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Background
I Important finding in empirical literature: productivity

differences among establishments are large, even in narrowly
defined industries (Syverson (2011), FGHW (2015)).

I Dispersion is important as a measure of heterogeneity and
because it is relevant for business dynamism and growth

I This conclusion holds for both revenue-based and
quantity-based productivity measures.

I However, micro datasets rarely contain information on prices or
quantities. Most of the evidence is based on revenue
productivity.

I High dispersion robust to alternative estimation methods.
Estimation methods viewed as not critical for this and other
core findings (Syverson (2011))

I But as we show, the alternative methods yield conceptually
different measures. Moreover, this is potentially important
since one specific measure has become important as an
indicator of misallocation (Hsieh-Klenow (2009)).
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Background

I Their insight is that dispersion in a particular revenue
productivity measure reflects dispersion in distortions - under
certain assumptions about production and demand.

I Widely used in analyses of misallocation [keyword search in
title on ideas.repec.org returns 70 records in 2014-2015].

I This paper investigates the generality of this insight:
I we show that the conclusions in Hsieh-Klenow (2009) don’t

necessarily hold under alternative assumptions about returns to
scale (relevant because evidence suggests NCRS)

I we show that alternative revenue productivity measures have
different implications even under the assumptions made by
Hsieh-Klenow (2009);

I present a framework that can be used to make inferences
about the properties of distortions and frictions.
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TFPR conceptual measure is critical

I Conceptual measure of revenue per composite input, useful to
consider (Foster-Haltiwanger-Syverson (2008), in logs):

tfpri = pi + tfpqi = pi + qi −∑
j

αjxij

I αj are factor elasticities from Cobb-Douglas production
function

I Insight in Hsieh-Klenow (2009):

1. Downward sloping demand ⇒ negative relationship between
physical productivity and product prices.

2. Add CRS technology and iso-elastic demand ⇒ TFPR is
equalized across plants in the absence of distortions or frictions
because high-productivity plants experience an exactly
offsetting price decline.

3. The implication is that observed TFPR-dispersion must reflect
distortions.

Revenue productivity measures 4 / 16



What do we measure?
TFPR vs. commonly used revenue productivity measures

1. Cost-share-based methods: cost min. with CRS yields factor
elasticities and, by definition, TFPR:

tfpr csi = pi + qi −∑
j

α̂jxij

⇒ tfpr csi = tfpri

2. Regression-based methods in general yield revenue elasticities

tfpr rri = pi + qi −∑
j

β̂jxij

⇒ tfpr rri 6= tfpr csi

⇒ tfpr rri 6= tfpri

Revenue elasticities will, in general, be a function of factor
elasticities and demand parameters. Revenue residual will be a
function of technical efficiency and demand shocks.
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Relationship Between Revenue Productivity Measures

I We show in the paper that assuming

I Log-linear technology,
I Iso-elastic demand,
I And arbitrary RTS...

I ...TFPR dispersion (δtfpr ) depends on:

I Demand elasticity (ρ)
I RTS (γ)
I Dispersion in demand shocks (δξ), TFPQ (δtfpq) and

distortions (δκ).
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Relationship Between Revenue Productivity Measures
(Conceptual) TFPR

δtfpr =
1

1− ργ

(
(1− γ)

(
δξ + ρδtfpq

)
+ (1− ρ)∑

j

αjδκj

)
Implication: RTS is crucial for the result on dispersion.

Conclusion: deviation from CRS yields the result that
variation in TFPR is affected also by demand shocks and
TFPQ shocks.
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Relationship Between Revenue Productivity Measures
Empirical measures

I Under the same assumptions, we also show that empirical
estimates of tfpr rri depend on demand elasticity (ρ), demand
shocks (ξ) and tfpq.

tfpr rri = ρtfpqi + lnξi + p

(no distortions here, RTS free)

I This implies we can write tfpri as

I Evidence (FGHW (2015)) suggests tfpr csi and tfpr rri are highly
correlated.

I Under CRS , this can only be possible if distortions are
correlated with technology and demand shocks.

I Under NCRS, correlation is determined by γ and ρ.
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Digging Deeper – Exploratory empirical exercise

I To implement above decompositions exactly, need to estimate
factor elasticities and demand parameters.

