	Model	Implications		Conclusion
000000	000000	000000	000	0

Optimal Monetary and Prudential Policies

Fabrice Collard, University of Bern Harris Dellas, University of Bern Behzad Diba, Georgetown University Olivier Loisel, CREST (ENSAE)

Second Conference of the ESCB Macro-prudential Research (MaRs) Network

ECB, Frankfurt am Main, 31 October 2012

A forthcoming	prudential	policy		
00000	000000	000000	000	
Introduction	Model	Implications		Conclusion

- The recent crisis has highlighted the need for a policy ensuring financial stability.
- The consensus is that a new prudential policy (PP) should be in charge, rather than monetary policy (MP).
- One reason is that it is unclear whether MP can be effective in ensuring financial stability (e.g. Bernanke, 2010).
- One key PP instrument will be bank capital requirements set conditionally on the state of the economy (Basel Committee on Banking Supervision, 2010).

Introduction	Model	Implications	Extensions	Conclusion
000000	000000	000000	000	U
A forthcoming	prudential	policy		

- The recent crisis has highlighted the need for a policy ensuring financial stability.
- The consensus is that a new prudential policy (PP) should be in charge, rather than monetary policy (MP).
- One reason is that it is unclear whether MP can be effective in ensuring financial stability (e.g. Bernanke, 2010).
- One key PP instrument will be bank capital requirements set conditionally on the state of the economy (Basel Committee on Banking Supervision, 2010).

Introduction	Model	Implications	Extensions	Conclusion
000000	000000	000000	000	U
A forthcoming	prudential	policy		

- The recent crisis has highlighted the need for a policy ensuring financial stability.
- The consensus is that a new prudential policy (PP) should be in charge, rather than monetary policy (MP).
- One reason is that it is unclear whether MP can be effective in ensuring financial stability (e.g. Bernanke, 2010).
- One key PP instrument will be bank capital requirements set conditionally on the state of the economy (Basel Committee on Banking Supervision, 2010).

Introduction	Model	Implications	Extensions	Conclusion
000000	000000	000000	000	U
A forthcoming	prudential	policy		

- The recent crisis has highlighted the need for a policy ensuring financial stability.
- The consensus is that a new prudential policy (PP) should be in charge, rather than monetary policy (MP).
- One reason is that it is unclear whether MP can be effective in ensuring financial stability (e.g. Bernanke, 2010).
- One key PP instrument will be bank capital requirements set conditionally on the state of the economy (Basel Committee on Banking Supervision, 2010).

Introduction	Model			Conclusion
00000	000000	000000	000	
Contribution	of the paper			

• This raises the issue of the interactions between

- MP, i.e. interest-rate policy,
- PP, i.e. state-contingent capital-requirement policy.
- Our goal is to develop a New Keynesian model with banks to study these interactions from a normative perspective.
- The literature has recently proposed models that address this issue, notably Angeloni and Faia (2011), Christensen, Meh and Moran (2011).
- We depart from this literature in two main ways:
 - by computing the jointly locally Ramsey-optimal policies,
 - by linking the amount of risk to the type of credit.

Introduction	Model			Conclusion
00000	000000	000000	000	
Contribution of	of the paper			

• This raises the issue of the interactions between

- MP, i.e. interest-rate policy,
- PP, i.e. state-contingent capital-requirement policy.
- Our goal is to develop a New Keynesian model with banks to study these interactions from a normative perspective.
- The literature has recently proposed models that address this issue, notably Angeloni and Faia (2011), Christensen, Meh and Moran (2011).
- We depart from this literature in two main ways:
 - by computing the jointly locally Ramsey-optimal policies,
 - by linking the amount of risk to the type of credit.

Introduction	Model	Implications	Conclusion
00000			
Contribution	of the pa	per	

- This raises the issue of the interactions between
 - MP, i.e. interest-rate policy,
 - PP, i.e. state-contingent capital-requirement policy.
- Our goal is to develop a New Keynesian model with banks to study these interactions from a normative perspective.
- The literature has recently proposed models that address this issue, notably Angeloni and Faia (2011), Christensen, Meh and Moran (2011).
- We depart from this literature in two main ways:
 - by computing the jointly locally Ramsey-optimal policies,
 - by linking the amount of risk to the type of credit.

Introduction	Model			Conclusion
00000	000000	000000	000	
Contribution of	of the paper			

- This raises the issue of the interactions between
 - MP, i.e. interest-rate policy,
 - PP, i.e. state-contingent capital-requirement policy.
- Our goal is to develop a New Keynesian model with banks to study these interactions from a normative perspective.
- The literature has recently proposed models that address this issue, notably Angeloni and Faia (2011), Christensen, Meh and Moran (2011).
- We depart from this literature in two main ways:
 - by computing the jointly locally Ramsey-optimal policies,
 - by linking the amount of risk to the type of credit.

Introduction	Model			Conclusion
00000	000000	000000	000	
Contribution of	of the paper			

- This raises the issue of the interactions between
 - MP, i.e. interest-rate policy,
 - PP, i.e. state-contingent capital-requirement policy.
- Our goal is to develop a New Keynesian model with banks to study these interactions from a normative perspective.
- The literature has recently proposed models that address this issue, notably Angeloni and Faia (2011), Christensen, Meh and Moran (2011).
- We depart from this literature in two main ways:
 - by computing the jointly locally Ramsey-optimal policies,
 - by linking the amount of risk to the type of credit.

Introduction	Model			Conclusion
00000	000000	000000	000	
Contribution of	of the paper			

- This raises the issue of the interactions between
 - MP, i.e. interest-rate policy,
 - PP, i.e. state-contingent capital-requirement policy.
- Our goal is to develop a New Keynesian model with banks to study these interactions from a normative perspective.
- The literature has recently proposed models that address this issue, notably Angeloni and Faia (2011), Christensen, Meh and Moran (2011).
- We depart from this literature in two main ways:
 - by computing the jointly locally Ramsey-optimal policies,
 - by linking the amount of risk to the type of credit.

Introduction	Model			Conclusion
00000	000000	000000	000	
Contribution of	of the paper			

- This raises the issue of the interactions between
 - MP, i.e. interest-rate policy,
 - PP, i.e. state-contingent capital-requirement policy.
- Our goal is to develop a New Keynesian model with banks to study these interactions from a normative perspective.
- The literature has recently proposed models that address this issue, notably Angeloni and Faia (2011), Christensen, Meh and Moran (2011).
- We depart from this literature in two main ways:
 - by computing the jointly locally Ramsey-optimal policies,
 - by linking the amount of risk to the type of credit.

Introduction	Model			Conclusion
00000	000000	000000	000	
Contribution of	of the paper			

- This raises the issue of the interactions between
 - MP, i.e. interest-rate policy,
 - PP, i.e. state-contingent capital-requirement policy.
- Our goal is to develop a New Keynesian model with banks to study these interactions from a normative perspective.
- The literature has recently proposed models that address this issue, notably Angeloni and Faia (2011), Christensen, Meh and Moran (2011).
- We depart from this literature in two main ways:
 - by computing the jointly locally Ramsey-optimal policies,
 - by linking the amount of risk to the type of credit.

Constrained	optimal vs.	locally Ran	nsey-optimal po	licies
00000	000000	000000	000	
Introduction	Model	Implications		Conclusion

• The literature gets jointly constrained optimal policies:

- the deviations of the policy instruments from their steady-state values are optimized within some small parametric families of simple rules,
- the steady-state value of capital requirements is not optimal.
- We get jointly locally Ramsey-optimal policies.

Constrained	optimal vs.	locally Rar	nsev-optimal po	olicies
00000	000000	000000	000	
Introduction	Model			Conclusion

• The literature gets jointly **constrained optimal** policies:

- the deviations of the policy instruments from their steady-state values are optimized within some small parametric families of simple rules,
- the steady-state value of capital requirements is not optimal.
- We get jointly **locally Ramsey-optimal** policies.

Constrained	optimal vs.	locally Rar	nsev-optimal po	olicies
00000	000000	000000	000	
Introduction	Model			Conclusion

- The literature gets jointly constrained optimal policies:
 - the deviations of the policy instruments from their steady-state values are optimized within some small parametric families of simple rules,
 - the steady-state value of capital requirements is not optimal.

• We get jointly locally Ramsey-optimal policies.

