Firm-Level Dispersion in Productivity - Is the Devil in the Details?¹

Lucia Foster^a Cheryl Grim^a John Haltiwanger^b Zoltan Wolf^a

^aU.S. Census Bureau

^bUniversity of Maryland

CompNet, April 2016

¹Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the U.S. Census Bureau. All results have been reviewed to ensure that no confidential information is disclosed.

Background

- Important finding in empirical literature: productivity differences among establishments are large, even in narrowly defined industries (Syverson (2011), FGHW (2015)).
 - Dispersion is important as a measure of heterogeneity and because it is relevant for business dynamism and growth
- This conclusion holds for both revenue-based and quantity-based productivity measures.
 - However, micro datasets rarely contain information on prices or quantities. Most of the evidence is based on revenue productivity.
- High dispersion robust to alternative estimation methods. Estimation methods viewed as not critical for this and other core findings (Syverson (2011))
- But as we show, the alternative methods yield conceptually different measures. Moreover, this is potentially important since one specific measure has become important as an indicator of misallocation (Hsieh-Klenow (2009)).

Background

- Their insight is that dispersion in a particular revenue productivity measure reflects dispersion in distortions - under certain assumptions about production and demand.
- Widely used in analyses of misallocation [keyword search in title on ideas.repec.org returns 70 records in 2014-2015].
- This paper investigates the generality of this insight:
 - we show that the conclusions in Hsieh-Klenow (2009) don't necessarily hold under alternative assumptions about returns to scale (relevant because evidence suggests NCRS)
 - we show that alternative revenue productivity measures have different implications even under the assumptions made by Hsieh-Klenow (2009);
 - present a framework that can be used to make inferences about the properties of distortions and frictions.

TFPR conceptual measure is critical

 Conceptual measure of revenue per composite input, useful to consider (Foster-Haltiwanger-Syverson (2008), in logs):

$$tfpr_i = p_i + tfpq_i = p_i + q_i - \sum_j \alpha_j x_{ij}$$

- *α_j* are factor elasticities from Cobb-Douglas production function
- Insight in Hsieh-Klenow (2009):
 - 1. Downward sloping demand \Rightarrow negative relationship between physical productivity and product prices.
 - Add CRS technology and iso-elastic demand ⇒ *TFPR* is equalized across plants in the absence of distortions or frictions because high-productivity plants experience an exactly offsetting price decline.
 - 3. The implication is that observed *TFPR*-dispersion must reflect distortions.

What do we measure?

TFPR vs. commonly used revenue productivity measures

1. Cost-share-based methods: cost min. with CRS yields factor elasticities and, by definition, *TFPR*:

$$tfpr_i^{cs} = p_i + q_i - \sum_j \hat{\alpha}_j x_{ij}$$
$$\Rightarrow tfpr_i^{cs} = tfpr_i$$

2. Regression-based methods in general yield revenue elasticities

$$tfpr_{i}^{rr} = p_{i} + q_{i} - \sum_{j} \widehat{\beta}_{j} x_{ij}$$

$$\Rightarrow tfpr_{i}^{rr} \neq tfpr_{i}^{cs}$$

$$\Rightarrow tfpr_{i}^{rr} \neq tfpr_{i}$$

Revenue elasticities will, in general, be a function of factor elasticities and demand parameters. Revenue residual will be a function of technical efficiency and demand shocks.

We show in the paper that assuming

- We show in the paper that assuming
 - Log-linear technology,

- We show in the paper that assuming
 - Log-linear technology,
 - Iso-elastic demand,

We show in the paper that assuming

- Log-linear technology,
- Iso-elastic demand,
- And arbitrary RTS...

We show in the paper that assuming

- Log-linear technology,
- Iso-elastic demand,
- And arbitrary RTS...

• ... *TFPR* dispersion (δ_{tfpr}) depends on:

イロン イロン イヨン イヨン 三日

We show in the paper that assuming

- Log-linear technology,
- Iso-elastic demand,
- And arbitrary RTS...
- ... *TFPR* dispersion (δ_{tfpr}) depends on:
 - Demand elasticity (ρ)

We show in the paper that assuming

- Log-linear technology,
- Iso-elastic demand,
- And arbitrary RTS...
- ... *TFPR* dispersion (δ_{tfpr}) depends on:
 - Demand elasticity (ρ)
 - RTS (γ)

