤ z})2 ,
for the induced probability forecast for the binary event of the observation not
exceeding the threshold value z. Alternative respresentations of the CRPS are
discussed in Gneiting and Raftery (2007) and Gneiting and Ranjan (2011).

The quality of point forecasts is typically assessed by means of a scoring func-
tion s(x, y) that assigns a numerical score based on the point forecast, x, and
the respective observation, y. As in the case of proper scoring rules, compet-
ing forecasting methods are compared and ranked in terms of the mean score
over the cases in a test set. Popular scoring functions include the squared error,
s(x, y) = (x − y)2, and the absolute error, s(x, y) = |x − y|, for which we have
reported mean scores in Table 2.

To avoid misguided inferences, the scoring function and the forecasting task
have to be matched carefully, either by specifying the scoring function ex ante,
or by employing scoring functions that are consistent for a target functional T,
relative to the class F of predictive distributions at hand, in the technical sense
that

EF s(T(F ), Y ) ≤ EF s(x, Y )

for all x ∈ R and F ∈ F (Gneiting, 2011). For instance, the squared error scoring
function is consistent for the mean or expectation functional relative to the class of
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the probability measures with finite first moment, and the absolute error scoring
function is consistent for the median functional.

Consistent scoring functions become proper scoring rules if the point forecast
is chosen to be the Bayes rule or optimal point forecast under the respective
predictive distribution. In other words, if the scoring function s is consistent for
the functional T, then

S(F, y) = s(T(F ), y)

defines a proper scoring rule relative to the class F . For instance, squared error
can be interpreted as a proper scoring rule provided the point forecast is the
mean of the respective predictive distribution, and absolute error yields a proper
scoring rule if the point forecast is the median of the predictive distribution.

2.3 Understanding the forecaster’s dilemma

We are now in the position to analyze and understand the forecaster’s dilemma
both within the joint distribution framework and from the perspective of proper
scoring rules. While there is no unique definition of extreme events in the litera-
ture, we follow common practice and take extreme events to be observations that
fall into the tails of the underlying population. In public discussions of the quality
of forecasts, attention often falls exclusively on cases with extreme observations.
As we have seen, under this practice even the most skillful forecasts available are
bound to fail in the public eye, particularly when the signal-to-noise ratio in the
data generating process is low. In a nutshell, if forecast evaluation is restricted to
cases where the observation falls into a particular region of the outcome space,
forecasters are encouraged to unduly emphasize this region.

Within the joint distribution framework of Section 2.1, any stratification by,
and conditioning on, the realized values of the outcome is problematic and ought
to be avoided, as general theoretical guidance for the interpretation and assess-
ment of the resulting conditional distribution [F |Y ] does not appear to be avail-
able. In view of the likelihood-baserate factorization (2.2) of the joint distribution
of the forecast and the observation, the forecaster’s dilemma arises as a conse-
quence. Fortunately, stratification by, and conditioning on, the values of a point
forecast or probabilistic forecast is unproblematic from a decision theoretic per-
spective, as the auto-calibration property (2.3) lends itself to practical tools and
tests for calibration checks, as discussed by Gneiting et al. (2007), Held et al.
(2010), and Strähl and Ziegel (2015), among others.

From the perspective of proper scoring rules, Gneiting and Ranjan (2011)
showed that a proper scoring rule S0 is rendered improper if the product with a
non-constant weight function w(y) is formed. Specifically, consider the weighted
scoring rule

(2.9) S(F, y) = w(y) S0(F, y).

Then if Y has density g, the expected score EgS(F, Y ) is minimized by the pre-
dictive distribution F with density

(2.10) f(y) =
w(y)g(y)∫
w(z)g(z) dz

,

which is proportional to the product of the weight function, w, and the true
density, g. In other words, forecasters are encouraged to deviate from their true
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beliefs and misspecify their predictive densities, with multiplication by the weight
function (and subsequent normalization) being an optimal strategy. Therefore,
the scoring rule S in (2.9) is improper.

To connect to the forecaster’s dilemma, consider the indicator weight function
wr(y) = �{y ≥ r}. The use of the weight function wr does not directly correspond
to restricting the evaluation set to cases where the observation exceeds or equals
the threshold value r, as instead of excluding these cases, a score of zero is assigned
to them. However, when forecast methods are compared, the use of the indicator
weighted scoring rule corresponds to a multiplicative scaling of the restricted
score, and so the ranking of competing forecasts is the same as that obtained by
restricting the evaluation set.

2.4 Tailoring proper scoring rules

The forecaster’s dilemma gives rise to the question how one might apply scoring
rules to probabilistic forecasts when particular emphasis is placed on extreme
events, while retaining propriety. To this end, Diks et al. (2011) and Gneiting and
Ranjan (2011) consider the use of proper weighted scoring rules that emphasize
specific regions of interest.

Diks et al. (2011) propose the conditional likelihood (CL) score,

(2.11) CL(F, y) = −w(y) log

(
f(y)∫∞

−∞w(z)f(z) dz

)
,

and the censored likelihood (CSL) score,

(2.12) CSL(F, y) = −w(y) log f(y)− (1− w(y)) log

(
1−

∫ ∞

−∞
w(z)f(z) dz

)
.

Here, w is a weight function such that 0 ≤ w(z) ≤ 1 and
∫
w(z)f(z) dz > 0 for

all potential predictive distributions, where f denotes the density of F . When
w(z) ≡ 1, both the CL and the CSL score reduce to the unweighted logarithmic
score (2.6). Gneiting and Ranjan (2011) propose the threshold-weighted continu-
ous ranked probability score (twCRPS), defined as

(2.13) twCRPS(F, y) =

∫ ∞

−∞
w(z) (F (z)− �{y ≤ z})2 dz,

where, again, w is a non-negative weight function. When w(z) ≡ 1, the twCRPS
reduces to the unweighted CRPS (2.7). For recent applications of the twCRPS
and a quantile-weighted version of the CRPS see, for example, Cooley et al.
(2012), Lerch and Thorarinsdottir (2013) and Manzan and Zerom (2013).

As noted, these scoring rules are proper and can be tailored to the region
of interest. When interest centers on the right tail of the distribution, we may
choose w(z) = �{z ≥ r} for some high threshold r. However, the indicator
weight function might result in violations of the regularity conditions for the
CL and CSL scoring rule, unless all predictive densities considered are strictly
positive. Furthermore, predictive distributions that are identical on [r,∞), but
differ on (−∞, r), cannot be distinguished. Weight functions based on CDFs
as proposed by Amisano and Giacomini (2007) and Gneiting and Ranjan (2011)
provide suitable alternatives. For instance, we can set w(z) = Φ(z | r, σ2) for some
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σ > 0, where Φ(· |μ, σ2) denotes the CDF of a normal distribution with mean
μ and variance σ2. Weight functions emphasizing the left tail of the distribution
can be constructed similarly, by using w(z) = �{z ≤ r} or w(z) = 1−Φ(z | r, σ2)
for some low threshold r. In practice, the weighted integrals in (2.11), (2.12), and
(2.13) may need to be approximated by discrete sums, which corresponds to the
use of a discrete weight measure, rather than a weight function, as discussed by
Gneiting and Ranjan (2011).