Constrained	ontimal vs	locally Ran	nsev-ontimal n	olicies
00000	000000	000000	000	0
Introduction	Model			Conclusion

- The literature gets jointly constrained optimal policies:
 - the deviations of the policy instruments from their steady-state values are optimized within some small parametric families of simple rules,
 - the steady-state value of capital requirements is not optimal.
- We get jointly locally Ramsey-optimal policies.

Volume vs	type of cre	dit		
000000	000000	000000	000	0
Introduction	Model	Implications	Extensions	Conclusion

• In the literature, the amount of risk is linked to the volume of credit:

- through the bank leverage ratio in Angeloni and Faia (20
- through a systemic-risk externality in Christensen, Meh and Moran (2011).
- Therefore, MP is effective in ensuring financial stability.
- In our model, the amount of risk is linked to the **type of credit**: as in Van den Heuvel (2008), banks have an incentive to make socially undesirable *risky* loans, rather than *safe* loans, because of their limited liability.
- The two policies may not affect the same margins:
 - MP affects the volume but not necessarily the type of credit,
 - PP affects both the volume and the type of credit.
- Therefore, MP may be **ineffective** in ensuring financial stability.

Volume vs.	type of cre	dit	
000000			
Introduction	Model	Implications	Conclusion

• In the literature, the amount of risk is linked to the volume of credit:

- through the bank leverage ratio in Angeloni and Faia (2011),
- through a systemic-risk externality in Christensen, Meh and Moran (2011).
- Therefore, MP is effective in ensuring financial stability.
- In our model, the amount of risk is linked to the **type of credit**: as in Van den Heuvel (2008), banks have an incentive to make socially undesirable *risky* loans, rather than *safe* loans, because of their limited liability.
- The two policies may not affect the same margins:
 - MP affects the volume but not necessarily the type of credit,
 - PP affects both the volume and the type of credit.
- Therefore, MP may be **ineffective** in ensuring financial stability.

Introduction	Model	Implications		Conclusion
000000	000000	000000	000	
Volume vs.	type of cred	lit		

• In the literature, the amount of risk is linked to the volume of credit:

- through the bank leverage ratio in Angeloni and Faia (2011),
- through a systemic-risk externality in Christensen, Meh and Moran (2011).
- Therefore, MP is **effective** in ensuring financial stability.
- In our model, the amount of risk is linked to the **type of credit**: as in Van den Heuvel (2008), banks have an incentive to make socially undesirable *risky* loans, rather than *safe* loans, because of their limited liability.
- The two policies may not affect the same margins:
 - MP affects the volume but not necessarily the type of credit,
 - PP affects both the volume and the type of credit.
- Therefore, MP may be **ineffective** in ensuring financial stability.

Introduction	Model	Implications		Conclusion
000000	000000	000000	000	
Volume vs.	type of cre	dit		

- In the literature, the amount of risk is linked to the volume of credit:
 - through the bank leverage ratio in Angeloni and Faia (2011),
 - through a systemic-risk externality in Christensen, Meh and Moran (2011).
- Therefore, MP is effective in ensuring financial stability.
- In our model, the amount of risk is linked to the **type of credit**: as in Van den Heuvel (2008), banks have an incentive to make socially undesirable *risky* loans, rather than *safe* loans, because of their limited liability.
- The two policies may not affect the same margins:
 - MP affects the volume but not necessarily the type of credit,
 - PP affects both the volume and the type of credit.
- Therefore, MP may be **ineffective** in ensuring financial stability.

Introduction	Model	Implications		Conclusion
000000	000000	000000	000	
Volume vs.	type of cre	dit		

- In the literature, the amount of risk is linked to the volume of credit:
 - through the bank leverage ratio in Angeloni and Faia (2011),
 - through a systemic-risk externality in Christensen, Meh and Moran (2011).
- Therefore, MP is effective in ensuring financial stability.
- In our model, the amount of risk is linked to the **type of credit**: as in Van den Heuvel (2008), banks have an incentive to make socially undesirable *risky* loans, rather than *safe* loans, because of their limited liability.
- The two policies may not affect the same margins:
 - MP affects the volume but not necessarily the type of credit,
 - PP affects both the volume and the type of credit.
- Therefore, MP may be **ineffective** in ensuring financial stability.

Introduction	Model	Implications		Conclusion
000000	000000	000000	000	
Volume vs.	type of cre	dit		

- In the literature, the amount of risk is linked to the volume of credit:
 - through the bank leverage ratio in Angeloni and Faia (2011),
 - through a systemic-risk externality in Christensen, Meh and Moran (2011).
- Therefore, MP is effective in ensuring financial stability.
- In our model, the amount of risk is linked to the **type of credit**: as in Van den Heuvel (2008), banks have an incentive to make socially undesirable *risky* loans, rather than *safe* loans, because of their limited liability.
- The two policies may not affect the same margins:
 - MP affects the volume but not necessarily the type of credit,
 - PP affects both the volume and the type of credit.
- Therefore, MP may be **ineffective** in ensuring financial stability.

Introduction	Model	Implications		Conclusion
000000	000000	000000	000	
Volume vs.	type of crea	dit		

- In the literature, the amount of risk is linked to the volume of credit:
 - through the bank leverage ratio in Angeloni and Faia (2011),
 - through a systemic-risk externality in Christensen, Meh and Moran (2011).
- Therefore, MP is effective in ensuring financial stability.
- In our model, the amount of risk is linked to the **type of credit**: as in Van den Heuvel (2008), banks have an incentive to make socially undesirable *risky* loans, rather than *safe* loans, because of their limited liability.
- The two policies may not affect the same margins:
 - MP affects the volume but not necessarily the type of credit,
 - PP affects both the volume and the type of credit.
- Therefore, MP may be **ineffective** in ensuring financial stability.

Introduction	Model	Implications		Conclusion
000000	000000	000000	000	
Volume vs.	type of cre	dit		

- In the literature, the amount of risk is linked to the volume of credit:
 - through the bank leverage ratio in Angeloni and Faia (2011),
 - through a systemic-risk externality in Christensen, Meh and Moran (2011).
- Therefore, MP is effective in ensuring financial stability.
- In our model, the amount of risk is linked to the **type of credit**: as in Van den Heuvel (2008), banks have an incentive to make socially undesirable *risky* loans, rather than *safe* loans, because of their limited liability.
- The two policies may not affect the same margins:
 - MP affects the volume but not necessarily the type of credit,
 - PP affects both the volume and the type of credit.
- Therefore, MP may be **ineffective** in ensuring financial stability.

Introduction	Model	Implications		Conclusion
000000	000000	000000	000	
Volume vs.	type of crea	dit		

- In the literature, the amount of risk is linked to the volume of credit:
 - through the bank leverage ratio in Angeloni and Faia (2011),
 - through a systemic-risk externality in Christensen, Meh and Moran (2011).
- Therefore, MP is effective in ensuring financial stability.
- In our model, the amount of risk is linked to the **type of credit**: as in Van den Heuvel (2008), banks have an incentive to make socially undesirable *risky* loans, rather than *safe* loans, because of their limited liability.
- The two policies may not affect the same margins:
 - MP affects the volume but not necessarily the type of credit,
 - PP affects both the volume and the type of credit.
- Therefore, MP may be **ineffective** in ensuring financial stability.

Introduction	Model	Implications	Conclusion
000000			
Main results			

- We first develop a **benchmark model**, in which MP *cannot affect* the type of credit.
- This model implies a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - in response to these shocks, MP should move opposite to PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).
- We then consider two **extensions** to this model: one in which MP *can affect* the type of credit, the other in which it *cannot*.
- These extensions can account for situations in which MP and PP should both move **counter-cyclically**.

Introduction	Model	Implications		Conclusion
000000	000000	000000	000	
Main results				

- We first develop a **benchmark model**, in which MP *cannot affect* the type of credit.
- This model implies a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - in response to these shocks, MP should move **opposite** to PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).
- We then consider two **extensions** to this model: one in which MP *can affect* the type of credit, the other in which it *cannot*.
- These extensions can account for situations in which MP and PP should both move **counter-cyclically**.

Introduction	Model	Implications	Conclusion
000000			
Main results			

- We first develop a **benchmark model**, in which MP *cannot affect* the type of credit.
- This model implies a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - in response to these shocks, MP should move **opposite** to PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).
- We then consider two **extensions** to this model: one in which MP *can affect* the type of credit, the other in which it *cannot*.
- These extensions can account for situations in which MP and PP should both move **counter-cyclically**.