We show in the paper that assuming

- Log-linear technology,
- Iso-elastic demand,
- And arbitrary RTS...
- ... *TFPR* dispersion (δ_{tfpr}) depends on:
 - Demand elasticity (ρ)
 - RTS (γ)
 - Dispersion in demand shocks (δ_ξ), TFPQ (δ_{tfpq}) and distortions (δ_κ).

$$\delta_{t\textit{fpr}} = \frac{1}{1 - \rho \gamma} \left(\left(1 - \gamma\right) \left(\delta_{\xi} + \rho \delta_{t\textit{fpq}}\right) + \left(1 - \rho\right) \sum_{j} \alpha_{j} \delta_{\kappa_{j}} \right)$$

Implication: RTS is crucial for the result on dispersion.

$$\delta_{tfpr} = \frac{1}{1 - \rho\gamma} \left(\frac{(1 - \gamma) \left(\delta_{\xi} + \rho\delta_{tfpq}\right)}{(1 - \rho) \sum_{j} \alpha_{j} \delta_{\kappa_{j}}} \right)$$

Implication: RTS is crucial for the result on dispersion.

$$\delta_{tfpr} = \frac{1}{1 - \rho \gamma} \left(\frac{(1 - \gamma) \left(\delta_{\xi} + \rho \delta_{tfpq} \right)}{1 - \rho \sum_{j} \alpha_{j} \delta_{\kappa_{j}}} \right)$$

Implication: RTS is crucial for the result on dispersion.

$$\begin{array}{l} \hline CRS \implies \\ \delta_{tfpr} = \frac{1-\rho}{1-\rho\gamma} \sum_{j} \alpha_{j} \delta_{\kappa_{j}} \end{array}$$

$$\delta_{tfpr} = \frac{1}{1 - \rho \gamma} \left(\frac{\left(1 - \gamma\right) \left(\delta_{\xi} + \rho \delta_{tfpq}\right)}{1 - \rho \sum_{j} \alpha_{j} \delta_{\kappa_{j}}} \right)$$

Implication: RTS is crucial for the result on dispersion.

$$\begin{array}{l} \hline CRS \implies \\ \delta_{tfpr} = \frac{1-\rho}{1-\rho\gamma} \sum_{j} \alpha_{j} \delta_{\kappa_{j}} \end{array}$$

Conclusion: deviation from CRS yields the result that variation in TFPR is affected also by demand shocks and TFPQ shocks.

イロン イロン イヨン イヨン 三日

Empirical measures

Under the same assumptions, we also show that empirical estimates of *tfpr_i^{rr}* depend on demand elasticity (ρ), demand shocks (ξ) and *tfpq*.

 $tfpr_{i}^{rr} = \rho tfpq_{i} + \ln \xi_{i} + p$ (no distortions here, RTS free)

Empirical measures

• Under the same assumptions, we also show that empirical estimates of $tfpr_i^{rr}$ depend on demand elasticity (ρ), demand shocks (ξ) and tfpq.

$$tfpr_i^{rr} = \rho tfpq_i + \ln \xi_i + p$$
(no distortions here, RTS free)

This implies we can write tfpr_i as

$$tfpr_{i} = \lambda + \frac{1 - \gamma}{1 - \rho\gamma} tfpr_{i}^{rr} + \frac{1 - \rho}{1 - \rho\gamma} \sum_{j} \alpha_{j} ln\kappa_{ij}$$

イロン イロン イヨン イヨン 三日

Empirical measures

• Under the same assumptions, we also show that empirical estimates of $tfpr_i^{rr}$ depend on demand elasticity (ρ), demand shocks (ξ) and tfpq.

$$tfpr_i^{rr} = \rho tfpq_i + \ln \xi_i + p$$
(no distortions here, RTS free)

This implies we can write tfpr_i as

$$tfpr_i = \lambda + rac{1-\gamma}{1-
ho\gamma} tfpr_i^{rr} + rac{1-
ho}{1-
ho\gamma} \sum_j lpha_j ln\kappa_{ij}$$

Evidence (FGHW (2015)) suggests tfpr^{cs} and tfpr^r are highly correlated.

Empirical measures

Under the same assumptions, we also show that empirical estimates of *tfpr_i^{rr}* depend on demand elasticity (ρ), demand shocks (ξ) and *tfpq*.

$$tfpr_i^{rr} = \rho tfpq_i + \ln \xi_i + p$$
(no distortions here, RTS free)

This implies we can write tfpr_i as

$$tfpr_{i} = \lambda + \frac{1 - \gamma}{1 - \rho\gamma} tfpr_{i}^{rr} + \frac{1 - \rho}{1 - \rho\gamma} \sum_{j} \alpha_{j} ln\kappa_{ij}$$

- Evidence (FGHW (2015)) suggests tfpr^{cs} and tfpr^{rr} are highly correlated.
- Under CRS, this can only be possible if distortions are correlated with technology and demand shocks.