In what follows we focus on the above proper variants of the LogS and the
CRPS. However, further types of proper weighted scoring rules can be devel-
oped. Pelenis (2014) introduces the penalized weighted likelihood score and the
incremental CPRS. Tödter and Ahrens (2012) and Juutilainen et al. (2012) pro-
pose a logarithmic scoring rule that depends on the predictive CDF rather than
the predictive density. As hinted at by Juutilainen et al. (2012, p. 466), this score
can be generalized to a weighted version, which we call the threshold-weighted
continuous ranked logarithmic score (twCRLS),

(2.14) twCRLS(F, y) = −
∫
R

w(z) log |F (z)− �{y > z}| dz.

In analogy to the twCRPS (2.13) being a weighted integral of the Brier score in
(2.8), the twCRLS (2.14) can be interpreted as a weighted integral of the discrete
logarithmic score (LS) (Good, 1952; Gneiting and Raftery, 2007),

LSz(F, y) = − log |F (z)− �{y > z}|(2.15)

= −�{y ≤ z} logF (z)− �{y > z} log(1− F (z)),

for the induced probability forecast for the binary event of the observation not
exceeding the threshold value z. The aforementioned weight functions and discrete
approximations can be employed.

2.5 Diebold-Mariano tests

Formal statistical tests of equal predictive performance have been widely used,
particularly in the economic literature. Turning now to a time series setting, we
consider probabilistic forecasts Ft and Gt for an observation yt+k that lies k time
steps ahead. Given a proper scoring rule S, we denote the respective mean scores
on a test set ranging from time t = 1, . . . , n by

S̄Fn =
1

n

n∑
t=1

S(Ft, yt+k) and S̄Gn =
1

n

n∑
t=1

S(Gt, yt+k),

respectively. Diebold and Mariano (1995) proposed the use of the test statistic

(2.16) tn =
√
n
S̄Fn − S̄Gn

σ̂n
,

where σ̂2
n is a suitable estimator of the asymptotic variance of the score difference.

Under the null hypothesis of a vanishing expected score difference and standard
regularity conditions, the test statistic tn in (2.16) is asymptotically standard
normal (Diebold and Mariano, 1995; Giacomini and White, 2006; Diebold, 2015).
When the null hypothesis is rejected in a two-sided test, F is preferred if the test
statistic tn is negative, and G is preferred if tn is positive.
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For j = 0, 1, . . . let γ̂j denote the lag j sample autocovariance of the se-
quence S(F1, y1+k) − S(G1, y1+k), . . . , S(Fn, yn+k) − S(Gn, yn+k) of score differ-
ences. Diebold and Mariano (1995) noted that for ideal forecasts at the k step
ahead prediction horizon the respective errors are at most (k − 1)-dependent.
Motivated by this fact, Gneiting and Ranjan (2011) use the estimator

(2.17) σ̂2
n =

{
γ̂0 if k = 1,

γ̂0 + 2
∑k−1

j=1 γ̂j if k ≥ 2.

for the asymptotic variance in the test statistic (2.16). While the at most (k−1)-
dependence assumption might be violated in practice for various reasons, this
appears to be a reasonable and practically useful choice nonetheless. Diks et al.
(2011) propose the use of the heteroskedasticity and autocorrelation consistent
(HAC) estimator

(2.18) σ̂2
n = γ̂0 + 2

J∑
j=1

(
1− j

J

)
γ̂j ,

where J is the largest integer less than or equal to n1/4. When this latter estimator
is used, larger estimates of the asymptotic variance and smaller absolute values of
the test statistic (2.16) tend to be obtained, as compared to using the estimator
(2.17), particularly when the sample size n is large.

3. SIMULATION STUDIES

We now present simulation studies. In Section 3.1 we mimic the experiment re-
ported on in Table 2 for point forecasts, now illustrating the forecaster’s dilemma
on probabilistic forecasts. Furthermore, we consider the influence of the signal-to-
noise ratio in the data generating process. Thereafter in the following Sections,
we investigate whether or not there is a case for the use of proper weighted scor-
ing rules, as opposed to their unweighted counterparts, when interest focuses on
extremes. As it turns out, the fundamental lemma of Neyman and Pearson (1933)
provides theoretical guidance in this regard. All results in this section are based
on 10 000 replications.

3.1 The influence of the signal-to-noise ratio

Let us recall that in the simulation setting of eq. (1.1) the observation satisfies
Y |μ ∼ N (μ, σ2) where μ ∼ N (0, 1 − σ2). In Table 2 we have considered three
competing point forecasts — termed the perfect, unconditional, and extremist
forecasts — and have noted the appearance of the forecaster’s dilemma when the
quality of the forecasts is assessed on cases of extreme outcomes only.

We now turn to probabilistic forecasts and study the effect of the parameter
σ ∈ (0, 1) that governs predictability. Small values of σ correspond to high signal-
to-noise ratios, and large values of σ to small signal-to-noise ratios, respectively.
Marginally, Y is standard normal for all values of σ. In the limit as σ → 0 the
perfect predictive distribution approaches the point measure in the random mean
μ; as σ → 1 it approaches the unconditional standard normal distribution. The
perfect probabilistic forecast is ideal in the technical sense of Section 2.1 and thus
will be preferred over any other predictive distribution (with identical information
basis) by any rational user (Diebold et al., 1998; Tsyplakov, 2013).
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Table 3

Mean scores for the probabilistic forecasts in Table 2, where the observation Y satisfies (1.1)
with σ2 = 2

3
being fixed. The CRPS and LogS are computed based on all observations, whereas

the restricted versions (rCRPS and rLogS) are based on observations exceeding 1.64, the 95th
percentile of the population, only. The lowest value in each column is shown in bold.

Forecast CRPS LogS rCRPS rLogS

Perfect 0.46 1.22 0.96 2.30
Unconditional 0.57 1.42 1.48 3.03
Extremist 2.05 5.90 0.79 1.88

Table 4

Mean scores for the probabilistic forecasts in Table 2, where the observation Y satisfies (1.1)
with σ2 = 2

3
being fixed, under the proper weighted scoring rules twCRPS, CL, and CSL. For
each weight function and column, the lowest value is shown in bold.