Introduction	Model	Implications	Conclusion
000000			
Main results			

- We first develop a **benchmark model**, in which MP *cannot affect* the type of credit.
- This model implies a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - in response to these shocks, MP should move **opposite** to PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).
- We then consider two **extensions** to this model: one in which MP *can affect* the type of credit, the other in which it *cannot*.
- These extensions can account for situations in which MP and PP should both move **counter-cyclically**.

Introduction	Model	Implications	Conclusion
000000			
Main results			

- We first develop a **benchmark model**, in which MP *cannot affect* the type of credit.
- This model implies a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - in response to these shocks, MP should move **opposite** to PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).
- We then consider two **extensions** to this model: one in which MP *can affect* the type of credit, the other in which it *cannot*.
- These extensions can account for situations in which MP and PP should both move **counter-cyclically**.

Introduction	Model	Implications	Conclusion
000000			
Main results			

- We first develop a **benchmark model**, in which MP *cannot affect* the type of credit.
- This model implies a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - in response to these shocks, MP should move **opposite** to PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).
- We then consider two **extensions** to this model: one in which MP *can affect* the type of credit, the other in which it *cannot*.
- These extensions can account for situations in which MP and PP should both move **counter-cyclically**.

Introduction	Model	Implications		Conclusion
00000	000000	000000	000	
Outline of the	presentation	า		

2 Model

Implications

Extensions

Introduction	Model			Conclusion
000000	000000	000000	000	
Outline of the	presentation	า		

Ø Model

Implications

Extensions

Introduction	Model	Implications		Conclusion
00000	000000	000000	000	
Outline of the	presentation	า		

2 Model

Implications

Extensions

Introduction	Model	Implications		Conclusion
00000	000000	000000	000	
Outline of the	presentation	า		

2 Model

Implications

Extensions
Introduction	Model	Implications		Conclusion
000000	000000	000000	000	
Outline of the	presentation	า		

Introduction

2 Model

Implications

Extensions

Onclusion

Introduction	Model	Implications	Extensions	Conclusion
000000	●○○○○○	000000	000	O
Extending the	New Keynes	sian model		

• Start from the basic New Keynesian model with capital, whose agents are

- intermediate goods producers,
- final goods producers,
- households,
- a monetary authority.

• There are two inefficiencies on the intermediate goods market:

- monopolistic competition,
- price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers),
 - a prudential authority (which imposes capital requirements on banks).

	Model	Implications		Conclusion
000000	00000	000000	000	
Extending the	New Keynes	sian model		

$\bullet\,$ Start from the basic New Keynesian model with capital, whose agents are

- intermediate goods producers,
- final goods producers,
- households,
- a monetary authority.

• There are two inefficiencies on the intermediate goods market:

- monopolistic competition,
- price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers),
 - a prudential authority (which imposes capital requirements on banks).

	Model	Implications		Conclusion
000000	00000	000000	000	
Extending the	New Keynes	sian model		

• Start from the basic New Keynesian model with capital, whose agents are

- intermediate goods producers,
- final goods producers,
- households,
- a monetary authority.

• There are two inefficiencies on the intermediate goods market:

- monopolistic competition,
- price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers),
 - a prudential authority (which imposes capital requirements on banks).

	Model	Implications		Conclusion
000000	00000	000000	000	
Extending the	New Keynes	sian model		

- Start from the basic New Keynesian model with capital, whose agents are
 - intermediate goods producers,
 - final goods producers,
 - households,
 - a monetary authority.

• There are two inefficiencies on the intermediate goods market:

- monopolistic competition,
- price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers),
 - a prudential authority (which imposes capital requirements on banks).

	Model	Implications		Conclusion
000000	00000	000000	000	
Extending the	New Keynes	sian model		

- Start from the basic New Keynesian model with capital, whose agents are
 - intermediate goods producers,
 - final goods producers,
 - households,
 - a monetary authority.

• There are two inefficiencies on the intermediate goods market:

- monopolistic competition,
- price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers),
 - a prudential authority (which imposes capital requirements on banks).

Extending the	Now Koupor	sian model		
000000	00000	000000	000	
	Model			Conclusion

- Start from the basic New Keynesian model with capital, whose agents are
 - intermediate goods producers,
 - final goods producers,
 - households,

ъ

a monetary authority.

• There are two inefficiencies on the intermediate goods market:

- monopolistic competition,
- price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers)
 - a prudential authority (which imposes capital requirements on banks).

Extending the	Now Koupor	sian model		
000000	00000	000000	000	
	Model			Conclusion

- Start from the basic New Keynesian model with capital, whose agents are
 - intermediate goods producers,
 - final goods producers,
 - households,
 - a monetary authority.
- There are two inefficiencies on the intermediate goods market:
 - monopolistic competition,
 - price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers)
 - a prudential authority (which imposes capital requirements on banks).

Extending the	Now Koupor	sian model		
000000	00000	000000	000	
	Model			Conclusion

- Start from the basic New Keynesian model with capital, whose agents are
 - intermediate goods producers,
 - final goods producers,
 - households,
 - a monetary authority.
- There are two inefficiencies on the intermediate goods market:
 - monopolistic competition,
 - price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers)
 - a prudential authority (which imposes capital requirements on banks).

Extending the	Now Koupor	sian model		
000000	00000	000000	000	
	Model			Conclusion

- Start from the basic New Keynesian model with capital, whose agents are
 - intermediate goods producers,
 - final goods producers,
 - households,
 - a monetary authority.
- There are two inefficiencies on the intermediate goods market:
 - monopolistic competition,
 - price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers)
 - a prudential authority (which imposes capital requirements on banks).

	Model	Implications	Conclusion
	00000		
Extending the	New Keynes	sian model	

- Start from the basic New Keynesian model with capital, whose agents are
 - intermediate goods producers,
 - final goods producers,
 - households,
 - a monetary authority.
- There are two inefficiencies on the intermediate goods market:
 - monopolistic competition,
 - price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers)
 - a prudential authority (which imposes capital requirements on banks).

	Model	Implications	Conclusion
	00000		
Extending the	New Keynes	sian model	

- Start from the basic New Keynesian model with capital, whose agents are
 - intermediate goods producers,
 - final goods producers,
 - households,
 - a monetary authority.
- There are two inefficiencies on the intermediate goods market:
 - monopolistic competition,
 - price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers),
 - a prudential authority (which imposes capital requirements on banks).

Extending the	Now Koupor	sian model		
000000	00000	000000	000	
	Model			Conclusion

- Start from the basic New Keynesian model with capital, whose agents are
 - intermediate goods producers,
 - final goods producers,
 - households,
 - a monetary authority.
- There are two inefficiencies on the intermediate goods market:
 - monopolistic competition,
 - price rigidity à la Calvo (1983),

- Introduce, in turn, three additional types of agents:
 - capital goods producers (who have access to a risky technology),
 - banks (which finance capital goods producers),
 - a prudential authority (which imposes capital requirements on banks).

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.
- They are perfectly competitive and owned by households.
- They have access to a **safe** technology (S): $k_{t+1} = x_t...$
- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t
 - ullet $heta_t=1$ with probability $1-\phi_t$
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

Introduction	Model	Implications	Extensions	Conclusion
000000	○●○○○○	000000	000	O
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.
- They are perfectly competitive and owned by households.
- They have access to a **safe** technology (S): $k_{t+1} = x_t...$
- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t
 - ullet $heta_t=1$ with probability $1-\phi_t$
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

	Model			Conclusion
000000	00000	000000	000	0
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.

• They are perfectly competitive and owned by households.

- They have access to a **safe** technology (S): $k_{t+1} = x_t...$
- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t
 - $heta_t = 1$ with probability $1-\phi_t$
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.

• They are perfectly competitive and owned by households.

• They have access to a **safe** technology (S): $k_{t+1} = x_t...$

• ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where

- $heta_t = 0$ with probability ϕ_t
- ullet $\,\, heta_t=1$ with probability $1-\phi_t$
- all realizations of η_t^R are positive,
- $corr(\theta_t, other shocks) = 0.$

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.

• They are perfectly competitive and owned by households.

