# Global vs. Local Banking: **A Double Adverse Selection Problem**

# Leslie Sheng Shen **University of California - Berkeley**

# What I do

- Study how globalization of banking systems has affected credit allocation and the macroeconomy.
- Show—both theoretically and empirically—that it creates a double adverse selection problem in credit allocation, which generates spillover and amplification of funding shocks across countries.

# **Research questions:**

Why do some firms borrow from global banks instead of the traditional local banks?

What role do global banks play in propagating shocks?

# **Traditional Theory**

Firm-Bank Sorting, by Firm Size and Age Quartile

### Motivation

#### Total Global Banking Credit, All countries



# Model



# **New Theory**

Data:

•Global banks specialize information on global risk. Local banks specialize information on local risk.

# **Empirics**

#### Ingredients

Firms: returns dependent on global and local risk.

Syndicated loans from Dealscan across 24 countries.

•Firm balance sheet data from Amadeus, Orbis, Compustat Global.



- Banks: double information asymmetry.
- Global banks (G)  $\rightarrow$  information on  $z_i^G$ .
- •Local banks (L)  $\rightarrow$  information on  $z_i^L$ .

•Offer break-even interest rates that reflect firm and adverse selection.

### **Prediction 1: Equilibrium firm-bank sorting and double** adverse selection



## Test 1: Global banks lend more to firms with higher $z_i^G/z_i^L$ , and vice versa for local banks



# Test 2: Shock to bank funding cost affect credit allocation at the extensive and intensive margin.

Laboratory: Eurozone firms

Funding shock: monetary policy shocks

Data: tick-by-tick futures data (Source: CQG Data Factory)



Example: expansionary monetary policy in home country of global banks



- Eurozone monetary policy shock: 3-month Euribor futures
- US monetary policy shock: 30-day Federal Funds futures

| 3                                               | 3                                                    | 3                                                                |                              |
|-------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|------------------------------|
| $\Delta Y_{it} = \sum \beta^q (\Delta U S R_t)$ | $t \ge T_{it-1}^q) + \sum \delta^q (\Delta E U R_t)$ | $_{t} \ge T_{it-1}^{q} + \sum \gamma^{q} T_{it-1}^{q} + \nu_{i}$ | $+ \sigma_t + \epsilon_{it}$ |
| $q{=}1$                                         | $q{=}1$                                              | q=2                                                              |                              |

|                        | (1)       | (2)       |   |
|------------------------|-----------|-----------|---|
|                        | Extensive | Intensive |   |
| $\Delta MP^{US} * T^1$ | -0.049    | -89.354*  |   |
|                        | (0.119)   | (48.542)  | ļ |
| $\Delta MP^{US} * T^2$ | -0.241**  | 62.796    |   |
|                        | (0.120)   | (52.769)  |   |
| $\Delta MP^{US} * T^3$ | -0.117    | 98.427**  |   |
|                        | (0.118)   | (46.293)  |   |
| $\Delta MP^{EU} * T^1$ | 0.057     | 136.864** | I |
|                        | (0.118)   | (56.249)  |   |
| $\Delta MP^{EU} * T^2$ | 0.264**   | 76.563    |   |
|                        | (0.118)   | (52.087)  |   |
| $\Delta MP^{EU} * T^3$ | 0.173     | -101.876* |   |
|                        | (0.116)   | (54.681)  |   |
| Firm FE                | Yes       | Yes       | I |
| Time FE                | Yes       | Yes       |   |
| Observations           | 11,454    | 3,367     |   |
| R-squared              | 0.067     | 0.052     |   |
|                        |           |           |   |

-0.05

-0.1

-0.15

A 25-basis-point shock to Euro area monetary policy

I the probability of firm in the second tercile of  $z_i^G/z_i^L$  distribution switching into a US bank by 8.5 percentage points.

↓ the interest rate spread for the inframarginal firms that continue to borrow from US banks by 25 basis points.

Spillover effects

- I the interest rate spread for the inframarginal firms that continue to borrow from Euro area banks by 34 basis points.
  - Amplification effects