Threshold r Forecast twCRPS CL CSL

Indicator weight function, w(z) = �{z ≥ 1.64}
1.64 Perfect 0.018 < 0.001 0.164

Unconditional 0.019 0.002 0.204
Extremist 0.575 0.093 2.205

Gaussian weight function, wr(z) = Φ(z | 1.64, 1)
1.64 Perfect 0.053 −0.043 0.298

Unconditional 0.062 −0.028 0.345
Extremist 0.673 0.379 1.625

In Table 3 we report mean scores for the three probabilistic forecasts when σ2 =
2
3 is fixed. Under the CRPS and LogS the perfect forecast outperforms the others,
as expected, and the extremist forecast performs by far the worst. However, these
results change drastically if cases with extreme observations are considered only.
In analogy to the results in Table 2, the perfect forecast is discredited under the
restricted scores rCRPS and rLogS, whereas the misguided extremist forecast
appears to excel, thereby demonstrating the forecaster’s dilemma in the setting
of probabilistic forecasts. As shown in Table 4, under the proper weighted scoring
rules introduced in Section 2.4 with weight functions that emphasize the right
tail, the rankings under the unweighted CRPS and LogS are restored.

Next we investigate the influence of the signal-to-noise ratio in the data gener-
ating process on the appearance and extent of the forecaster’s dilemma. As noted,
predictability increases with the parameter σ ∈ (0, 1). Figure 2 shows the mean
CRPS and LogS for the three probabilistic forecasts as a function of σ. The scores
for the unconditional forecast do not depend on σ. The predictive performance
of the perfect forecast decreases in σ, which is natural, as it is less beneficial to
know the value of μ when σ is large. The extremist forecast yields better scores
as σ increases, which can be explained by the increase in the predictive variance
that allows for a better match between the probabilistic forecast and the true dis-
tribution. For the improper restricted scoring rules rCRPS and rLogS, the same
general patterns can be observed in Figure 3 — the mean score increases in σ for
the perfect forecast and decreases for the extremist forecast. In accordance with
the forecaster’s dilemma, the extremist forecast is now perceived to outperform
its competitors for all sufficiently large values of σ. However, for small values
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Figure 2. Mean CRPS and LogS for the probabilistic forecasts in the setting of eq. (1.1) and
Table 2 as functions of the parameter σ ∈ (0, 1).
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Figure 3. Mean of the improper restricted scoring rules rCRPS and rLogS for the probabilistic
forecasts in the setting of eq. (1.1) and Table 2 as functions of the parameter σ ∈ (0, 1). The
restricted mean scores are based on the subset of observations exceeding 1.64 only.

of σ, when the signal in μ is strong, the rankings are the same as under the
CRPS and LogS in Figure 2. This illustrates the intuitively obvious observation
that the forecaster’s dilemma is tied to stochastic systems with moderate to low
signal-to-noise ratios, so that predictability is weak.

3.2 Power of Diebold-Mariano tests: Diks et al. (2011) revisited

While thus far we have illustrated the forecaster’s dilemma, the unweighted
CRPS and LogS are well able to distinguish between the perfect forecast and its
competitors. In the subsequent sections we investigate whether there are benefits
to using proper weighted scoring rules, as opposed to their unweighted versions.

To begin with, we adopt the simulation setting in Section 4 of Diks et al.
(2011). Suppose that at time t = 1, . . . , n, the observations yt are independent
standard normal. We apply the two-sided Diebold-Mariano test of equal predic-
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Figure 4. Frequency of correct rejections (in favor of the standard normal distribution, left
panel) and false rejections (in favor of the Student t distribution, right panel) in two-sided
Diebold-Mariano tests in the simulation setting described in Section 3.2. The panels correspond
to those in the left hand column of Figure 5 in Diks et al. (2011). The sample size n for the
tests depends on the threshold r in the indicator weight function w(z) = �{z ≤ r} for the
twCRPS, CL, and CSL scoring rules such that under the standard normal distribution there are
five expected observations in the relevant interval (−∞, r].

tive performance to compare the ideal probabilistic forecast, the standard normal
distribution, to a misspecified competitor, a Student t distribution with five de-
grees of freedom, mean 0, and variance 1. Following Diks et al. (2011), we use
the nominal level 0.05, the variance estimate (2.18), and the indicator weight
function w(z) = �{z ≤ r}, and we vary the sample size, n, with the threshold
value r in such a way that under the standard normal distribution the expected
number, c = 5, of observations in the relevant region (−∞, r] remains constant.

Figure 4 shows the proportion of rejections of the null hypothesis of equal
predictive performance in favor of either the standard normal or the Student t
distribution, respectively, as a function of the threshold value r in the weight
function. Rejections in favor of the standard normal distribution represent true
power, whereas rejections in favor of the misspecified Student t distribution are
misguided. The curves for the tests based on the twCRPS, CL, and CSL scoring
rules agree with those in the left column of Figure 5 of Diks et al. (2011). At first
sight, they might suggest that the use of the indicator weight function w(z) =
�{z ≤ r} with emphasis on the extreme left tail, as reflected by increasingly
smaller values of r, yields increased power. At second sight, we need to compare
to the power curves for tests using the unweighted CRPS and LogS, based on
the same sample size, n, as corresponds to the threshold r at hand. These curves
suggest, perhaps surprisingly, that there may not be not be an advantage to using
weighted scoring rules. To the contrary, the left-hand panel in Figure 4 suggests
that tests based on the unweighted LogS are competitive in terms of statistical
power.
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3.3 The role of the Neyman-Pearson lemma

In order to understand this phenomenon, we follow the lead of Feuerverger and
Rahman (1992) and draw a connection to a cornerstone of test theory, namely,
the fundamental lemma of Neyman and Pearson (1933). In doing so we consider,
for the moment, one-sided rather than two-sided tests.

In the simulation setting described by Diks et al. (2011) and in the previous
section, any test of equal predictive performance can be re-interpreted as a test
of the simple null hypothesis H0 of a standard normal population against the
simple alternative H1 of a Student t population. We write f0 and f1 for the as-
sociated density functions and P0 and P1 for probabilities under the respective
hypotheses. By the Neyman-Pearson lemma (Lehmann and Romano, 2005, The-
orem 3.2.1), under H0 and at any level α ∈ (0, 1) the unique most powerful test
of H0 against H1 is the likelihood ratio test. The likelihood ratio test rejects H0

if
∏n

t=1 f1(yt)/
∏n

t=1 f0(yt) > k or, equivalently, if

(3.1)

n∑
t=1

log f1(yt)−
n∑

t=1

log f0(yt) > log k,

where the critical value k is such that

P0

(∏n
t=1 f1(yt)∏n
t=1 f0(yt)

> k

)
= α.

Due to the optimality property of the likelihood ratio test, its power,

(3.2) P1

(∏n
t=1 f1(yt)∏n
t=1 f0(yt)

> k

)
,

gives a theoretical upper bound on the power of any test ofH0 versusH1. Further-
more, the optimality result is robust, in the technical sense that minor misspec-
ifications of either H0 or H1, as quantified by the Kullback-Leibler divergence,
lead to minor loss of power only (Eguchi and Copas, 2006).