• They have access to a **safe** technology (S): $k_{t+1} = x_t...$

- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t
 - ullet $\,\, heta_t=1$ with probability $1-\phi_t$
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.
- They are perfectly competitive and owned by households.
- They have access to a **safe** technology (S): $k_{t+1} = x_t...$
- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t
 - ullet $heta_t=1$ with probability $1-\phi_t$
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.
- They are perfectly competitive and owned by households.
- They have access to a safe technology (S): $k_{t+1} = x_t...$
- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t ,
 - $\theta_t = 1$ with probability $1 \phi_t$,
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.
- They are perfectly competitive and owned by households.
- They have access to a safe technology (S): $k_{t+1} = x_t...$
- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t ,
 - $\theta_t = 1$ with probability $1 \phi_t$,
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.
- They are perfectly competitive and owned by households.
- They have access to a safe technology (S): $k_{t+1} = x_t...$
- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t ,
 - $heta_t = 1$ with probability $1 \phi_t$,
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.
- They are perfectly competitive and owned by households.
- They have access to a safe technology (S): $k_{t+1} = x_t...$
- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t ,
 - $heta_t = 1$ with probability $1 \phi_t$,
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

- buy unfurbished capital x_t at the end of period t,
- furbish it between period t and period t+1,
- sell this furbished capital k_{t+1} at the start of period t+1.
- They are perfectly competitive and owned by households.
- They have access to a safe technology (S): $k_{t+1} = x_t...$
- ...and to a **risky** technology (R): $k_{t+1} = \theta_t \exp(\eta_t^R) x_t$, where
 - $\theta_t = 0$ with probability ϕ_t ,
 - $heta_t = 1$ with probability $1 \phi_t$,
 - all realizations of η_t^R are positive,
 - $corr(\theta_t, other shocks) = 0.$

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

-]) all exogenous shocks are realized, except $heta_t$,
- all agents observe these realizations and make their decisions,
- $\Im \ \theta_t$ is realized.

• R is **inefficient** in the sense that, for all realizations of ϕ_t , η_t^R and Ψ_t ,

$$(1-\phi_t)\exp\left(\eta_t^R\right) \leq 1-\Psi_t,$$

where Ψ_t is the marginal resource cost of monitoring capital goods producers.

• However, because of their **limited liability**, capital goods producers have an incentive to use R ("heads I win, tails you lose").

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I	l		

- **(**) all exogenous shocks are realized, except θ_t ,
 - all agents observe these realizations and make their decisions,
 - θ_t is realized.

• R is **inefficient** in the sense that, for all realizations of ϕ_t , η_t^R and Ψ_t ,

$$(1-\phi_t)\exp\left(\eta_t^R\right) \leq 1-\Psi_t,$$

where Ψ_t is the marginal resource cost of monitoring capital goods producers.

• However, because of their **limited liability**, capital goods producers have an incentive to use R ("heads I win, tails you lose").

	Model			Conclusion
000000	000000	000000	000	
Capital goods	producers II			

- **(**) all exogenous shocks are realized, except θ_t ,
- 2 all agents observe these realizations and make their decisions,

 θ_t is realized.

• R is **inefficient** in the sense that, for all realizations of ϕ_t , η_t^R and Ψ_t ,

$$(1-\phi_t)\exp\left(\eta_t^R\right) \leq 1-\Psi_t,$$

where Ψ_t is the marginal resource cost of monitoring capital goods producers.

• However, because of their **limited liability**, capital goods producers have an incentive to use R ("heads I win, tails you lose").

	Model			Conclusion
000000	00000	000000	000	
Capital goods	producers I			

- () all exogenous shocks are realized, except θ_t ,
- 2 all agents observe these realizations and make their decisions,
- \bullet θ_t is realized.

• R is **inefficient** in the sense that, for all realizations of ϕ_t , η_t^R and Ψ_t ,

$$(1-\phi_t)\exp\left(\eta_t^R\right) \leq 1-\Psi_t,$$

where Ψ_t is the marginal resource cost of monitoring capital goods producers.

• However, because of their **limited liability**, capital goods producers have an incentive to use R ("heads I win, tails you lose").

- At each period *t*, the timing of events is the following:
 - () all exogenous shocks are realized, except θ_t ,
 - 2 all agents observe these realizations and make their decisions,
 - \bullet θ_t is realized.
- R is **inefficient** in the sense that, for all realizations of ϕ_t , η_t^R and Ψ_t ,

$$(1-\phi_t)\exp\left(\eta_t^R
ight) \leq 1-\Psi_t$$
,

where Ψ_t is the marginal resource cost of monitoring capital goods producers.

• However, because of their **limited liability**, capital goods producers have an incentive to use R ("heads I win, tails you lose").

- At each period *t*, the timing of events is the following:
 - () all exogenous shocks are realized, except θ_t ,
 - 2 all agents observe these realizations and make their decisions,
 - \bullet θ_t is realized.
- R is **inefficient** in the sense that, for all realizations of ϕ_t , η_t^R and Ψ_t ,

$$(1-\phi_t)\exp\left(\eta_t^R
ight) \leq 1-\Psi_t$$
,

where Ψ_t is the marginal resource cost of monitoring capital goods producers.

• However, because of their **limited liability**, capital goods producers have an incentive to use R ("heads I win, tails you lose").

	Model			Conclusion
000000	000000	000000	000	
Capital goods	producers II	l -		

- Capital goods producers need to get funds to buy unfurbished capital.
- The only agents that can monitor them are banks.
- Therefore, they get funds from banks to buy unfurbished capital.
- We show in the paper that the optimal financial contracts are loans.
- That is, the capital goods producers choosing technology *i* ∈ {*S*, *R*} borrow the funds they need at the nominal interest rate *Rⁱ_t*, and those choosing *R* completely default on their loans when *R* fails.
- We show in the paper that $R_t^S < R_t^R$ and that banks only monitor the capital goods producers who borrow at rate R_t^S , in order to check that they use S.

	Model	Implications	Conclusion
	000000		
Capital goods	producers I	II.	

- Capital goods producers need to get funds to buy unfurbished capital.
- The only agents that can monitor them are banks.
- Therefore, they get funds from banks to buy unfurbished capital.
- We show in the paper that the optimal financial contracts are loans.
- That is, the capital goods producers choosing technology *i* ∈ {*S*, *R*} borrow the funds they need at the nominal interest rate *Rⁱ_t*, and those choosing *R* completely default on their loans when *R* fails.
- We show in the paper that $R_t^S < R_t^R$ and that banks only monitor the capital goods producers who borrow at rate R_t^S , in order to check that they use S.

	Model	Implications	Conclusion
	000000		
Capital goods	producers II	I	

- Capital goods producers need to get funds to buy unfurbished capital.
- The only agents that can monitor them are banks.
- Therefore, they get funds from banks to buy unfurbished capital.
- We show in the paper that the optimal financial contracts are loans.
- That is, the capital goods producers choosing technology *i* ∈ {*S*, *R*} borrow the funds they need at the nominal interest rate *Rⁱ_t*, and those choosing *R* completely default on their loans when *R* fails.
- We show in the paper that $R_t^S < R_t^R$ and that banks only monitor the capital goods producers who borrow at rate R_t^S , in order to check that they use S.

	Model	Implications		Conclusion
000000	000000	000000	000	
Capital goods	producers I	II		

- Capital goods producers need to get funds to buy unfurbished capital.
- The only agents that can monitor them are banks.
- Therefore, they get funds from banks to buy unfurbished capital.
- We show in the paper that the optimal financial contracts are loans.
- That is, the capital goods producers choosing technology *i* ∈ {*S*, *R*} borrow the funds they need at the nominal interest rate *Rⁱ_t*, and those choosing *R* completely default on their loans when *R* fails.
- We show in the paper that $R_t^S < R_t^R$ and that banks only monitor the capital goods producers who borrow at rate R_t^S , in order to check that they use S.

Introduction	Model	Implications	Extensions	Conclusion
000000	○○○●○○	000000	000	O
Capital goods	producers I			

- Capital goods producers need to get funds to buy unfurbished capital.
- The only agents that can monitor them are banks.
- Therefore, they get funds from banks to buy unfurbished capital.
- We show in the paper that the optimal financial contracts are loans.
- That is, the capital goods producers choosing technology *i* ∈ {*S*, *R*} borrow the funds they need at the nominal interest rate *R*^{*i*}_t, and those choosing *R* completely default on their loans when *R* fails.
- We show in the paper that $R_t^S < R_t^R$ and that banks only monitor the capital goods producers who borrow at rate R_t^S , in order to check that they use S.

