

Clement Bohr

CCAPACITY BUFFERS: EXPLAINING THE RETREAT AND RETURN OF THE PHILLIPS CURVE

EUROPEAN CENTRAL BANK

EUROSYSTEM

Capacity Buffers: Explaining the Retreat and Return of the Phillips Curve

Clement E. Bohr

Northwestern

Since the 1960s,

- 1. Variable and labor costs shares declined
- Capacity utilization rates declined 2.
- 3. Phillips curve flattened
- 4. Idiosyncratic volatility of sales increased

During COVID-19,

- 1. Large increase demand for goods + restriction on production capacity
- 2. Firms became capacity constrained
- 3. Phillips curve steepened

This Paper

Can the size of firms' capacity buffers explain the changing slope of the Phillips curve?

The Capacity Buffer = 1 – Capacity Utilization Rate = measure of distance to capacity constraint

Excess production capacity of capital stock to buffer against demand fluctuations

Buffer size affects slope of supply curve

Fagnart, Licandro, and Sneessens (1997); Boehm and Pandalai-Nayar, (2022)

Larger Buffer \rightarrow Smaller probability of becoming capacity constrained \rightarrow flatter supply curve

Theory

Precautionary capacity buffer due to:

- Putty-clay technology \rightarrow SR capacity constraints
- Idiosyncratic demand shocks

Capacity Buffer Size, B, determines:

- Probability of becoming capacity constrained
- → **Optimal price** via sales-weighted price elasticity

$$p(B) = \mu(B)W/a_l$$
 with markup $\mu(B) = \frac{\varepsilon(B)}{\varepsilon(B) - 1}$

$$\underbrace{\varepsilon(B)}_{\substack{\text{price elasticity}\\ \text{of sales}}} = \eta(B) \underbrace{\varepsilon_p}_{\substack{\text{price elasticity}\\ \text{of demand}}} + \underbrace{(1 - \eta(B))}_{\substack{\text{sales weighted prob. of}\\ \text{becoming capacity constrained}}} 0$$

Volatility in the probability of hitting capacity \rightarrow Sensitivity of prices to demand shocks

Evidence

Prices more sensitivity to **monetary policy shocks** under smaller capacity buffers

Logit Smooth Transition Local Projection Model

$$y_{t+h} = \frac{\tau t}{\mathrm{trend}} + F(B_t) \begin{pmatrix} \text{small capacity buffers} \\ \alpha_1^h + \beta_1^h m_t + \gamma_1' x_t \\ \mathrm{intercept} & \mathrm{shocks} & \mathrm{controls} \end{pmatrix} + (1 - F(B_t)) \begin{pmatrix} \mathrm{large capacity buffers} \\ \alpha_0^h + \beta_0^h m_t + \gamma_0' x_t \\ \end{array} \end{pmatrix} + \underbrace{u_t}_{\mathrm{residuals}} +$$

- Convex state F(B) depends on capacity buffer size
- RR shocks on monthly aggregate data 1969-2008

Results: When capacity buffers, B < 15%, price responsiveness increases by twice that of output

Table 1: Relative response of consumption prices to quantities across horizons

	Horizon (months)	12	18	26	30	36
Any B	P/C	-0.04	-0.13	0.02	0.50	1.21
B < 15%	P/C	0.69	1.34	1.19	1.35	2.64

1. Larger markups \rightarrow 2. larger capacity buffers \rightarrow 3. flatter Phillips curve

2. Larger capacity buffers \rightarrow higher demand pass-through into sales \rightarrow 4. higher idiosyncratic volatility of sales

COVID-19 Sectoral Inflation

Explained by combo of two shocks:

- 1. Shift in demand from services to goods \rightarrow Persistent sectoral taste shock
- 2. Restricted capacity from health restrictions \rightarrow Temporary capital productivity shock

Goods Sector:

Increase in demand + decrease in capacity → buffers collapsed → **steep Phillips Correlation**

Services Sector:

Decrease in demand + decrease in capacity

→ buffers remained → flat Phillips Correlation

Aggregate Inflation Decomposition:

- **59% Demand Shift**
- 31% capacity restrictions
- 10% interaction

Total Nonlinear Contribution: 21%