We now compare to the one-sided Diebold-Mariano test based on the loga-
rithmic score (LogS; eq. 2.6). This test uses the statistic (2.16) and rejects H0

if

(3.3)

n∑
t=1

log f1(yt)−
n∑

t=1

log f0(yt) >
√
n σ̂nz1−α,

where z1−α is a standard normal quantile and σ̂2
n is given by (2.17) or (2.18).

Comparing with (3.1), we see that the one-sided Diebold-Mariano test that is
based on the LogS has the same type of rejection region as the likelihood ratio
test. However, the Diebold-Mariano test uses an estimated critical value, which
may lead to a level less or greater than the nominal level, α, whereas the likelihood
ratio test uses the (in the practice of forecasting unavailable) critical value that
guarantees the desired nominal level, α.

In this light, it is not surprising that the one-sided Diebold-Mariano test based
on the LogS has power close to the theoretical optimum in (3.2). We illustrate
this in Figure 5, where we plot the power and size of the likelihood ratio test
and one-sided Diebold-Mariano tests based on the CRPS, twCRPS, LogS, CL,
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Figure 5. Power (left) and level (right) of the likelihood ratio test (LRT) and one-sided Diebold-
Mariano tests in the simulation setting described in Section 3.2. The sample size n for the tests
depends on the threshold r in the indicator weight function w(z) = �{z ≤ r} for the twCRPS, CL,
and CSL scoring rules such that under the standard normal distribution there are five expected
observations in the relevant interval (−∞, r]. In the panel for power, the shaded area above the
curve for the LRT corresponds to theoretically unattainable values for a test with nominal level.
In the panel for level, the dashed line indicates the nominal level.

and CSL in the setting of the previous section. For small threshold values, the
Diebold-Mariano test based on the unweighted LogS has much higher power than
tests based on the weighted scores, even though it does not reach the power of the
likelihood ratio test, which can be explained by the use of an estimated critical
value and incorrect size properties. The theoretical upper bound on the power is
violated by Diebold-Mariano tests based on the twCRPS and CL for threshold
values between 0 and 1. However, the level of these tests exceeds the nominal
level of α = 0.05 with too frequent rejections of H0.

In the setting of two-sided tests, the connection to the Neyman-Pearson lemma
is less straightforward, but the general principles remain valid and provide a
partial explanation of the behavior seen in Figure 4.

3.4 Power of Diebold-Mariano tests: Further experiments

In the simulation experiments just reported, Diebold-Mariano tests based on
proper weighted scoring rules generally are unable to outperform tests based on
traditionally used, unweighted scoring rules. Several potential reasons come to
mind. As we have just seen, when the true data generating process is given by
one of the competing forecast distributions, the Neyman-Pearson lemma points
at the superiority of tests based on the unweighted LogS. Furthermore, in the
simulation setting considered thus far, the distributions considered differ both in
the center, the left tail, and the right tail, and the test sample size varied with
the threshold for the weight function in a peculiar way.

Therefore, we now consider a revised simulation setting, where we compare two
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forecast distributions neither of which corresponds to the true sampling distri-
bution, where the forecast distributions only differ on the positive half-axis, and
where the test sample size is fixed at n = 100. The three candidate distributions
are given by Φ, a standard normal distribution with density φ, by a heavy-tailed
distribution H with density

h(x) = �{x ≤ 0}φ(x) + �{x > 0} 3

8

(
1 +

x2

4

)−5/2

,

and by an equally weighted mixture F of Φ and H, with density

f(x) =
1

2
(φ(x) + h(x)).

We perform two-sided Diebold-Mariano tests of equal predictive performance
based on the CRPS, twCRPS, LogS, CL, and CSL.

In Scenario A, the data are a sample from the standard normal distribution
Φ, and we compare the forecasts F and H, respectively. In Scenario B, we in-
terchange the roles of Φ and H, that is, the data are a sample from H, and we
compare the forecasts F and Φ. The Neyman-Pearson lemma does not apply in
this setting. However, the definition of F as a weighted mixture of the true dis-
tribution and a misspecified competitor lets us expect that F is to be preferred
over the latter. Indeed, by Proposition 3 of Nau (1985), if F = wG+ (1− w)H
with w ∈ [0, 1] is a convex combination of G and H, then

EG S(G, Y ) ≤ EG S(F, Y ) ≤ EG S(H,Y )

for any proper scoring rule S. As any utility function induces a proper scoring
rule via the respective Bayes act, this implies that under G any rational decision
maker favors F over H (Dawid, 2007; Gneiting and Raftery, 2007).

We estimate the frequencies of rejections of the null hypothesis of equal predic-
tive performance at level α = 0.05. The choice of the estimator for the asymptotic
variance of the score difference in the Diebold-Mariano test statistic (2.16) does
not have a recognizable effect in this setting, and so we show results under the
estimator (2.17) with k = 1 only.

Figure 6 shows rejection rates under Scenario A in favor of F and H, re-
spectively, as a function of the threshold r in the indicator weight function
w(z) = �{z ≥ r} for the weighted scoring rules. The frequency of the desired
rejections in favor of F increases with larger thresholds for tests based on the
twCRPS and CSL, thereby suggesting an improved discrimination ability at high
threshold values. Under the CL scoring rule, the rejection rate decreases rapidly
for larger threshold values. This can be explained by the fact that the weight func-
tion is a multiplicative component of the CL score in (2.11). As r becomes larger
and larger, none of the 100 observations in the test sample exceed the threshold,
and so the mean scores under both forecasts vanish. This can also be observed
in Figure 4, where, however, the effect is partially concealed by the increase of
the sample size for more extreme threshold values. Interestingly, an issue very
similar to that for the CL scoring rule arises in the assessment of deterministic
forecasts of rare and extreme binary events, where performance measures based
on contingency tables have been developed and standard measures degenerate to



18 S. LERCH, T. L. THORARINSDOTTIR, F. RAVAZZOLO AND T. GNEITING

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rejections in favor of F

Threshold r

Fr
eq

ue
nc

y 
of

 re
je

ct
io

ns

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rejections in favor of H

Threshold r

Fr
eq

ue
nc

y 
of

 re
je

ct
io

ns

CRPS
LogS

twCRPS
CSL CL

Figure 6. Scenario A in Section 3.4. The null hypothesis of equal predictive performance of F
and H is tested under a standard normal population. The panels show the frequency of rejections
in two-sided Diebold-Mariano tests in favor of either F (left, desired) or H (misguided, right).
The tests under the twCRPS, CL, and CSL scoring rules use the weight function w(z) = �{z ≥
r}, and the sample size is fixed at n = 100.
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Figure 7. Scenario B in Section 3.4. The null hypothesis of equal predictive performance of F
and Φ is tested under a Student t population. The panels show the frequency of rejections in
two-sided Diebold-Mariano tests in favor of either F (desired, left) or Φ (misguided, right). The
tests under the twCRPS, CL, and CSL scoring rules use the weight function w(z) = �{z ≥ r},
and the sample size is fixed at n = 100.
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trivial values as events become rarer (Marzban, 1998; Stephenson et al., 2008),
posing a challenge that has been addressed by Ferro and Stephenson (2011).

