Email: federico.kochen@nyu.edu Website: www.federicokochen.com

Finance Over the Life Cycle of Firms

Federico Kochen

New York University

Motivation

- Large literature argues *finance* important for macro and development
- In theory, firms are more dependent on external financing early in their life
- Yet little is known about importance of financial frictions at different stages of firms' lifetimes
- Questions: How constrained are young firms? Does lack of financing force young firms to exit? What are the macroeconomic consequences?
- Approach: Answer these questions using firm-level micro data from high and middleincome European countries and a quantitative macro model

Data and Empirical Specification

Quantifying the Model

- Separately calibrate key parameters to high and middle-income countries to minimize distance between real and financial moments in data and model
 - Severity of financing frictions chosen to match leverage, spreads, and equity

Entrants and Real Variables					
	High-Income		Middle-Income		
	Data	Model	Data	Model	
Entrants (age 0-2)					
Output growth	0.15	0.17	0.19	0.21	
Exit rate	0.16	0.21	0.24	0.24	
Real Variables					
Exit rate	0.08	0.08	0.12	0.14	
log Output, SD	1.71	2.13	2.09	2.17	

Financial Variables						
	High-Income		Middle-Income			
	Data	Model	Data	Model		
Leverage						
Age-slope	-0.017	-0.020	-0.009	-0.009		
Mean age 9-10	0.37	0.29	0.20	0.18		
SD	0.35	0.16	0.28	0.14		
Interest Rate Spread						
Age-slope	-0.003	-0.003	-0.004	-0.005		
Mean age 9-10	0.066	0.074	0.121	0.096		

- Orbis database (Moody's Bureau van Dijk) from 1996-2018
 - Annual balance sheet and income statements for *privately-held* firms
- For each variable y, run the non-parametric regression

 $y_{it} = \sum_{a \in \mathcal{A}} (\gamma_a + \gamma_a^{\mathbf{MI}} \mathbf{MI}_i) \mathbf{D}_{it}^a + \alpha_n + \alpha_c + \alpha_t + \epsilon_{it}$

- \mathcal{A} includes 9 age groups, and D_{it}^a equals 1 if firm i belongs to group a in t
- MI_i is equal to one if firm *i* is located in one of the middle-income countries
- α_n denotes NACE 4-digit industry fixed effects, α_c and α_t correspond to cohort and time fixed effects

Life Cycle Facts

- Younger firms (vs. older firms)
- Borrow more, face higher spreads, receive more equity injections, exit more, have higher and more volatile growth
- Firms in middle-income countries (vs. high-income countries)
 - Borrow less, pay higher spreads, exit more, higher and more dispersed growth
 - Differences are more pronounced among *younger* firms

Output growth			SD	0.119	0.103	0.178	0.117
Mean	0.06 0.07	0.08 0.09	Equity Financin	g			
SD	0.29 0.32	0.37 0.38	Fr., age-slope	-0.007	-0.006	-0.009	-0.014
SD age-slope	-0.017 -0.023	-0.024 -0.022	Fr., age 9-10	0.09	0.09	0.10	0.06
Profits/k	0.080.110.180.08	0.12 0.12	Size, mean	0.14	0.15	0.16	0.13
Profits/k, SD		0.20 0.16	Size, SD	0.23	0.17	0.27	0.18

- The model does a good job replicating the entire pattern of the six life cycle facts
- *Insights*: To match the data, firms in the middle-income model (vs. high-income) - Less initial capital and higher uncertainty, and face more volatile ex post shocks - Similar bankruptcy costs, hence differences in spreads due to idiosyncratic risk
 - Sizable *equity financing costs*, 60% larger than in high-income model

How Constrained Are Young Firms?

- Entrants start at 0.31 and 0.17 k/k^* in high and middle-income countries
 - The typical firm in high and middle-income exit at 0.42 and 0.3 k/k^*

Wedge in capital FOC Capital ratio, k/k^*

• Novel SOE model of firm dynamics, learning, and financial frictions

Aggregate Implications of Financial Frictions

• Financial frictions generate sizable losses in output per worker of 15% and 24%

	High-Income		Middle-Income		
	Perfect Credit	Baseline	Perfect Credit	Baseline	
	(a) <i>Relative to</i>	Perfect Cre	dit Benchmark		
Y/L	1.00	0.85	1.00	0.76	
TFP	1.00	0.92	1.00	0.87	
K/Y	1.00	0.91	1.00	0.88	
$m(\Omega)$	1.00	0.48	1.00	0.41	
$m(\mathcal{C}[\Omega])$	1.00	0.46	1.00	0.37	
$m(\mathcal{E})$	1.00	0.97	1.00	1.09	
		(b) Levels			
Exit Rate	0.04	0.08	0.06	0.14	
$\mathbb{E}[lifespan]$	25.3	12.5	17.9	7.1	

- Use the model as a laboratory to quantify aggregate implications of financing frictions and better understand cross-country differences
- The model features two key building blocks
- 1. Firms can *finance* their operations using internal funds, defaultable long-term debt (endogenous interest rate spreads), and costly equity injections

 $\underbrace{k_{it+1} - (1 - \delta)k_{it}}_{\text{capital investments}} = \underbrace{\pi(k_{it}, z_{it}) - \exp(z_{it})c_{Fit} - (\phi + r)b_{it}}_{\text{internal funds}},$ equity injection + $\boldsymbol{q}_{t+1}(k_{it+1}, b_{it+1}, \hat{s}_{it+1})[b_{it+1} - (1 - \phi)b_{it}]$ new debt

- s.t. bankruptcy costs, and fixed and convex costs of equity injections
- 2. Firms *learn* about their profitability over time and face age-specific volatility

 $z_{it} = \underbrace{s_{it}}_{t} + \underbrace{\varepsilon_{it}}_{t}$ (not s_{it} and ε_{it} separately) firm *i* at age *t* observe transitory

 $s_{it} = \rho_s s_{it-1} + u_{it}, \ s_{i0} \sim \mathcal{N}(\hat{s}_{i0}, \Sigma_0), \ u_{it} \sim \mathcal{N}(0, \sigma_u^2), \ \varepsilon_{it} \sim \mathcal{N}(0, \sigma_{\varepsilon t}^2), \ \sigma_{\varepsilon t}^2 = (1 + \rho_{\varepsilon}^t C_{\varepsilon})^2 \sigma_{\varepsilon}^2$

 \Rightarrow Allow the model to account for younger firms relying more on external financing while, at the same time, facing higher uncertainty and risk

• *Main finding*: The bulk of the losses in output per worker $\frac{Y}{L} = \text{TFP}^{\frac{1}{1-\alpha}} \left(\frac{K}{V}\right)^{\frac{\alpha}{1-\alpha}}$ is explained by a *new* channel distorting firms' *exit* decisions

• Distortions in exit margin driven by young firms, little effect on older firms

- *Intuition*: Young firms prematurely exit as costs of external financing are higher than the option value of learning
- **Policy implications**: Results suggest that policies targeting young firms (*age* criterion) rather than SMEs (*size* criterion) are potentially more beneficial