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Overview

This paper is about Bayesian forecasting using panel VARs
(PVARs) with time-varying parameters (TVP-PVARs)

Application: forecasting inflation rates for 19 eurozone countries

Challenges to be overcome:

1. Over-parameterization: 133 dependent variables

Shrinkage priors designed for multi-country panels (spillovers
and linkages)

Dimension switching

Dynamic Model Averaging (DMA)

2. Computation: MCMC infeasible

Forgetting factor Methods
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An Introduction to Panel VARs

yit contains G dependent variables for country i (i = 1, ..,N) at
time t (t = 1, ..,T)

Yt = (y′1t, .., y
′
Nt)
′ all variables for all countries

VAR for country i:

yit = A1,iYt−1 + ...+ AP,iYt−P + uit

Lots of parameters: Ap,i are G× NG matrices for each lag
p = 1, ..., P
εit have Σii covariance matrices of dimension G× G.

May have correlation between countries: cov (εit, εjt) = Σij

This is the unrestricted PVAR

Write compactly as:
Yt = X′tα+ εt

K = p× (N× G)
2 VAR parameters and N×G×(N×G+1)

2 error
covariance terms.
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Preview of our Data Set

G = 19 eurozone countries and N = 7 variables

Variables Explanation Trans
HICP Indices of Consumer Prices ∆ ln
IP Industrial production index ∆ ln
UN Harmonised unemployment rates (%) lev
REER Real Effective Exchange Rate ∆ ln
SURVEY1 Financial situation over the next 12 months lev
SURVEY2 Economic situation over next 12 months lev
SURVEY3 Price trends over the next 12 months lev

133 variables leads to very large VAR

Data from 1999M1-2014M12 means fairly small sample
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Achieving Parsimony Through Factor Structure for VAR
Coefficients

Canova and Ciccarelli (IER, 2009, CC09) suggest :

α = Ξ1θ1 + Ξ2θ2 + ..+ Ξqθq + e
= Ξθ + e

Ξ = (Ξ1, ..,Ξq) are known matrices and θ =
(
θ′1, .., θ

′
q
)′

is an R× 1
vector of unknown parameters with R < K
e is N (0,Σ⊗ V) where V = σ2I.
Much more parsimonious
VAR composed of common factor, a factor specific to each country
and a factor specific to each variable
Ξ1 is K× 1 vector of ones, θ1 a scalar.
Ξ2 is K× N matrix containing zeros and ones defined so as to pick
out coefficients for each country and θ2 is an N× 1 vector.
Ξ3 is K× G matrix containing zeros and ones defined so as to pick
out coefficients for each variable and θ3 is an G× 1 vector.
e picks up remaining heterogeneity in coefficients.
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Achieving Parsimony Through Factor Structure for VAR
Coefficients

We use CC09 but many other structures are possible

We also use country-specific VAR factor structure

For country i, Ξ defined so, that θ loads only on the G2

coefficients that are on lags of country i variables, not country j
I.e. e = 0, the coefficients on country j variables are zero and
PVAR breaks down into N individual VARs, one for each country

Intuition: working with VARs one country at a time close to being
adequate, but occasional inter-linkages captured through e.

Use DMA/DMS to choose between two factor structures in
dynamic fashion
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Achieving Parsimony Through Dimension Reduction

Forecasting inflation is hard (often hard to beat univariate
models)

Probably a PVAR with G = 7 is over-parameterized

We want to let data decide if this is so

Do DMA or DMS over PVARs of different dimensions

GC is set of core variables of interest (inflation, unemployment
rate and industrial production)

Work with PVARs of dimension GC or larger

G = 3,4, ..,7

PVARs of different dimensions receive different weight at
different points in time
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PVARs of different dimensions receive different weight at
different points in time
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Moving from the PVAR to the TVP-PVAR

TVP-PVAR is
Yt = X′tαt + ut,

where Xt = I⊗
(
Y′t−1, ...,Y

′
t−p
)′

, and ut ∼ N (0,Σt).

Note: αt and Σt time varying

TVP-VAR literature uses random walk evolution of αt and
multivariate stochastic volatility for Σt

In our case, over-parameterized and does not take panel structure
into account
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A Factor Structure for TVP-PVAR Coefficients

Use the hierarchical prior:

αt = Ξθt + et

θt = θt−1 + wt,

θt is R× 1 with R ≪ K
Ξ is defined as above

wt ∼ N (0,Wt)

CC09 used this model a single Ξ and Σt = Σ (homoskedasticity)
using MCMC methods (and set σ2 = 0)

Too computationally burdensome for forecasting exercise unless
G and N are both small
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A Hierarchical Prior for the Error Covariance Matrix

But error covariance matrix is also very parameter rich. Can we
shrink it as well using a Ξ?

We use ideas from Primiceri (ReStud, 2005) to do so.