Figure 7 shows the respective rejection rates under Scenario B, where the
sample is generated from the heavy-tailed distribution H, and the forecasts F
and Φ are compared. In contrast to the previous examples the Diebold-Mariano
test based on the CRPS shows a higher frequency of the desired rejections in
favor of F than the test based on the LogS. However, for the tests based on
proper weighted scoring rules, the frequency of the desired rejections in favor of
F decays to zero with increasing threshold value, and for the tests based on the
twCRPS and CSL, the frequency of the undesired rejections in favor of Φ rises
for larger threshold values.

This seemingly counterintuitive observation can be explained by the tail behav-
ior of the forecast distributions, as follows. Consider the twCRPS and CSL with
the indicator weight function w(z) = �{z ≥ r} and a threshold r that exceeds
the maximum of the given sample. In this case, the scores do not depend on the
observations, and are solely determined by the respective tail probabilities, with
the lighter tailed forecast distribution receiving the better score. In a nutshell,
when the emphasis lies on a low-probability region with few or no observations,
the forecaster assigning smaller probability to this region will be preferred. The
traditionally used unweighted scoring rules do not depend on a threshold and
thus do not suffer from this deficiency.

In comparisons of the mixture distribution F and the lighter-tailed forecast
distribution Φ this leads to a loss of finite sample discrimination ability of the
proper weighted scoring rules as the threshold r increases. This observation also
suggests that any favorable finite sample behavior of the Diebold-Mariano tests
based on weighted scoring rules in Scenario A might be governed by rejections
due to the lighter tails of F compared to H.

In summary, even though the simulation setting at hand was specifically tai-
lored to benefit proper weighted scoring rules, these do not consistently perform
better in terms of statistical power when compared to their unweighted counter-
parts. Any advantages vanish at increasingly extreme threshold values in case the
actually superior distribution has heavier tails.

4. CASE STUDY

Based on the work of Clark and Ravazzolo (2015), we compare probabilistic
forecasting models for key macroeconomic variables for the United States, serving
to demonstrate the forecaster’s dilemma and the use of proper weighted scoring
rules in an application setting.

4.1 Data

We consider time series of quarterly gross domestic product (GDP) growth,
computed as 100 times the log difference of real GDP, and inflation in the GDP
price index (henceforth inflation), computed as 100 times the log difference of
the GDP price index, over an evaluation period from the first quarter of 1985 to
the second quarter of 2011, as illustrated in Figure 8. The data are available from
the Federal Reserve Bank of Philadelphia’s real time dataset.5

5http://www.phil.frb.org/research-and-data/real-time-center/real-time-data/
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Figure 8. Observations of GDP growth and inflation in the U.S. from the first quarter of 1985
to the second quarter of 2011. Solid circles indicate observations considered here as extreme
events.

For each quarter t in the evaluation period, we use the real-time data vintage
t to estimate the forecasting models and construct forecasts for period t and
beyond. The data vintage t includes information up to time t−1. The one-quarter
ahead forecast is thus a current quarter (t) forecast, while the two-quarter ahead
forecast is a next quarter (t + 1) forecast, and so forth (Clark and Ravazzolo,
2015). Here we focus on forecast horizons of one and four quarters ahead.

As the GDP data are continually revised, it is not immediate which revision
should be used as the realized observation. We follow Romer and Romer (2000)
and Faust and Wright (2009) who use the second available estimates as the actual
data. Specifically, suppose a forecast for quarter t + k is issued based on the
vintage t data ending in quarter t − 1. The corresponding realized observation
is then taken from the vintage t + k + 2 data set. This approach may entail
structural breaks in case of benchmark revisions, but is comparable to real-world
forecasting situations where noisy early vintages are used to estimate predictive
models (Faust and Wright, 2009).

4.2 Forecasting models

We consider autoregressive (AR) and vector autoregressive (VAR) models, the
specifications of which are given now. For further details and a discussion of
alternative models, see Clark and Ravazzolo (2015).

Our baseline model is an AR(p) scheme with constant shock variance. Under
this model, the conditional distribution of Yt is given by

(4.1) Yt |y<t, b0, . . . , bp, σ ∼ N
(
b0 +

p∑
i=1

biyt−i, σ
2

)
,

where p = 2 for GDP growth and p = 4 for inflation. Here, y<t denotes the vector
of the realized values of the variable Y prior to time t. We estimate the model
parameters b0, . . . , bp and σ in a Bayesian fashion using Markov chain Monte
Carlo (MCMC) under a recursive estimation scheme, where the data sample y<t

is expanded as forecasting moves forward in time. The predictive distribution
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then is the Gaussian variance-mean mixture

(4.2)
1

m

m∑
j=1

N
(
b0,j +

p∑
i=1

bi,jyt−i, σ
2
j

)
,

where m = 5000 and (b0,1, . . . , bp,1, σ1), . . . , (b0,m, . . . , bp,m, σm) is a sample from
the posterior distribution of the model parameters. For the other forecasting
models, we proceed analogously.

A more flexible approach is the Bayesian AR model with time-varying pa-
rameters and stochastic specification of the volatility (AR-TVP-SV) proposed by
Cogley and Sargent (2005), which has the hierarchical structure given by

Yt |y<t, b0,t, . . . , bp,t, λt ∼ N
(
b0,t +

p∑
i=1

bi,tyt−i, λt

)
,(4.3)

bi,t | bi,t−1, τ ∼ N (
bi,t−1, τ

2
)
, i = 0, . . . , p,

log λt |λt−1, σ ∼ N (
log λt−1, σ

2
)
.

Again, we set p = 2 for GDP growth and p = 4 for inflation.
In a multivariate extension of the AR models, we consider VAR schemes where

GDP growth, inflation, unemployment rate, and three-month government bill
rate are modeled jointly. Specifically, the conditional distribution of the four-
dimensional vector Yt is given by the multivariate normal distribution

(4.4) Yt |Y<t,b0,B1, . . . ,Bp,Σ ∼ N4

(
b0 +

p∑
i=1

Biyt−1,Σ

)
,

where Y<t denotes the data prior to time t, Σ is a 4 × 4 covariance matrix, b0

is a vector of intercepts, and Bi is a 4 × 4 matrix of lag i coefficients, where
i = 1, . . . , p. Here we take p = 4. The univariate predictive distributions for GDP
growth and inflation arise as the respective margins of the multivariate posterior
predictive distribution.