	Model	Implications		Conclusion
000000	000000	000000	000	
Capital goods	producers I	II		

- Capital goods producers need to get funds to buy unfurbished capital.
- The only agents that can monitor them are banks.
- Therefore, they get funds from banks to buy unfurbished capital.
- We show in the paper that the optimal financial contracts are loans.
- That is, the capital goods producers choosing technology *i* ∈ {*S*, *R*} borrow the funds they need at the nominal interest rate *R*^{*i*}_t, and those choosing *R* completely default on their loans when *R* fails.
- We show in the paper that $R_t^S < R_t^R$ and that banks only monitor the capital goods producers who borrow at rate R_t^S , in order to check that they use S.
| | Model | | | Conclusion |
|--------|--------|--------|-----|------------|
| 000000 | 000000 | 000000 | 000 | |
| Banks | | | | |

• Banks are perfectly competitive and owned by households.

- They pay a **tax** (τ) on their profits.
- They finance safe loans I_t^S and risky loans I_t^R by raising equity e_t and issuing deposits d_t , so that their balance-sheet identity is

$$l_t^S + l_t^R = e_t + d_t.$$

- Because of **deposit insurance** and their own **limited liability**, they have an incentive to make risky loans (again, "heads I win, tails you lose").
- They can hide risky loans in their portfolio from the prudential authority up to a fraction γ_t of their safe loans.

Introduction	Model	Implications	Extensions	Conclusion
000000	○○○○●○	000000	000	O
Banks				

- Banks are perfectly competitive and owned by households.
- They pay a $\mathbf{tax}(\tau)$ on their profits.

• They finance safe loans l_t^S and risky loans l_t^R by raising equity e_t and issuing deposits d_t , so that their balance-sheet identity is

$$I_t^S + I_t^R = e_t + d_t.$$

- Because of **deposit insurance** and their own **limited liability**, they have an incentive to make risky loans (again, "heads I win, tails you lose").
- They can hide risky loans in their portfolio from the prudential authority up to a fraction γ_t of their safe loans.

Introduction	Model	Implications	Extensions	Conclusion
000000	○○○○●○	000000	000	O
Banks				

- Banks are perfectly competitive and owned by households.
- They pay a **tax** (τ) on their profits.
- They finance safe loans I_t^S and risky loans I_t^R by raising equity e_t and issuing deposits d_t , so that their balance-sheet identity is

$$I_t^S + I_t^R = e_t + d_t.$$

- Because of **deposit insurance** and their own **limited liability**, they have an incentive to make risky loans (again, "heads I win, tails you lose").
- They can hide risky loans in their portfolio from the prudential authority up to a fraction γ_t of their safe loans.

Introduction	Model	Implications	Extensions	Conclusion
000000	○○○○●○		000	O
Banks				

- Banks are perfectly competitive and owned by households.
- They pay a **tax** (τ) on their profits.
- They finance safe loans I_t^S and risky loans I_t^R by raising equity e_t and issuing deposits d_t , so that their balance-sheet identity is

$$I_t^S + I_t^R = e_t + d_t.$$

- Because of **deposit insurance** and their own **limited liability**, they have an incentive to make risky loans (again, "heads I win, tails you lose").
- They can hide risky loans in their portfolio from the prudential authority up to a fraction γ_t of their safe loans.

Introduction	Model	Implications	Extensions	Conclusion
000000	○○○○●○		000	O
Banks				

- Banks are perfectly competitive and owned by households.
- They pay a **tax** (τ) on their profits.
- They finance safe loans I_t^S and risky loans I_t^R by raising equity e_t and issuing deposits d_t , so that their balance-sheet identity is

$$I_t^S + I_t^R = e_t + d_t.$$

- Because of **deposit insurance** and their own **limited liability**, they have an incentive to make risky loans (again, "heads I win, tails you lose").
- They can hide risky loans in their portfolio from the prudential authority up to a fraction γ_t of their safe loans.

	Model	Implications		Conclusion
000000	00000	000000	000	
Prudential au	thority			

• The prudential authority forbids banks to choose $l_t^R > \gamma_t l_t^S$.

- This is because risky loans are socially undesirable, as
 - R is inefficient on average over θ_t ,
 - θ_t is independent of the other shocks,
 - households are risk-averse.
- The prudential authority also imposes a capital requirement in the form of a minimum equity-over-loans ratio:

$$e_t \geq \kappa_t \left(l_t^S + l_t^R \right).$$

	Model	Implications		Conclusion
000000	000000	000000	000	
Prudential	authority			

• The prudential authority forbids banks to choose $l_t^R > \gamma_t l_t^S$.

• This is because risky loans are socially undesirable, as

- R is inefficient on average over θ_t ,
- θ_t is independent of the other shocks,
- households are risk-averse.
- The prudential authority also imposes a capital requirement in the form of a minimum equity-over-loans ratio:

$$e_t \geq \kappa_t \left(l_t^S + l_t^R \right).$$

	Model	Implications	Conclusion
	00000		
Prudential	authority		

• The prudential authority forbids banks to choose $l_t^R > \gamma_t l_t^S$.

- This is because risky loans are socially undesirable, as
 - R is inefficient on average over θ_t ,
 - θ_t is independent of the other shocks,
 - households are risk-averse.
- The prudential authority also imposes a capital requirement in the form of a minimum equity-over-loans ratio:

$$e_t \geq \kappa_t \left(l_t^S + l_t^R \right).$$

	Model	Implications		Conclusion
000000	000000	000000	000	
Prudential	authority			

- The prudential authority forbids banks to choose $l_t^R > \gamma_t l_t^S$.
- This is because risky loans are socially undesirable, as
 - R is inefficient on average over θ_t ,
 - θ_t is independent of the other shocks,
 - households are risk-averse.
- The prudential authority also imposes a capital requirement in the form of a minimum equity-over-loans ratio:

$$e_t \geq \kappa_t \left(l_t^S + l_t^R \right).$$

	Model	Implications	Conclusion
	00000		
Prudential	authority		

- The prudential authority forbids banks to choose $l_t^R > \gamma_t l_t^S$.
- This is because risky loans are socially undesirable, as
 - R is inefficient on average over θ_t ,
 - θ_t is independent of the other shocks,
 - households are risk-averse.
- The prudential authority also imposes a capital requirement in the form of a minimum equity-over-loans ratio:

$$e_t \geq \kappa_t \left(l_t^S + l_t^R \right).$$

	Model	Implications		Conclusion
000000	000000	000000	000	
Prudentia	authority			

- The prudential authority forbids banks to choose $l_t^R > \gamma_t l_t^S$.
- This is because risky loans are socially undesirable, as
 - R is inefficient on average over θ_t ,
 - θ_t is independent of the other shocks,
 - households are risk-averse.
- The prudential authority also imposes a capital requirement in the form of a minimum equity-over-loans ratio:

$$e_t \geq \kappa_t \left(I_t^S + I_t^R \right)$$

	Model	Implications		Conclusion
000000	000000	000000	000	
Prudential	authority			

- The prudential authority forbids banks to choose $l_t^R > \gamma_t l_t^S$.
- This is because risky loans are socially undesirable, as
 - R is inefficient on average over θ_t ,
 - θ_t is independent of the other shocks,
 - households are risk-averse.
- The prudential authority also imposes a capital requirement in the form of a minimum equity-over-loans ratio:

$$e_t \geq \kappa_t \left(l_t^S + l_t^R \right).$$

	Model	Implications		Conclusion
000000	000000	00000	000	
Two prelimina	ry results			

• **Proposition 1:** There are no equilibria with $0 < l_t^R < \gamma_t l_t^S$.

- This is because banks' limited liability make their expected excess return convex in the volume of their risky loans.
- **Proposition 2:** In equilibrium, the capital constraint is binding:

$$e_t = \kappa_t \left(l_t^S + l_t^R \right).$$

	Model	Implications		Conclusion
000000	000000	00000	000	
Two prelir	ninary results	5		

- **Proposition 1:** There are no equilibria with $0 < l_t^R < \gamma_t l_t^S$.
- This is because banks' limited liability make their expected excess return convex in the volume of their risky loans.
- **Proposition 2:** In equilibrium, the capital constraint is binding:

$$e_t = \kappa_t \left(l_t^S + l_t^R \right).$$

- **Proposition 1:** There are no equilibria with $0 < l_t^R < \gamma_t l_t^S$.
- This is because banks' limited liability make their expected excess return convex in the volume of their risky loans.
- **Proposition 2:** In equilibrium, the capital constraint is binding:

$$e_t = \kappa_t \left(l_t^S + l_t^R \right).$$

- **Proposition 1:** There are no equilibria with $0 < l_t^R < \gamma_t l_t^S$.
- This is because banks' limited liability make their expected excess return convex in the volume of their risky loans.
- **Proposition 2:** In equilibrium, the capital constraint is binding:

$$e_t = \kappa_t \left(l_t^S + l_t^R \right)$$
 .

