Rationing Under Sticky Prices

Tom D. Holden

Discussion by Andrey Alexandrov

Tor Vergata University of Rome

September 30, 2025

Summary

- Main idea:
 - ▶ Standard NK models assume firms *must* satisfy demand *unconditionally*
 - Data suggests active rationing, which has strong theoretical implications

Summary

Main idea:

- ▶ Standard NK models assume firms *must* satisfy demand *unconditionally*
- Data suggests active rationing, which has strong theoretical implications

Empirics:

- Higher demand caused by MP shocks increases shortages
- Products with newer prices are less prone to stockouts
- ► Sales follow an inverted U-shaped pattern over price spells

Summary

Main idea:

- Standard NK models assume firms must satisfy demand unconditionally
- Data suggests active rationing, which has strong theoretical implications

• Empirics:

- Higher demand caused by MP shocks increases shortages
- Products with newer prices are less prone to stockouts
- Sales follow an inverted U-shaped pattern over price spells

Sticky-price model with rationing:

- Rationing constrains expansionary monetary policy
- Rationing reduces welfare costs of positive trend inflation

Key Ingredient

• Standard NK model:

$$Y_t^j = \left(rac{P_t^j}{P_t}
ight)^{-arepsilon} Y_t \qquad \qquad \Pi_t^j = \left(rac{P_t^j}{P_t} - rac{W_t}{A_t}
ight) Y_t^j \gtrless 0$$

Key Ingredient

• Standard NK model:

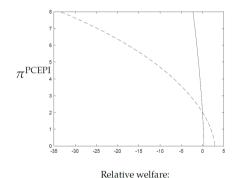
$$Y_t^j = \left(\frac{P_t^j}{P_t}\right)^{-\varepsilon} Y_t$$
 $\Pi_t^j = \left(\frac{P_t^j}{P_t} - \frac{W_t}{A_t}\right) Y_t^j \geqslant 0$

• This paper:

$$Y_t^j \in \left[0, \quad \left(rac{P_t^j}{P_t}
ight)^{-arepsilon} Y_t
ight] \qquad \qquad \Pi_t^j = \left(rac{P_t^j}{P_t} - rac{W_t}{A_t}
ight) Y_t^j \geq 0$$

Key Ingredient

• Standard NK model:

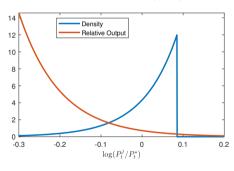

$$Y_t^j = \left(\frac{P_t^j}{P_t}\right)^{-\varepsilon} Y_t \qquad \qquad \Pi_t^j = \left(\frac{P_t^j}{P_t} - \frac{W_t}{A_t}\right) Y_t^j \geqslant 0$$

• This paper:

$$Y_t^j \in \left[0, \quad \left(rac{P_t^j}{P_t}
ight)^{-arepsilon} Y_t
ight] \qquad \qquad \Pi_t^j = \left(rac{P_t^j}{P_t} - rac{W_t}{A_t}
ight) Y_t^j \geq 0$$

More refined: DRS + iid demand shocks

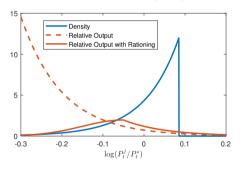
Welfare Implications


Welfare losses due to misallocation:

$$Y_t = A_t L_t \left[\int_0^1 \left(\frac{P_t^j}{P_t} \right)^{-\varepsilon} dj \right]^{-1}$$

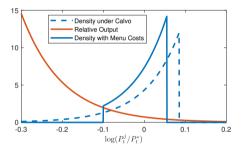
- Welfare loss of inflation moving from 2% to 8%:
 - 2.5% with rationing
 - 33% without rationing
- ⇒ very large gains from rationing!

Welfare Implications: Calvo model


• With $\zeta_t \approx const$ and (only) time-dependent Calvo adjustment intensity λ_t :

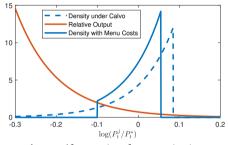
Firms with most distorted prices produce the most

Welfare Implications: Calvo model


• With $\zeta_t \approx const$ and (only) time-dependent Calvo adjustment intensity λ_t :

- Firms with most distorted prices produce the most
- lacktriangle Rationing removes the right tail of Y_t^j/Y_t
- ► ⇒ reduces misallocation

Welfare Implications: Adding State-Dependence


• Allowing firms to adjust any time s.t. a fixed cost:

- ightharpoonup State-dependence removes the left tail of P_t^j/P_t^*
- ► ⇒ smaller gains from rationing?

Welfare Implications: Adding State-Dependence

• Allowing firms to adjust any time s.t. a fixed cost:

- lacktriangle State-dependence removes the left tail of P_t^j/P_t^*
- ► ⇒ smaller gains from rationing?

Are welfare gains from rationing maximized under Calvo?
 Nakamura, Steinsson, Sun and Villar (2018)

- This paper:
 - Rationing as an additional margin of adjustment
 - ► Helps correct inefficiency stemming from price rigidity
 - Stockouts due to optimal firm behaviour

- This paper:
 - Rationing as an additional margin of adjustment
 - Helps correct inefficiency stemming from price rigidity
 - Stockouts due to optimal firm behaviour
- The empirical 11% stockout rate is fully attributed to rationing Cavallo and Kryvtsov (2023)

- This paper:
 - Rationing as an additional margin of adjustment
 - ► Helps correct inefficiency stemming from price rigidity
 - Stockouts due to optimal firm behaviour
- The empirical 11% stockout rate is fully attributed to rationing Cavallo and Kryvtsov (2023)
- Alternative (inefficient) reason for stockouts: inventory mismanagement Abel (1985), Kryvtsov and Midrigan (2010, 2013)
 - Stockouts due to frictions

- This paper:
 - Rationing as an additional margin of adjustment
 - ▶ Helps correct inefficiency stemming from price rigidity
 - Stockouts due to optimal firm behaviour
- The empirical 11% stockout rate is fully attributed to rationing Cavallo and Kryvtsov (2023)
- Alternative (inefficient) reason for stockouts: inventory mismanagement Abel (1985), Kryvtsov and Midrigan (2010, 2013)
 - Stockouts due to frictions
- Is there a way to estimate the rate of 'efficient' stockouts?

Minor Comments

- Can you explore heterogeneity in sector-level inflation rates?
 - Should we expect fewer shortages in sectors with falling prices?
- Can you introduce a cost of rationing $c(\overline{\psi}_{\zeta,\tau,t})$?
 - Could allow for a more direct comparison with a model without rationing by setting $c(\overline{\psi}) \to \infty \ \ \forall \overline{\psi} \in [0,1)$
 - Would also generate some trade-off between rationing and price adjustment (if firms are allowed to choose adjustment rates as function of idiosyncratic states)

Final Remarks

- Well-executed empirical analysis and carefully designed dynamic model of rationing under sticky prices
- Important implications for welfare and effects of monetary policy
- Quantification is key!