Europe's Income Convergence and the Latest Global Financial Crisis

René Cabral* and Francisco A. Castellanos-Sosa**

* Tecnológico de Monterrey ****** University of Texas at Austin IIII FIXAS The University of Texas at Austin

Research Question

How has the recent financial crisis affected income convergence in the EU and the EMU?

Contribution

First on studying the effects of the recent FC on income convergence by contrasting the effects of European countries' incorporation to both the EU and the EMU.

- Revisiting the convergence debate in the EU and the EMU by controlling econometric weaknesses encountered in previous studies, such as heterogeneity and endogeneity.
- First on exploring the FC effects on income convergence at country level in Europe.

Main Results

- The latest global FC has:
 - \checkmark brought greater absolute and conditional convergence rates to all the EU members,
 - \checkmark affected richer members more heavily,
 - \checkmark allowed less developed members to recover "more quickly", and
 - \checkmark decreased the per capita GDP by ~7-9%.
- The creation of the European Union has contributed toward economic growth (~6-9% higher per capita GDP) and taking the convergence rate to more than its double.

No similar evidence is found concerning the European Monetary Union effect on economic growth. However, the convergence rate increases by about a half.

Graphical Analysis (Absolute Convergence)

Data and Methodology

Data for 25 EU member states in the 1973–2012 period is gathered from:

- The World Bank (2018) (Socioeconomic variables)
- Barro and Lee (2013) (Schooling)
- Freedom House (2018) (Political variables)
- By following Mankiw et al. (1992), we depart from:

 $\Delta \log y_{i,t} = \alpha_{i,t} + \beta \log y_{t-1} + v_{i,t}$

Then, continue with a **System GMM** following Blundell and Bond (1998) to measure conditional convergence.

 $y_{i,p} = \mu_i + \eta_p + \alpha y_{i,p-1} + \beta_0 + \beta_1 s_{i,p} + \beta_2 n_{i,p} + \beta_3 h_{i,p} + \beta_4 E U_{i,p} + \beta_5 E M U_{i,p} + \beta_6 F C_{i,p} + v_{i,p}$ Controlling for *investment* $(s_{i,p})$, *population* $(n_{i,p})$, and *human capital* $(h_{i,p})$ (see Table 4). As well as for domestic variables, such as government size, openness, and political stability (see Table 5).

$$\log y_{2007} - \log y_{1999} = 2.119^{***} - 0.187 \log y_{1999}^{***}$$

1999-2012

SYS-GMM Analysis (Conditional Convergence)