	Model	Implications		Conclusion
000000	000000	00000	000	
Prudential po	licy			

- **Proposition 4:** A necessary and sufficient condition for existence of an equilibrium with $l_t^R = 0$ is $\kappa_t \ge \kappa_t^*$ (where κ_t^* is specified in the paper as an explicit function of only parameters and exogenous shocks).
- Starting from a situation in which all banks are at the safe corner, setting $\kappa_t \geq \kappa_t^*$ deters each bank from going to the risky corner by making it sufficiently internalize the social cost of risk.
- This threshold value κ_t^* is increasing in
 - the probability of success of the risky technology $1-\phi_t,$
 - the productivity of the risky technology conditionally on its success η^R_t ,

- **Proposition 4:** A necessary and sufficient condition for existence of an equilibrium with $l_t^R = 0$ is $\kappa_t \ge \kappa_t^*$ (where κ_t^* is specified in the paper as an explicit function of only parameters and exogenous shocks).
- Starting from a situation in which all banks are at the safe corner, setting $\kappa_t \geq \kappa_t^*$ deters each bank from going to the risky corner by making it sufficiently internalize the social cost of risk.
- This threshold value κ_t^* is increasing in
 - the probability of success of the risky technology $1-\phi_t$,
 - the productivity of the risky technology conditionally on its success η_t^R ,

- **Proposition 4:** A necessary and sufficient condition for existence of an equilibrium with $l_t^R = 0$ is $\kappa_t \ge \kappa_t^*$ (where κ_t^* is specified in the paper as an explicit function of only parameters and exogenous shocks).
- Starting from a situation in which all banks are at the safe corner, setting $\kappa_t \geq \kappa_t^*$ deters each bank from going to the risky corner by making it sufficiently internalize the social cost of risk.

• This threshold value κ_t^* is increasing in

- the probability of success of the risky technology $1-\phi_t$,
- the productivity of the risky technology conditionally on its success η_t^R ,

- **Proposition 4:** A necessary and sufficient condition for existence of an equilibrium with $l_t^R = 0$ is $\kappa_t \ge \kappa_t^*$ (where κ_t^* is specified in the paper as an explicit function of only parameters and exogenous shocks).
- Starting from a situation in which all banks are at the safe corner, setting $\kappa_t \geq \kappa_t^*$ deters each bank from going to the risky corner by making it sufficiently internalize the social cost of risk.
- This threshold value κ_t^* is increasing in
 - the probability of success of the risky technology $1-\phi_t$,
 - the productivity of the risky technology conditionally on its success η_t^R ,

- **Proposition 4:** A necessary and sufficient condition for existence of an equilibrium with $l_t^R = 0$ is $\kappa_t \ge \kappa_t^*$ (where κ_t^* is specified in the paper as an explicit function of only parameters and exogenous shocks).
- Starting from a situation in which all banks are at the safe corner, setting $\kappa_t \geq \kappa_t^*$ deters each bank from going to the risky corner by making it sufficiently internalize the social cost of risk.
- This threshold value κ_t^* is increasing in
 - the probability of success of the risky technology $1-\phi_t$,
 - the productivity of the risky technology conditionally on its success η_t^R ,

	Model	Implications		Conclusion
000000	000000	00000	000	
Monetary po	licy			

- The MP instrument is the risk-free deposit rate R_t^D .
- κ_t^* does not depend on R_t^D : MP is **ineffective** in ensuring financial stability.
- This is because, in our benchmark model with perfect competition and constant returns, R_t^D does not affect the spread between R_t^R and R_t^S , and hence does not affect banks' risk-taking incentives.
- Let $(R^{D*}_{\tau})_{\tau \geq 0}$ denote the MP that is Ramsey-optimal when PP is $(\kappa^*_{\tau})_{\tau \geq 0}$.

	Model	Implications		Conclusion
000000	000000	00000	000	
Monetary po	olicy			

- The MP instrument is the risk-free deposit rate R_t^D .
- κ_t^* does not depend on R_t^D : MP is **ineffective** in ensuring financial stability.
- This is because, in our benchmark model with perfect competition and constant returns, R_t^D does not affect the spread between R_t^R and R_t^S , and hence does not affect banks' risk-taking incentives.
- Let $(R^{D*}_{\tau})_{\tau \geq 0}$ denote the MP that is Ramsey-optimal when PP is $(\kappa^*_{\tau})_{\tau \geq 0}$.

	Model	Implications	Conclusion
		000000	
Monetary	policy		

- The MP instrument is the risk-free deposit rate R_t^D .
- κ_t^* does not depend on R_t^D : MP is **ineffective** in ensuring financial stability.
- This is because, in our benchmark model with perfect competition and constant returns, R_t^D does not affect the spread between R_t^R and R_t^S , and hence does not affect banks' risk-taking incentives.
- Let $(R^{D*}_{\tau})_{\tau \geq 0}$ denote the MP that is Ramsey-optimal when PP is $(\kappa^*_{\tau})_{\tau \geq 0}$.

16 / 23

	Model	Implications		Conclusion
000000	000000	00000	000	
Monetary po	licy			

- The MP instrument is the risk-free deposit rate R_t^D .
- κ_t^* does not depend on R_t^D : MP is **ineffective** in ensuring financial stability.
- This is because, in our benchmark model with perfect competition and constant returns, R_t^D does not affect the spread between R_t^R and R_t^S , and hence does not affect banks' risk-taking incentives.
- Let $(R^{D*}_{\tau})_{\tau \geq 0}$ denote the MP that is Ramsey-optimal when PP is $(\kappa^*_{\tau})_{\tau \geq 0}$.

- **Proposition 5:** If the right derivative of welfare with respect to κ_t at $(R^D_{\tau}, \kappa_{\tau})_{\tau \ge 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \ge 0}$ is strictly negative for all $t \ge 0$, then the policy $(R^D_{\tau}, \kappa_{\tau})_{\tau \ge 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \ge 0}$ is locally Ramsey-optimal.
- Setting κ_t just below κ_t^* is not optimal, because it triggers a discontinuous increase in the amount of (inefficient) risk taken by banks.
- Setting κ_t just above κ_t^* is not optimal, because it has a negative first-order welfare effect that cannot be offset by any change in R_t^D around its optimal steady-state value R^{D*} (as this change would have a zero first-order effect).
- We check numerically, using Levin and López-Salido's (2004) "Get Ramsey" program, that the right derivative of welfare with respect to κ_t at $(R_{\tau}^{D*}, \kappa_{\tau}^*)_{\tau \geq 0}$ is strictly negative.
- This is because increasing κ_t from κ_t^* decreases the capital stock, which is already inefficiently low due to the monopoly and tax distortions.

- **Proposition 5:** If the right derivative of welfare with respect to κ_t at $(R^D_{\tau}, \kappa_{\tau})_{\tau \geq 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \geq 0}$ is strictly negative for all $t \geq 0$, then the policy $(R^D_{\tau}, \kappa_{\tau})_{\tau \geq 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \geq 0}$ is locally Ramsey-optimal.
- Setting κ_t just below κ_t^* is not optimal, because it triggers a discontinuous increase in the amount of (inefficient) risk taken by banks.
- Setting κ_t just above κ_t^* is not optimal, because it has a negative first-order welfare effect that cannot be offset by any change in R_t^D around its optimal steady-state value R^{D*} (as this change would have a zero first-order effect).
- We check numerically, using Levin and López-Salido's (2004) "Get Ramsey" program, that the right derivative of welfare with respect to κ_t at $(R_{\tau}^{D*}, \kappa_{\tau}^*)_{\tau \geq 0}$ is strictly negative.
- This is because increasing κ_t from κ_t^* decreases the capital stock, which is already inefficiently low due to the monopoly and tax distortions.