Decompose as Σt = B−1
t Ht

(
HtB−1

t
)′

Bt is lower triangular matrix with ones on the diagonal,

Ht is diagonal matrix

Can write PVAR as

Yt = X′tαt + B−1
t Htεt

Yt = X′tγt + Z′tβt + Htεt,
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A Hierarchical Prior for the Error Covariance Matrix

Use same factor structures as before, but for both γt and βt:[
γt
βt

]
=

[
Ξγ 0
0 Ξβ

]
θt + ut

θt = θt−1 + vt.

ut ∼ N
(
0,Ht ⊗

(
σ2I
))

Note lower triangularity of Bt and block diagonality of Ξ means
standard state methods can be used (see Primiceri, 2005)

Let 1 subscripts mean CC09, and 2 subscripts mean
country-specific VAR factor structure

We consider four models which have: i) Ξγ1 and Ξβ1 , ii) Ξγ1 and
Ξβ2 , iii) Ξγ2 and Ξβ1 and iv) Ξγ2 and Ξβ2 .
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Estimating the TVP-PVAR

Details in paper: here the ideas

If we knew Σt, Wt and σ2 have Normal linear state space model

Standard state space methods (involving Kalman filter) provide
predictive densities

Replace Wt with estimate

Ŵt =

(
1
λ
− 1
)

var (θt|Dt−1)

Dt−1 denotes data available through period t− 1

0 < λ ≤ 1 is forgetting factor (more motivation below)

var (θt|Dt−1) available from Kalman filter iteration at time t− 1

Σt estimates using exponentially weighted moving average
(EWMA) with decay factor κ

σ2 consider grid of values
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Dynamic Treatment of Model Uncertainty

We have now defined many different models and methods for
estimating/forecasting any one of them

Models differ in choice of:

Dimension of the TVP-PVAR: G = 3,4,5,6,7

Structure for Ξ: (i) Ξγ1 and Ξβ1 , ii) Ξγ1 and Ξβ2 , iii) Ξγ2 and Ξβ1 and
iv) Ξγ2 and Ξβ2
Forgetting factor, λ (gradual change in coefficients: λ = 0.99 and
no change: λ = 1 thus including PVAR)

Decay factor, κ = {0.94,0.96,1} with κ = 1 meaning
homoskestacity

Grid for σ2 (20 values over a wide interval)

2400 models.
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Brief Introduction to DMA and DMS

Let M(i) for i = 1, ..., J be the set of models under consideration

Attach probability to each model using data available at time
t− 1: p

(
M(i)|Dt−1

)
DMA takes forecasts from all models and averages using these
probabilities
DMS forecasts at t− 1 using model with highest p

(
M(i)|Dt−1

)
Computation is problem: order of 2TJ possible combinations
(models and time periods)
Raftery, Karny and Ettler (Tech, 2010) pioneered field through
forgetting factor methods
p
(
M(i)|Dt−1

)
obtained in a fast, recursive manner, in the spirit of

Kalman filtering
Selects models which have forecast well in the recent past

p
(

M(i)|Dt−1

)
∝

t−1∏
i=1

[
p
(

YC
t |M(i),Dt−1

)]µi

µ is forgetting factor with similar interpretation to λ
YC

t are common to all models (inflation, the unemployment rate
and industrial production)
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Estimation Using TVP-PVAR-DMA

We do DMA over the key specification choices (Ξ and G) and
DMS so as to “estimate” factors which are similar to parameters
(λ, κ and σ2)

Call our approach TVP-PVAR-DMA

Following figures show:

Which choices for Ξ are supported by the data (CC09 or our
country-specific VAR factor structure)

Which dimension is chosen

Much time variation in each.

CC09 which imposes interlinkages between countries supported
post-eurozone crisis, but not as strongly before.

Co-movements increased with crisis?
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Forecasting using TVP-PVAR-DMA

Compare TVP-PVAR-DMA to:

Individual country TVP-PVARs (19-TVP-VAR)

A Large TVP-VAR (LTVP-VAR) using the methods of Koop and
Korobilis (2013)

A dynamic factor model (DFM) with time variation in parameters

The TVP-PVAR without DMA (TVP-PVAR)

The TVP-PVAR extended to place a factor structure on error
covariances (TVP-PVAR-X)

Exact details in paper but made as comparable as possible
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Forecasting using TVP-PVAR-DMA

Forecast evaluation for h = 1,3,6,12 for period
2006M1-2014M12

Large tables with MSFEs and averages log predictive likelihoods
for 19 countries are in paper
Key points in tables:
TVP-PVAR-DMA forecasts best most often (e.g. 29 of 76
comparisons has lowest MSFE)
But even where it is not best, it is never far from the
best-forecasting model
19-TVP-PVARs is second best, but occasionally forecasts very
poorly (Ireland)
DFM often forecast well, but predictive likelihoods for Greece and
Latvia much worse than TVP-PVAR-DMA
The Large TVP-PVAR (ignoring panel structure of problem)
forecasts relatively poorly
TVP-PVAR and TVP-PVAR-X are okay, but addition of DMA leads
to clear improvements
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When Are Forecast Improvements of TVP-PVAR-DMA
Achieved?

Previous results are for average forecast performance, one
country at a time

Next figure plots cumulative sums of log predictive likelihoods

Sum also taken across countries

An overall measure of forecast performance

Eurozone crisis usually dated from end of 2009

This is time when TVP-PVAR-DMA become apparent

In stable times, all approaches forecast roughly the same, but in
unstable times DMA does better
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Summary

Bayesian methods for forecasting with large TVP-PVARs
developed which:

Are computationally feasible (forgetting factors)

Incorporate hierarchical priors for working with multi-country
data

Allow for dynamic model averaging or selection over more
parsimonious specifications

Thus: begin with a parameter rich model with a range of
prior/specification/forgetting factor choices and let data decide
which ones to attach more weight to

Euro area inflation forecasting exercise shows the benefits of our
approach.
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