Finally, we consider a VAR model with time-varying parameters and stochastic
specification of the volatility (VAR-TVP-SV), which is a multivariate extension
of the AR-TVP-SV model (Cogley and Sargent, 2005). Let βt denote the vector
of size 4(4p+ 1) comprising the parameters b0,t and B1,t, . . . ,Bp,t at time t, set
Λt = diag(λ1,t, . . . , λ4,t) and let A be a lower triangular matrix with ones on the
diagonal and non-zero random coefficients below the diagonal. The VAR-TVP-SV
model takes the hierarchical form

Yt |Y<t,βt,Λt,A ∼ N4

(
b0,t +

p∑
i=1

Bi,tyt−1,A
−1Λt(A

−1)�
)
,(4.5)

βt |βt−1,Q ∼ N4(4p+1)

(
βt−1,Q

)
,

log λi,t |λi,t−1, σi ∼ N (
log λi,t−1, σ

2
i

)
, i = 1, . . . , 4.

We set p = 2 and refer to Clark and Ravazzolo (2015) for further details of the
notation, the model, and its estimation.

Figure 9 shows one-quarter ahead forecasts of GDP growth over the evaluation
period. The baseline models with constant volatility generally exhibit wider pre-
diction intervals, while the TVP-SV models show more pronounced fluctuations
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Figure 9. One-quarter ahead forecasts of U.S. GDP growth generated by the AR, AR-TVP-SV,
VAR, and VAR-TVP-SV models. The median of the predictive distribution is shown in the black
solid line, and the central 50% and 90% prediction intervals are shaded in dark and light gray,
respectively. The red line shows the corresponding observations.

both in the median forecast and the associated uncertainty. In 1992 and 1996, the
Bureau of Economic Analysis performed benchmark data revisions, which causes
the prediction uncertainty of the baseline models to increase substantially. The
more flexible TVP-SV models seem less sensitive to these revisions.

4.3 Results

To compare the predictive performance of the four forecasting models, Table 5
shows the mean CRPS and LogS over the evaluation period. For the LogS, we
follow extant practice in the economic literature and employ the quadratic ap-
proximation proposed by Adolfson et al. (2007). Specifically, we find the mean,
μ̂F , and variance, σ̂2

F , of a sample x̂1, . . . , x̂m, where x̂i is a random number drawn
from the ith mixture component of the posterior predictive distribution (4.2),
and compute the logarithmic score under the assumption of a normal predictive
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Table 5

Mean CRPS and mean LogS for probabilistic forecasts of GDP growth and inflation in the
U.S. at prediction horizons of k = 1 and k = 4 quarters, respectively, for the first quarter of

1985 to the second quarter of 2011. For each variable and column, the lowest value is in bold.

CRPS LogS

k = 1 k = 4 k = 1 k = 4

GDP Growth

AR 0.330 0.359 1.044 1.120
AR-TVP-SV 0.292 0.329 0.833 1.019
VAR 0.385 0.402 1.118 1.163
VAR-TVP-SV 0.359 0.420 0.997 1.257

Inflation

AR 0.167 0.187 0.224 0.374
AR-TVP-SV 0.143 0.156 0.047 0.175
VAR 0.170 0.198 0.235 0.428
VAR-TVP-SV 0.162 0.201 0.179 0.552

distribution with mean μ̂F and variance σ̂2
F .

6 To compute the CRPS and the
threshold-weighted CRPS, we use the numerical methods proposed by Gneiting
and Ranjan (2011).

The relative predictive performance of the forecasting models is consistent
across the two variables and the two proper scoring rules. The AR-TVP-SV model
has the best predictive performance and outperforms the baseline AR model. The
p-values for the respective two-sided Diebold-Mariano tests range from 0.00 to
0.06, except for the LogS for GDP growth at a prediction horizon of k = 4 quar-
ters, where the p-value is 0.37. However, the VAR models fail to outperform the
simpler AR models. As we do not impose sparsity constraints on the parameters
of the VAR models, this is likely due to overly complex forecasting models and
overfitting, in line with results of Holzmann and Eulert (2014) and Clark and
Ravazzolo (2015) in related economic and financial case studies.

To relate to the forecaster’s dilemma, we restrict attention to extremes events.
For GDP growth, we consider quarters with observed growth less than r = 0.1
only. For inflation, we restrict attention to high values in excess of r = 0.98.
In either case, this corresponds to using about 10% of the observations. Table 6
shows the results of restricting the computation of the mean CRPS and the mean
LogS to these observations only. For both GDP growth and inflation, the baseline
AR model is considered best, and the AR-TVP-SV model appears to perform
poorly. These restricted scores thus result in substantially different rankings than

6We believe that there are more efficient and more theoretically principled ways of approxi-
mating the LogS in Bayesian settings. However, these considerations are beyond the scope of the
paper, and we leave them to future work. Here, we use the quadratic approximation based on
a sample. This very nearly corresponds to replacing the LogS by the proper Dawid-Sebastiani
score (DSS; Dawid and Sebastiani, 1999; Gneiting and Raftery, 2007), which for a predictive
distribution F with mean μF and finite variance σ2

F is given by

DSS(F, y) = 2 log σF +
(y − μF )

2

σ2
F

.

The quadratic approximation is infeasible for the CL and CSL scoring rules, as it then leads to
improper scoring rules; see Appendix A.
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Table 6

Mean restricted CRPS (rCRPS) and restricted LogS (rLogS) for probabilistic forecasts of GDP
growth and inflation in the U.S. at prediction horizons of k = 1 and k = 4 quarters,

respectively, for the first quarter of 1985 to the second quarter of 2011. The means are
computed on instances when the observation is smaller than 0.10 (GDP) or larger than 0.98

(inflation) only. For each variable and column, the lowest value is shown in bold.

rCRPS rLogS

k = 1 k = 4 k = 1 k = 4

GDP Growth

AR 0.654 0.870 1.626 2.010
AR-TVP-SV 0.659 0.970 2.016 3.323
VAR 0.827 0.924 2.072 2.270
VAR-TVP-SV 0.798 0.978 2.031 2.409

Inflation

AR 0.214 0.157 0.484 0.296
AR-TVP-SV 0.236 0.179 0.619 0.327
VAR 0.203 0.147 0.424 0.317
VAR-TVP-SV 0.302 0.247 0.950 0.849

the proper scoring rules in Table 5, thereby illustrating the forecaster’s dilemma.
Strikingly, under the restricted assessment all four models seem less skillful at
predicting inflation in the current quarter than four quarters ahead. This is a
counterintuitive result that illustrates the dangers of conditioning on outcomes
and should be viewed as a further manifestation of the forecaster’s dilemma.

In Table 7 we show results for the proper twCRPS under weight functions that
emphasize the respective region of interest. For both variables, this yields rankings
that are similar to those in Table 5. However, the p-values for binary comparisons
with two-sided Diebold-Mariano tests generally are larger than those under the
unweighted CRPS. The AR-TVP-SV model is predominantly the best, and the
current quarter forecasts are deemed more skillful than those four quarters ahead.