Table 4Dynamic Estimates Contr	olling for EU	, EMU, and I	Financial Cris	is Shocks.			Table 5 Dynamic Estimates Contr	olling for EU	, EMU, Finar	ncial Crisis Sh	nocks, and Do	mestic Varial	oles.
Dependent Variable: Ln (GDP pc)	(a)	(b)	(c)	(d)	(e)	(f)	Dependent Variable: Ln (GDP pc)	(a)	(b)	(c)	(d)	(e)	(f)
Lagged Ln (GDP pc)	0.903***	0.843***	0.808^{***}	0.849***	0.862***	0.861***	Lagged Ln (GDP pc)	0.940^{***}	0.890^{***}	0.856^{***}	0.904^{***}	0.910***	0.897
	(0.028)	(0.0439	(0.051)	(0.039)	(0.030)	(0.041)		(0.034)	(0.045)	(0.055)	(0.046)	(0.029)	(0.04
Ln (Investment ratio)	0.089	0.180^{*}	0.245*	0.189*	0.056	0.061	Ln (Investment ratio)	0.070	0.127	0.202*	0.146	-0.007	0.05
	(0.098)	(0.105)	(0.130)	(0.118)	(0.125)	(0.154)	× / /	(0.067)	(0.088)	(0.111)	(0.107)	(0.102)	(0.11
Ln (Population growth)	0.012	-0.003	-0.008	-0.002	0.009	0.009	Ln (Population growth)	-0.005	-0.019	-0.028*	-0.019	-0.003	-0.01
	(0.015)	(0.014)	(0.016)	(0.014)	(0.016)	(0.017)	(= •F	(0.012)	(0.015)	(0.016)	(0.016)	(0.011)	(0.01
Ln (Years of schooling)	(0.010)	0.254**	0.288**	0.266*	0.283***	0.286**	Ln (Years of schooling)	(0.012)	0.358**	0.387**	0.410^{*}	0.268**	0.32
		(0.127)	(0.142)	(0.148)	(0.105)	(0.118)	2 (1 emb of sensoring)		(0.159)	(0.191)	(0.212)	(0.132)	(0.18
EU entry dummy		(0.127)	0.064*	(01110)	(0.100)	0.002	EU entry dummy		(0110))	0.088*	(01212)	(01102)	0.04
			(0.037)			(0.034)				(0.053)			(0.05
EMU entry dummy			(0.057)	-0.011		-0.001	EMU entry dummy			(0.055)	-0.023		-0.01
				(0.031)		(0.025)	Livie endy duminy				(0.023)		(0.02
FC dummy				(0.031)	-0.095***	-0.095***	FC dummy				(0.03+)	-0.077***	-0.067
					(0.024)	(0.026)	I C dummy					(0.023)	(0.02
Constant	0.810	0.537	0.557	0.429	0.701	0.686	Constant	1.128	1.862	2.410	1.831	2.881	3.01
	(0.551)	(0.600)	(0.682)	(0.762)	(0.569)	(0.696)	Constant	(1.319)	(1.764)	(2.064)	(1.861)	(1.539)	(1.61
	(0.331)	(0.000)	(0.002)	(0.702)	(0.507)	(0.090)		(1.31))	(1.704)	(2.004)	(1.001)	(1.557)	(1.01
							Domestic variables	Yes	Yes	Yes	Yes	Yes	Yes
Implied impacts							Implied impacts						
EU entry dummy			6.61%*			0.20%	EU entry dummy			9.20% *			4.60%
EMU entry dummy				-1.09%		-0.10%	EMU entry dummy				-2.27%		-1.09
FC dummy					-9.06%***	-9.06%***	FC dummy					-7.41%***	-6.48%
Implied $\lambda_{Islam} = -\left[\frac{\ln(\beta)}{\tau}\right]$	2.04%***	3.42%***	4.26%***	3.27%***	2.97%***	2.99%***	Implied $\lambda_{Islam} = -\left[\frac{\ln(\beta)}{\tau}\right]$	1.24%***	2.33%***	3.11%***	2.02%***	1.89%***	2.17%
Observations	124	124	124	124	124	124	Observations	121	121	121	121	121	121
Countries	22	22	23	22	22	22	Countries	21	21	21	21	21	21
Instruments	29	29	29	29	29	29	Instruments	29	29	29	29	29	29
Hansen test	0.69	0.62	0.75	0.64	0.83	0.89	Hansen test	0.74	0.65	0.67	0.77	0.76	0.7
AB(2) test	0.45	0.66	0.70	0.72	0.04	0.09	AB(2) test	0.53	0.40	0.50	0.48	0.85	0.8
Wald χ^2	1,701.0	1,703.9	1,206.1	1,809.0	2,451.8	2,982.8	Wald χ^2	2,913.7	3,091.6	2,845.7	3,950.7	7,544.7	7,573
Notes: System GMM reg	,	,	,	,		·	Notes: System GMM reg	,	,	,	· · ·	,	- ,
The symbols *, **, and **			-		respectively		The symbols *, **, and **			-		respectively	

ECB Forum on Central Banking Sintra, Portugal 17-19 June, 2019 **20 years of European Economic and Monetary Union**

Find this paper on *Research in Economics*, 73(1), 23-34.

References for the Poster

Barro, R.J., Lee, J.W., 2013. A new data set of educational attainment in the world, 1950–2010. J. Dev. Econ. 104, 184–198. Blundell, R., Bond, S., 1998. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 87 (1), 115–143. Freedom House. Freedom in the World 2018. Mankiw, N.G., Romer, D., Weil, D.N., 1992. A contribution to the empirics of economic growth. Q. J. Econ. 107 (2), 407–437. The World Bank. World Development Indicators (WDI) 2018.