- **Proposition 5:** If the right derivative of welfare with respect to κ_t at $(R^D_{\tau}, \kappa_{\tau})_{\tau \geq 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \geq 0}$ is strictly negative for all $t \geq 0$, then the policy $(R^D_{\tau}, \kappa_{\tau})_{\tau \geq 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \geq 0}$ is locally Ramsey-optimal.
- Setting κ_t just below κ_t^* is not optimal, because it triggers a discontinuous increase in the amount of (inefficient) risk taken by banks.
- Setting κ_t just above κ_t^* is not optimal, because it has a negative first-order welfare effect that cannot be offset by any change in R_t^D around its optimal steady-state value R^{D*} (as this change would have a zero first-order effect).
- We check numerically, using Levin and López-Salido's (2004) "Get Ramsey" program, that the right derivative of welfare with respect to κ_t at $(R_{\tau}^{D*}, \kappa_{\tau}^*)_{\tau \geq 0}$ is strictly negative.
- This is because increasing κ_t from κ_t^* decreases the capital stock, which is already inefficiently low due to the monopoly and tax distortions.

- **Proposition 5:** If the right derivative of welfare with respect to κ_t at $(R^D_{\tau}, \kappa_{\tau})_{\tau \geq 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \geq 0}$ is strictly negative for all $t \geq 0$, then the policy $(R^D_{\tau}, \kappa_{\tau})_{\tau \geq 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \geq 0}$ is locally Ramsey-optimal.
- Setting κ_t just below κ_t^* is not optimal, because it triggers a discontinuous increase in the amount of (inefficient) risk taken by banks.
- Setting κ_t just above κ_t^* is not optimal, because it has a negative first-order welfare effect that cannot be offset by any change in R_t^D around its optimal steady-state value R^{D*} (as this change would have a zero first-order effect).
- We check numerically, using Levin and López-Salido's (2004) "Get Ramsey" program, that the right derivative of welfare with respect to κ_t at $(R_{\tau}^{D*}, \kappa_{\tau}^*)_{\tau \geq 0}$ is strictly negative.
- This is because increasing κ_t from κ_t^* decreases the capital stock, which is already inefficiently low due to the monopoly and tax distortions.

- **Proposition 5:** If the right derivative of welfare with respect to κ_t at $(R^D_{\tau}, \kappa_{\tau})_{\tau \geq 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \geq 0}$ is strictly negative for all $t \geq 0$, then the policy $(R^D_{\tau}, \kappa_{\tau})_{\tau \geq 0} = (R^{D*}_{\tau}, \kappa^*_{\tau})_{\tau \geq 0}$ is locally Ramsey-optimal.
- Setting κ_t just below κ_t^* is not optimal, because it triggers a discontinuous increase in the amount of (inefficient) risk taken by banks.
- Setting κ_t just above κ_t^* is not optimal, because it has a negative first-order welfare effect that cannot be offset by any change in R_t^D around its optimal steady-state value R^{D*} (as this change would have a zero first-order effect).
- We check numerically, using Levin and López-Salido's (2004) "Get Ramsey" program, that the right derivative of welfare with respect to κ_t at $(R_{\tau}^{D*}, \kappa_{\tau}^*)_{\tau \geq 0}$ is strictly negative.
- This is because increasing κ_t from κ_t^* decreases the capital stock, which is already inefficiently low due to the monopoly and tax distortions.

	Model	Implications	Conclusion
		000000	
Numerical sin	nulations		

• We calibrate the model and consider two alternative PPs:

- the optimal PP $\kappa_t = \kappa_t^*$, with a steady-state value $\kappa^* = 0.08$
- the passive PP $\kappa_t = 0.10$, which also ensures $l_t^R = 0$.
- For each PP, we compute the optimal MP using Get Ramsey.
- There are two types of shocks:
 - I shocks that do not affect banks' risk-taking incentives: η_t^r , G_t ,
 - igoplus shocks that affect banks' risk-taking incentives: $\eta^R_t, \gamma_t, \phi_t, \Psi_t$.
- Following type-1 shocks, optimal PP does not move, while optimal MP moves in a standard way.
- Following type-2 shocks, optimal MP moves **opposite** to optimal PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).

	Model	Implications	Conclusion
		000000	
Numerical sin	nulations		

• We calibrate the model and consider two alternative PPs:

• the optimal PP $\kappa_t = \kappa_t^*$, with a steady-state value $\kappa^* = 0.08$,

- the passive PP $\kappa_t = 0.10$, which also ensures $l_t^R = 0$.
- For each PP, we compute the optimal MP using Get Ramsey.
- There are two types of shocks:
 - I shocks that do not affect banks' risk-taking incentives: η_t^r , G_t ,
 - igoplus shocks that affect banks' risk-taking incentives: $\eta^R_t, \gamma_t, \phi_t, \Psi_t$.
- Following type-1 shocks, optimal PP does not move, while optimal MP moves in a standard way.
- Following type-2 shocks, optimal MP moves **opposite** to optimal PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).

	Model	Implications	Conclusion
		000000	
Numerical sir	nulations		

- We calibrate the model and consider two alternative PPs:
 - the optimal PP $\kappa_t = \kappa_t^*$, with a steady-state value $\kappa^* = 0.08$,
 - the passive PP $\kappa_t = 0.10$, which also ensures $I_t^R = 0$.
- For each PP, we compute the optimal MP using Get Ramsey.
- There are two types of shocks:
 -) shocks that do not affect banks' risk-taking incentives: η_t^t , G_t ,
 -) shocks that affect banks' risk-taking incentives: η_t^R , γ_t , ϕ_t , Ψ_t .
- Following type-1 shocks, optimal PP does not move, while optimal MP moves in a standard way.
- Following type-2 shocks, optimal MP moves **opposite** to optimal PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).

	Model	Implications		Conclusion
000000	000000	000000	000	
Numerical sin	nulations			

- We calibrate the model and consider two alternative PPs:
 - the optimal PP $\kappa_t = \kappa_t^*$, with a steady-state value $\kappa^* = 0.08$,
 - the passive PP $\kappa_t = 0.10$, which also ensures $l_t^R = 0$.
- For each PP, we compute the optimal MP using Get Ramsey.
- There are two types of shocks:
 - If shocks that do not affect banks' risk-taking incentives: η_t^t , G_t ,
 - $igodoldsymbol{igodoldsymbol{eta}}$ shocks that affect banks' risk-taking incentives: $\eta^R_t,\,\gamma_t,\,\phi_t,\,\Psi_t.$
- Following type-1 shocks, optimal PP does not move, while optimal MP moves in a standard way.
- Following type-2 shocks, optimal MP moves **opposite** to optimal PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).

	Model	Implications		Conclusion
000000	000000	000000	000	
Numerical sim	nulations			

- We calibrate the model and consider two alternative PPs:
 - the optimal PP $\kappa_t = \kappa_t^*$, with a steady-state value $\kappa^* = 0.08$,
 - the passive PP $\kappa_t = 0.10$, which also ensures $l_t^R = 0$.
- For each PP, we compute the optimal MP using Get Ramsey.
- There are two types of shocks:
 - **(1)** shocks that do not affect banks' risk-taking incentives: η_t^f , G_t ,
 - (a) shocks that affect banks' risk-taking incentives: η_t^R , γ_t , ϕ_t , Ψ_t .
- Following type-1 shocks, optimal PP does not move, while optimal MP moves in a standard way.
- Following type-2 shocks, optimal MP moves **opposite** to optimal PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).

	Model	Implications		Conclusion
000000	000000	000000	000	
Numerical simulations				

- We calibrate the model and consider two alternative PPs:
 - the optimal PP $\kappa_t = \kappa_t^*$, with a steady-state value $\kappa^* = 0.08$,
 - the passive PP $\kappa_t = 0.10$, which also ensures $I_t^R = 0$.
- For each PP, we compute the optimal MP using Get Ramsey.
- There are two types of shocks:
 - **()** shocks that do not affect banks' risk-taking incentives: η_t^f , G_t ,
 - (a) shocks that affect banks' risk-taking incentives: η_t^R , γ_t , ϕ_t , Ψ_t .
- Following type-1 shocks, optimal PP does not move, while optimal MP moves in a standard way.
- Following type-2 shocks, optimal MP moves **opposite** to optimal PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).
| | Model | Implications | Conclusion |
|---------------|-----------|--------------|------------|
| | | 000000 | |
| Numerical sin | nulations | | |

- We calibrate the model and consider two alternative PPs:
 - the optimal PP $\kappa_t = \kappa_t^*$, with a steady-state value $\kappa^* = 0.08$,
 - the passive PP $\kappa_t = 0.10$, which also ensures $l_t^R = 0$.
- For each PP, we compute the optimal MP using Get Ramsey.
- There are two types of shocks:
 - **(**) shocks that do not affect banks' risk-taking incentives: η_t^f , G_t ,
 - 2 shocks that affect banks' risk-taking incentives: η_t^R , γ_t , ϕ_t , Ψ_t .