5. DISCUSSION

We have studied the dilemma that occurs when forecast evaluation is restricted
to cases with extreme observations, a procedure that appears to be common
practice in public discussions of forecast quality. As we have seen, under this
practice even the most skillful forecasts available are bound to be discredited
when the signal-to-noise ratio in the data generating process is low. Key examples
might include macroeconomic and seismological predictions. In such settings it
is important for forecasters, decision makers, journalists, and the general public
to be aware of the forecaster’s dilemma. Otherwise, charlatanes might be given
undue attention and recognition, and critical societal decisions could be based on
misguided predictions.

We have offered two complementary explanations of the forecaster’s dilemma.
From the joint distribution perspective of Section 2.1 stratifying by, and condi-
tioning on, the realized value of the outcome is problematic in forecast evaluation,
as theoretical guidance for the interpretation and assessment of the resulting con-
ditional distributions is unavailable. In contrast stratifying by, and conditioning
on, the forecast is unproblematic. From the perspective of proper scoring rules in
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Table 7

Mean threshold-weighted CRPS for probabilistic forecasts of GDP growth and inflation in the
U.S. at prediction horizons of k = 1 and k = 4 quarters, respectively, under distinct weight
functions, for the first quarter of 1985 to the second quarter of 2011. For each variable and

column, the lowest value is shown in bold.

twCRPS

k = 1 k = 4 k = 1 k = 4

GDP Growth wI(z) = �{z ≤ 0.1} wG = 1− Φ(z | 0.1, 1)
AR 0.062 0.068 0.053 0.057
AR-TVP-SV 0.052 0.062 0.048 0.055
VAR 0.062 0.062 0.054 0.054
VAR-TVP-SV 0.059 0.080 0.053 0.065

Inflation wI(z) = �{z ≥ 0.98} wG = Φ(z | 0.98, 1)
AR 0.026 0.032 0.068 0.075
AR-TVP-SV 0.018 0.018 0.059 0.065
VAR 0.027 0.033 0.072 0.081
VAR-TVP-SV 0.022 0.037 0.067 0.081

2.3, restricting the outcome space corresponds to the multiplication of the scoring
rule by an indicator weight function, which renders any proper score improper,
with an explicit hedging strategy being available.

Arguably the only remedy is to consider all available cases when evaluating pre-
dictive performance. Proper weighted scoring rules emphasize specific regions of
interest and facilitate interpretation. Interestingly, however, the Neyman-Pearson
lemma and our simulation studies suggest that in general the benefits of using
proper weighted scoring rules in terms of power are rather limited, as compared
to using standard, unweighted scoring rules. Any potential advantages vanish un-
der weight functions with increasingly extreme threshold values, where the finite
sample behavior of Diebold-Mariano tests depends on the tail properties of the
forecast distributions only.

When evaluating probabilistic forecasts with emphasis on extremes, one could
also consider functionals of the predictive distributions, such as the induced prob-
ability forecasts for binary tail events, as utilized in a recent comparative study
by Williams et al. (2014). Another option is to consider the induced quantile fore-
casts, or related point summaries of the (tails of the) predictive distributions, at
low or high levels, say α = 0.975 or α = 0.99, as is common practice in financial
risk management, both for regulatory purposes and internally at financial institu-
tions (McNeil et al., 2015). In this context, Holzmann and Eulert (2014) studied
the power of Diebold-Mariano tests for quantile forecasts at extreme levels, and
Fissler et al. (2015) raise the option of comparative backtests of Diebold-Mariano
type in banking regulation. Ehm et al. (2016) propose decision theoretically prin-
cipled, novel ways of evaluating quantile and expectile forecasts.

Variants of the forecaster’s dilemma have been discussed in various strands
of literature. Centuries ago, Bernoulli (1713) argued that even the most foolish
prediction might attract praise when a rare event happens to materialize, referring
to lyrics by Owen (1607) that are quoted in the front matter of our paper.

Tetlock (2005) investigated the quality of probability forecasts made by hu-
man experts for U.S. and world events. He observed that while forecast quality is



26 S. LERCH, T. L. THORARINSDOTTIR, F. RAVAZZOLO AND T. GNEITING

largely independent of an expert’s political views, it is strongly influenced by how
a forecaster thinks. Forecasters who “know one big thing” tend to state overly
extreme predictions and, therefore, tend to be outperformed by forecasters who
“know many little things”. Furthermore, Tetlock (2005) found an inverse rela-
tionship between the media attention received by the experts and the accuracy
of their predictions, and offered psychological explanations for the attractiveness
of extreme predictions for both forecasters and forecast consumers. Media atten-
tion might thus not only be centered around extreme events, but also around less
skillful forecasters with a tendency towards misguided predictions.

Denrell and Fang (2010) reported similar observations in the context of man-
agers and entrepreneurs predicting the success of a new product. They also stud-
ied data from the Wall Street Journal Survey of Economic Forecasts, found a
negative correlation between the predictive performance on a subset of cases with
extreme observations and measures of general predictive performance based on
all cases, and argued that accurately predicting a rare and extreme event actually
is a sign of poor judgment. Their discussion was limited to point forecasts, and
the suggested solution was to take into account all available observations, much
in line with the findings and recommendations in our paper.
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Juutilainen, I., Tamminen, S. and Röning, J. (2012). Exceedance probability score: A novel

measure for comparing probabilistic predictions. Journal of Statistical Theory and Practice,
6 452–467.

Katz, R. W., Parlange, M. B. and Naveau, P. (2002). Statistics of extremes in hydrology.
Advances in Water Resources, 25 1287–1304.

Lehmann, E. L. and Romano, J. B. (2005). Testing Statistical Hypotheses. 3rd ed. Springer,
New York.



28 S. LERCH, T. L. THORARINSDOTTIR, F. RAVAZZOLO AND T. GNEITING

Lerch, S. and Thorarinsdottir, T. L. (2013). Comparison of non-homogeneous regression
models for probabilistic wind speed forecasting. Tellus A, 65 21206.

Manzan, S. and Zerom, D. (2013). Are macroeconomic variables useful for forecasting the
distribution of US inflation? International Journal of Forecasting, 29 469–478.

Marzban, C. (1998). Scalar measures of performance in rare-event situations. Weather and
Forecasting, 13 753–763.

Matheson, J. E. and Winkler, R. L. (1976). Scoring rules for continuous probability distri-
butions. Management Science, 22 1087–1096.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management. Revised
ed. Princeton University Press, Princeton and Oxford.

Murphy, A. H. and Winkler, R. L. (1987). A general framework for forecast verification.
Monthly Weather Review, 115 1330–1338.

Nau, R. F. (1985). Should scoring rules be ‘effective’? Management Science, 31 527–535.
Neyman, J. and Pearson, E. S. (1933). On the problem of the most efficient tests of statistical

hypotheses. Philosophical Transations of the Royal Society Series A, 231 289–337.
Owen, J. (1607). Epigrammatum, Book IV. Hypertext critical edition by Dana F. Sutton, The

University of California, Irvine (1999), available at http://www.philological.bham.ac.uk/
owen/.