Empirical measures

Under the same assumptions, we also show that empirical estimates of *tfpr_i^{rr}* depend on demand elasticity (ρ), demand shocks (ξ) and *tfpq*.

$$tfpr_i^{rr} = \rho tfpq_i + \ln \xi_i + p$$
(no distortions here, RTS free)

This implies we can write tfpr_i as

$$tfpr_{i} = \lambda + \frac{1 - \gamma}{1 - \rho\gamma} tfpr_{i}^{rr} + \frac{1 - \rho}{1 - \rho\gamma} \sum_{j} \alpha_{j} ln\kappa_{ij}$$

- Evidence (FGHW (2015)) suggests tfpr^{cs} and tfpr^{rr} are highly correlated.
- Under CRS, this can only be possible if distortions are correlated with technology and demand shocks.
- Under NCRS, correlation is determined by γ and ρ .

- To implement above decompositions exactly, need to estimate factor elasticities and demand parameters.
- Absent data on prices and quantities, we follow the approach in Klette-Griliches (1996) and De Loecker (2011) to jointly identify revenue function and demand parameters. Crude approach, would be better to have data on demand.
- Under those assumptions, α_j-s can be calculated using estimates of β_j and ρ, and therefore we can estimate *tfpr_i*, its dispersion and the components of the decomposition.

Digging Deeper – Exploratory empirical exercise 1) Recover quantity elasticites (α_i) from revenue elasticities (β_i)

Under isoelastic demand, P_i = P(Q/Q_i)^{1-ρ}ξ_i where ξ_i is a demand shifter, writing out plant-level log-revenues gives the estimating equation:

$$egin{aligned} p_i + q_i &=
ho q_i + \ln \xi_i + (1-
ho) q + p \ &=
ho (\sum_j lpha_j x_i^j + tf p q_i) + \ln \xi_i + (1-
ho) q + p \ &= \sum_j (
ho lpha_j) x_i^j +
ho tf p q_i + \ln \xi_i + (1-
ho) q + p \end{aligned}$$

Joint estimation of rev. elasts and demand parameter helps. β_j=ρα_j: rev. elasts. We can recover demand parameter using coefficient of aggregate revenues β_q=1−ρ̂, and factor elasticities are determined by α_j=β_j/ρ̂.

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of
 1. β_j

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of

β_j
 ρ

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of

1. β_j 2. ρ 3. $tfpr_i^{rr}$ and we know $tfpr_i^{rr} = \rho tfpq_i + \ln\xi_i$.

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of

1. β_j 2. ρ 3. $tfpr_i^{rr}$ and we know $tfpr_i^{rr} = \rho tfpq_i + \ln \xi_i$. • Using β_j and ρ , we can calculate

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of

β_j
 ρ
 tfpr_i^{rr} and we know tfpr_i^{rr} = ρtfpq_i + lnξ_i.
 Using β_j and ρ, we can calculate

1.
$$\alpha_j$$
 and $\gamma = \sum_j \alpha_j$

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of

β_j
 ρ
 tfpr_i^{rr} and we know tfpr_i^{rr} = ρtfpq_i + lnξ_i.
 Using β_j and ρ, we can calculate

 α_j and γ=∑_j α_j
 tfpr_i = p_i + q_i - ∑_i α_ix_{ii} and...

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of

- 1. β_j
- 2. *ρ*
- 3. $tfpr_i^{rr}$ and we know $tfpr_i^{rr} = \rho tfpq_i + \ln\xi_i$.

• Using β_j and ρ , we can calculate

1.
$$\alpha_j$$
 and $\gamma = \sum_j \alpha_j$

2.
$$tfpr_i = p_i + q_i - \sum_j \alpha_j x_{ij}$$
 and...

3. their dispersion δ_{tfpr} , δ_{tfpr} and we know $\delta_{tfpr} = \rho \delta_{tfpq} + \delta_{\xi}$

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of

- 1. β_j
- **2**. *ρ*
- 3. $tfpr_i^{rr}$ and we know $tfpr_i^{rr} = \rho tfpq_i + \ln \xi_i$.