I Absent data on prices and quantities, we follow the approach
in Klette-Griliches (1996) and De Loecker (2011) to jointly
identify revenue function and demand parameters. Crude
approach, would be better to have data on demand.

I Under those assumptions, αj -s can be calculated using
estimates of βj and ρ, and therefore we can estimate tfpri , its
dispersion and the components of the decomposition.
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Digging Deeper – Exploratory empirical exercise
1) Recover quantity elasticites (αj ) from revenue elasticities (βj )

I Under isoelastic demand, Pi = P(Q/Qi )1−ρξi where ξi is a
demand shifter, writing out plant-level log-revenues gives the
estimating equation:

pi + qi = ρqi + lnξi + (1− ρ)q + p

= ρ(∑
j

αjx
j
i + tfpqi ) + lnξi + (1− ρ)q + p

= ∑
j

(ραj )x
j
i + ρtfpqi + lnξi + (1− ρ)q + p

I Joint estimation of rev. elasts and demand parameter helps.
β̂j=ρ̂αj : rev. elasts. We can recover demand parameter using

coefficient of aggregate revenues β̂q=1− ρ̂, and factor

elasticities are determined by α̂j=β̂j/ρ̂.
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Digging Deeper – Exploratory empirical exercise
2) Implement dispersion decomposition

I Revenue function estimation yields direct estimates of

1. βj
2. ρ
3. tfpr rri and we know tfpr rri = ρtfpqi + lnξi .

I Using βj and ρ, we can calculate

1. αj and γ=∑j αj
2. tfpri = pi + qi −∑j αjxij and...
3. their dispersion δtfpr , δtfpr rr and we know δtfpr rr = ρδtfpq + δξ

I So we can charaterize the composite distortion term
(

1−ρ
1−ργ ∑j αj lnκij) and its dispersion (

1−ρ
1−ργ ∑j αjδκj )

I Plant-level data: ASM, CM (1972-2010), 50 largest industries
(see FGHW (2015) for details).
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Exploratory empirical exercise - Findings

I Dispersion in tfpr rri and κ (derived estimate of distortions) are
similar, on average .2-.3.

I Correlation between tfpr rri and κ is high.
I Interpretation:

I corr(tfpqi , κ) and corr(ξ, κ) positive (≈ FGHW (2015) with
much less structure)

I In other words, empirical evidence suggests that tfpq shocks
and demand shocks are more likely to hit plants with higher
distortions - under HK assumptions.

I Why?
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Conclusions

I Empirical evidence suggests that tfpq shocks and demand
shocks are more likely to hit plants with higher distortions -
under HK assumptions.

I An alternative interpretation associates the derived distortion
estimates with frictions. Establishments with high tfpq have
high tfpr because it takes time to adjust their production
factors.

I In sum, caution needs to be used interpreting dispersion in
revenue productivity as reflecting distortions.

I Estimation methods matter and can be insightful in this
context.

I Additional caution since alternative demand/production
functions yield more wedges between tfpr and distortions.
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Table: Cross-industry moments of the estimated demand parameter (ρ),
returns to scale (γ), and dispersion measures: tfpr , tfpr rr , tfprcs and
distortions.

ρ γ δtfpr δtfprrr δκ

OP
mean 0.95 1.09 0.53 0.29 0.27

sd 0.16 0.51 1.08 0.08 0.09

tfprcs

mean . 1 0.31 . 0.31
sd . 1 0.11 . 0.11
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Table: Within-industry correlations of terms underlying dispersion
measures.

Panel 1: 50 industries
A: Cross-industry averages

OP
tfprrr tfpr dist tfprcs tfprrr0

tfprrr 1
tfpr 0.9 1
dist 0.96 0.88 1
tfprcs 0.88 0.81 0.92 1
tfprrr0 0.85 0.76 0.82 0.75 1
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Relationship between returns to scale and the correlation
between TFPR and distortions (r(tfpr,dist)).

y = -5.85x2 + 11.63x - 4.79 
(adjusted) R² = 0.73 

0.7

0.75

0.8

0.85

0.9

0.95

1

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

r(dist,tfpr) 

gamma 

actual fitted
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