Pelenis, J. (2014). Weighted scoring rules for comparison of density forecasts on subsets
of interest. Preprint, available at http://elaine.ihs.ac.at/~pelenis/JPelenis_wsr.pdf.
Accessed July 21, 2014.

Romer, C. D. and Romer, D. H. (2000). Federal Reserve information and the behavior of
interest rates. American Economic Review, 90 429–457.

Stephenson, D. B., Casati, B., Ferro, C. A. T. and Wilson, C. A. (2008). The extreme
dependency score: A non-vanishing measure for forecasts of rare events. Meteorological Ap-
plications, 15 41–50.
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APPENDIX A: IMPROPRIETY OF QUADRATIC APPROXIMATIONS OF
WEIGHTED LOGARITHMIC SCORES

Let F be a predictive distribution with mean μF and standard deviation σF . As
regards the conditional likelihood (CL) score (2.11), the quadratic approximation
is given by

CLq(F, y) = −w(y) log

(
φ(y|F )∫

w(x)φ(x|F ) dx

)
,

where φ(·|F ) denotes a normal density with mean μF and standard deviation σF ,
respectively. Let

cF =

∫
w(x)φ(x|F ) dx, cG =

∫
w(x)φ(x|G) dx, cg =

∫
w(x)g(x) dx,

and recall that the Kullback-Leibler divergence between two probability densities
u and v is given by

K(u, v) =

∫
u(x) log

(
u(x)

v(x)

)
dx.

Assuming that CLq is proper, it is true that

EG(CL
q(F, Y )− CLq(G, Y ))

= cg

[
K

(
w(y)g(y)

cg
,
w(y)φ(y|F )

cF

)
−K

(
w(y)g(y)

cg
,
w(y)φ(y|G)

cG

)]

is non-negative. Let G be uniform on [−√
3,
√
3] so that μG = 0 and σG = 1,

and let w(y) = �{y ≥ 1}. Denoting the cumulative distribution function of the
standard normal distribution by Φ, we find that

K

(
w(y)g(y)

cg
,
w(y)φ(y|F )

cF

)
−K

(
w(y)g(y)

cg
,
w(y)φ(y|G)

cG

)

= log

(
σF

1− Φ((1− μF )/σF )

1− Φ(1)

)
+

3(
√
3− 1)μ2

F − 6μF + (3
√
3− 1)(1− σ2

F )

6(
√
3− 1)σ2

F

,

which is strictly negative in a neighborhood of μF = 1.314 and σF = 0.252, for
the desired contradiction. Therefore, CLq is not a proper scoring rule.

As regards the censored likelihood (CSL) score (2.12), the quadratic approxi-
mation is

CSLq(F, y) = −w(y) log(φ(y|F ))− (1− w(y)) log

(
1−

∫
w(z)φ(z|F ) dz

)
.

Under the same choice of w, F , and G as before, we find that

EG(CSL
q(F, Y )− CSLq(G, Y ))

=

√
3− 1

2
√
3

log σF −
√
3 + 1

2
√
3

log

(
Φ((1− μF )/σF )

Φ(1)

)

+
3(
√
3− 1)μ2

F − 6μF + (3
√
3− 1)(1− σ2

F )

12
√
3σ2

F

,

which is strictly negative in a neighborhood of μF = 0.540 and σF = 0.589.
Therefore, CSLq is not a proper scoring rule.

APPENDIX B: ONLINE SUPPLEMENT: MEDIA ATTENTION ON
EXTREME EVENTS
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Table 8

Media coverage illustrating the focus on extreme events in public discussions of the quality of
forecasts. The sources were accessed August 8, 2015.

Year Headline Source

2008 Dr. Doom The New York Times1

2009 How did economists get it so wrong? The New York Times2

2009 He told us so The Guardian3

2010 Experts who predicted US economy crisis see recovery Bloomberg4

2010 An exclusive interview with Med Yones - The expert who CEO Q Magazine5

predicted the financial crisis
2011 A seer on banks raises a furor on bonds The New York Times6

2013 Meredith Whitney redraws ’map of prosperity’ USA Today7

2007 Lessons learned from Great Storm BBC8

2011 Bad data failed to predict Nashville Flood NBC9

2012 Bureau of Meteorology chief says super storm ‘just blew up The Courier-Mail10

on the city’
2013 Weather Service faulted for Sandy storm surge warnings NBC11

2013 Weather Service updates criteria for hurricane warnings, Washington Post12

after Sandy criticism
2015 National Weather Service head takes blame for forecast NBC13

failures

2011 Italian scientists on trial over L’Aquila earthquake CNN14

2011 Scientists worry over ‘bizarre’ trial on earthquake Scientific American15

prediction
2012 L’Aquila ruling: Should scientists stop giving advice? BBC16

1 http://www.nytimes.com/2008/08/17/magazine/17pessimist-t.html?pagewanted=all
2 http://www.nytimes.com/2009/09/06/magazine/06Economic-t.html?_r=1&pagewanted=

all
3 http://www.guardian.co.uk/business/2009/jan/24/nouriel-roubini-credit-crunch
4 http://www.bloomberg.com/apps/news?pid=conewsstory&refer=conews&tkr=K:

US&sid=asziFnEsJSos
5 http://www.ceoqmagazine.com/whopredictedfinancialcrisis/index.htm
6 http://www.nytimes.com/2011/02/08/business/economy/08whitney.html?pagewanted=

all&_r=0
7 http://www.usatoday.com/story/money/business/2013/06/05/meredith-whitney-book-

interview/2384905/
8 http://news.bbc.co.uk/2/hi/science/nature/7044050.stm
9 http://www.nbc15.com/weather/headlines/January_13_Report_Bad_Data_Failed_To_

Predict_Nashville_Flood_113450314.html
10 http://www.couriermail.com.au/news/queensland/bureau-of-meteorology-under-

fire-after-a-weekend-of-wild-weather-and-storms-in-queensland-left-many-

unprepared/story-e6freoof-1226519213928
11 http://www.nbcnewyork.com/news/local/Sandy-Report-Weather-Storm-Surge-

Warnings-207545031.html
12 http://www.washingtonpost.com/blogs/capital-weather-gang/wp/2013/04/04/

weather-service-changes-criteria-for-hurricane-warnings-after-sandy-

criticism/
13 http://www.nbcnews.com/storyline/blizzard-15/national-weather-service-head-

takes-blame-forecast-failures-n294701
14 http://articles.cnn.com/2011-09-20/world/world_europe_italy-quake-trial_1_

geophysics-and-vulcanology-l-aquila-seismic-activity?_s=PM:EUROPE
15 http://www.scientificamerican.com/article.cfm?id=trial-such-as-that-star
16 http://www.bbc.co.uk/news/magazine-20097554