• Using β_j and ρ , we can calculate

1.
$$\alpha_j$$
 and $\gamma = \sum_j \alpha_j$

2.
$$tfpr_i = p_i + q_i - \sum_j \alpha_j x_{ij}$$
 and...

3. their dispersion δ_{tfpr} , $\delta_{tfpr'}$ and we know $\delta_{tfpr'} = \rho \delta_{tfpq} + \delta_{\xi}$

► So we can charaterize the composite distortion term $\left(\frac{1-\rho}{1-\rho\gamma}\sum_{j}\alpha_{j}\ln\kappa_{ij}\right)$ and its dispersion $\left(\frac{1-\rho}{1-\rho\gamma}\sum_{j}\alpha_{j}\delta_{\kappa_{j}}\right)$

2) Implement dispersion decomposition

Revenue function estimation yields direct estimates of

- **1**. β_j
- **2**. *ρ*
- 3. $tfpr_i^{rr}$ and we know $tfpr_i^{rr} = \rho tfpq_i + \ln \xi_i$.

• Using β_j and ρ , we can calculate

1.
$$\alpha_j$$
 and $\gamma = \sum_j \alpha_j$

2.
$$tfpr_i = p_i + q_i - \sum_j \alpha_j x_{ij}$$
 and...

- 3. their dispersion δ_{tfpr} , $\delta_{tfpr'}$ and we know $\delta_{tfpr'} = \rho \delta_{tfpq} + \delta_{\xi}$
- ► So we can charaterize the composite distortion term $\left(\frac{1-\rho}{1-\rho\gamma}\sum_{j}\alpha_{j}ln\kappa_{ij}\right)$ and its dispersion $\left(\frac{1-\rho}{1-\rho\gamma}\sum_{j}\alpha_{j}\delta_{\kappa_{j}}\right)$
- Plant-level data: ASM, CM (1972-2010), 50 largest industries (see FGHW (2015) for details).

Exploratory empirical exercise - Findings

- Dispersion in *tfpr_i^{rr}* and κ (derived estimate of distortions) are similar, on average .2-.3.
- Correlation between $tfpr_i^{rr}$ and κ is high.
- Interpretation:
 - corr(tfpq_i, κ) and corr(ξ, κ) positive (≈ FGHW (2015) with much less structure)
 - In other words, empirical evidence suggests that *tfpq* shocks and demand shocks are more likely to hit plants with higher distortions - under HK assumptions.
 - ► Why?

Conclusions

- Empirical evidence suggests that tfpq shocks and demand shocks are more likely to hit plants with higher distortions under HK assumptions.
- An alternative interpretation associates the derived distortion estimates with frictions. Establishments with high *tfpq* have high *tfpr* because it takes time to adjust their production factors.
- In sum, caution needs to be used interpreting dispersion in revenue productivity as reflecting distortions.
- Estimation methods matter and can be insightful in this context.
- Additional caution since alternative demand/production functions yield more wedges between tfpr and distortions.

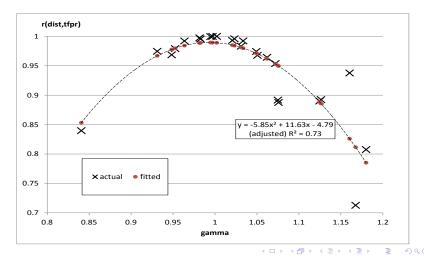
Table: Cross-industry moments of the estimated demand parameter (ρ), returns to scale (γ), and dispersion measures: *tfpr*, *tfpr^{rr}*, *tfpr^{cs}* and distortions.

	ρ	γ	δ_{tfpr}	$\delta_{tfpr^{\prime\prime}}$	δ_{κ}	
			OP			
mean	0.95	1.09	0.53	0.29	0.27	
sd	0.16	0.51	1.08	0.08	0.09	
	tfpr ^{cs}					
mean		1	0.31		0.31	
sd		1	0.11		0.11	

Table: Within-industry correlations of terms underlying dispersion measures.

Panel 1: 50 industries									
A: Cross-industry averages									
	OP								
	tfpr ^{rr}	tfpr	dist	tfpr ^{cs}	tfpr ^{rr}				
tfpr ^{rr}	1				0				
tfpr	0.9	1							
dist	0.96	0.88	1						
tfpr ^{cs}	0.88	0.81	0.92	1					
tfpr ₀ ^{rr}	0.85	0.76	0.82	0.75	1				

Relationship between returns to scale and the correlation between TFPR and distortions (r(tfpr,dist)).



Revenue productivity measures

16 / 16