

Arnaud Dyèvre

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

PUBLIC R&D SPILLOVERS AND PRODUCTIVITY GROWTH

EUROPEAN CENTRAL BANK

EUROSYSTEM

Public R&D Spillovers and Productivity Growth

Context

Decline in public R&D since 1960 in the US

Research question: What is the impact of the decline in public R&D on productivity growth?

1. Data

Patent data + **Compustat** (US firms): 1950-2020

Most comprehensive dynamic panel of listed firms matched to patents

2. How is public R&D different?

- 1. More fundamental (share of citations to scientific papers)
- 2. More 'ahead of its time' (years ahead of technology class creation)
- 3. More likely to generate spillovers

4. Shift-Share IV for public R&D spillovers: funding shocks

Caused by wars, space race, geopolitics, pandemics, etc. (see NASA example, left)

Positive impact on firm-level productivity

5. Patent examiner IV for public & private spillovers

Examiner **leniency** provides variation in the **visibility** of innovation Public R&D spillovers **twice as impactful**

		(1)	(2)	(3)	(4)
$\Delta_5 \ln(VA/worker)$	Public	0.089***	0.090***	0.096***	0.065**
	Private	(0.025) 0.035***	(0.026) 0.034**	(0.027) 0.031**	(0.026) 0.028**
		(0.013)	(0.013)	(0.012)	(0.013)

6. Aggregation: growth with spillovers and heterogeneous firms

Firms vary in productivity and there are 2 types

(classes citing the patent), especially to **small firms**

3. From theory to data

Productivity-enhancing function with spillovers:

productivity growth = R&D × spillovers

 $\frac{A_{it}}{A_{it-1}} = e_{it}^{r} S_{it} = e_{it}^{r} \left(\prod_{a} \left(\frac{P_{at}}{P_{at-1}} \right)^{s_{iat}} \right)^{\gamma} \left(\prod_{f} \left(\frac{P_{ft}}{P_{ft-1}} \right)^{s_{ift}} \right)^{\varepsilon}$

 P_{at} and P_{ft} : patents. s_{iat} and s_{ift} : shares of exposure

Take logs and estimate:

$$\Delta a_{it} = r \ln(e_{it}) + \gamma \sum_{a} s_{iat} \Delta p_{at} + \varepsilon \sum_{a} s_{ift} \Delta p_{ft} + \epsilon_{it}$$

of spillovers

• Private (applied) and public (fundamental)

Decline in public R&D explains **a third** of the deceleration in TFP

Conclusion

- Large, positive impact of public R&D on firm productivity through technology spillovers
- Public R&D spillovers at least twice as impactful as private R&D spillovers
- **Smaller firms** are more negatively impacted by the decline in public R&D
- Decline in public R&D in the US can account for a third of the deceleration in TFP

Arnaud Dyèvre – London School of Economics Paper available at arnauddyevre.com