• Following type-1 shocks, optimal PP does not move, while optimal MP moves in a standard way.

• Following type-2 shocks, optimal MP moves **opposite** to optimal PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).

	Model	Implications		Conclusion
000000	000000	000000	000	
Numerical sin	nulations			

- We calibrate the model and consider two alternative PPs:
 - the optimal PP $\kappa_t = \kappa_t^*$, with a steady-state value $\kappa^* = 0.08$,
 - the passive PP $\kappa_t = 0.10$, which also ensures $I_t^R = 0$.
- For each PP, we compute the optimal MP using Get Ramsey.
- There are two types of shocks:
 - **(**) shocks that do not affect banks' risk-taking incentives: η_t^f , G_t ,
 - 2 shocks that affect banks' risk-taking incentives: η_t^R , γ_t , ϕ_t , Ψ_t .
- Following type-1 shocks, optimal PP does not move, while optimal MP moves in a standard way.
- Following type-2 shocks, optimal MP moves **opposite** to optimal PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).

	Model	Implications		Conclusion
000000	000000	000000	000	
Numerical sin	nulations			

- We calibrate the model and consider two alternative PPs:
 - the optimal PP $\kappa_t = \kappa_t^*$, with a steady-state value $\kappa^* = 0.08$,
 - the passive PP $\kappa_t = 0.10$, which also ensures $I_t^R = 0$.
- For each PP, we compute the optimal MP using Get Ramsey.
- There are two types of shocks:
 - **(**) shocks that do not affect banks' risk-taking incentives: η_t^f , G_t ,
 - 2 shocks that affect banks' risk-taking incentives: η_t^R , γ_t , ϕ_t , Ψ_t .
- Following type-1 shocks, optimal PP does not move, while optimal MP moves in a standard way.
- Following type-2 shocks, optimal MP moves **opposite** to optimal PP in order to mitigate its macroeconomic effects (as envisaged by some policymakers and commentators: Macklem, 2011; Wolf, 2012; Yellen, 2010).

	Model	Implications	Extensions	Conclusion
			000	
Two exte	nsions			

- In our benchmark model, optimal MP and optimal PP never move in the same direction.
- We consider two extensions to this model, which can make optimal MP and optimal PP move in the same (counter-cyclical) direction.
- Extension 1: we introduce productivity shocks on S that are positively correlated with productivity shocks on R.
- Extension 2: we introduce an externality by assuming that banks' marginal monitoring cost is increasing in the aggregate volume of loans (as in Hachem, 2010): log(Ψ_t) = log(Ψ) + ρ[log(l^S_t) log(l^S)].
- Extension 2 enables MP to affect the type of credit, i.e. it makes MP effective in ensuring financial stability, unlike Extension 1.

	Model	Implications	Extensions	Conclusion
			000	
Two exter	nsions			

- In our benchmark model, optimal MP and optimal PP never move in the same direction.
- We consider two extensions to this model, which can make optimal MP and optimal PP move in the same (counter-cyclical) direction.
- Extension 1: we introduce productivity shocks on S that are positively correlated with productivity shocks on R.
- Extension 2: we introduce an externality by assuming that banks' marginal monitoring cost is increasing in the aggregate volume of loans (as in Hachem, 2010): log(Ψ_t) = log(Ψ) + ρ[log(l^S_t) log(l^S)].
- Extension 2 enables MP to affect the type of credit, i.e. it makes MP effective in ensuring financial stability, unlike Extension 1.

	Model	Implications	Extensions	Conclusion
000000	000000	000000	000	
Two extensi	ons			

- In our benchmark model, optimal MP and optimal PP never move in the same direction.
- We consider two extensions to this model, which can make optimal MP and optimal PP move in the same (counter-cyclical) direction.
- Extension 1: we introduce productivity shocks on S that are positively correlated with productivity shocks on R.
- Extension 2: we introduce an externality by assuming that banks' marginal monitoring cost is increasing in the aggregate volume of loans (as in Hachem, 2010): log(Ψ_t) = log(Ψ) + ρ[log(l^S_t) log(l^S)].
- Extension 2 enables MP to affect the type of credit, i.e. it makes MP effective in ensuring financial stability, unlike Extension 1.

	Model	Implications	Extensions	Conclusion
000000	000000	000000	000	
Two extensi	ons			

- In our benchmark model, optimal MP and optimal PP never move in the same direction.
- We consider two extensions to this model, which can make optimal MP and optimal PP move in the same (counter-cyclical) direction.
- Extension 1: we introduce productivity shocks on S that are positively correlated with productivity shocks on R.
- Extension 2: we introduce an externality by assuming that banks' marginal monitoring cost is increasing in the aggregate volume of loans (as in Hachem, 2010): log(Ψ_t) = log(Ψ) + ρ[log(l^S_t) log(l^S)].

• Extension 2 enables MP to affect the type of credit, i.e. it makes MP effective in ensuring financial stability, unlike Extension 1.

	Model	Implications	Extensions	Conclusion
000000	000000	000000	000	
Two extensi	ons			

- In our benchmark model, optimal MP and optimal PP never move in the same direction.
- We consider two extensions to this model, which can make optimal MP and optimal PP move in the same (counter-cyclical) direction.
- Extension 1: we introduce productivity shocks on S that are positively correlated with productivity shocks on R.
- Extension 2: we introduce an externality by assuming that banks' marginal monitoring cost is increasing in the aggregate volume of loans (as in Hachem, 2010): log(Ψ_t) = log(Ψ) + ρ[log(l^S_t) log(l^S)].
- Extension 2 enables MP to affect the type of credit, i.e. it makes MP effective in ensuring financial stability, unlike Extension 1.

Collard, Dellas, Diba, and Loisel

	Model	Implications		Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.
- We can account for situations in which
 - MP and PP should move opposite to each other,
 - MP and PP should move in the same (counter-cyclical) direction.

	Model	Implications		Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.
- We can account for situations in which
 - MP and PP should move opposite to each other,
 - MP and PP should move in the same (counter-cyclical) direction.

23 / 23

	Model	Implications		Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.
- We can account for situations in which
 - MP and PP should move opposite to each other,
 - MP and PP should move in the same (counter-cyclical) direction.

	Model			Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.
- We can account for situations in which
 - MP and PP should move opposite to each other,
 - MP and PP should move in the same (counter-cyclical) direction.

	Model	Implications		Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.
- We can account for situations in which
 - MP and PP should move opposite to each other,
 - MP and PP should move in the same (counter-cyclical) direction.

23 / 23

	Model	Implications		Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.
- We can account for situations in which
 - MP and PP should move opposite to each other,
 - MP and PP should move in the same (counter-cyclical) direction.

	Model			Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.
- We can account for situations in which
 - MP and PP should move opposite to each other,
 - MP and PP should move in the same (counter-cyclical) direction.

	Model			Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.

• We can account for situations in which

- MP and PP should move opposite to each other,
- MP and PP should move in the same (counter-cyclical) direction.

	Model			Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.
- We can account for situations in which
 - MP and PP should move opposite to each other,
 - MP and PP should move in the same (counter-cyclical) direction.

	Model			Conclusion
000000	000000	000000	000	•
Conclusion				

- We develop a New Keynesian model with banks to study the interactions between MP and PP from a normative perspective.
- We depart from the literature in two main ways:
 - by linking the amount of risk to the type of credit,
 - by computing the jointly locally Ramsey-optimal policies.
- We obtain a clear-cut optimal division of tasks between MP and PP:
 - PP should react only to shocks that affect banks' risk-taking incentives,
 - MP should react to all shocks and, for some shocks, only to their effects on the PP instrument.
- We can account for situations in which
 - MP and PP should move opposite to each other,
 - MP and PP should move in the same (counter-cyclical) direction.

Our modeling contribution

- We build on Van den Heuvel's (2008) model of capital requirements.
- More precisely, we start from a variant of this model.
- We embed this variant into a DSGE framework with
 - aggregate shocks,
 - sticky prices,
 - monetary policy.
- And we introduce aggregate risk into the resulting model.

Intermediate and final goods producers

- Intermediate goods producers are monopolistically competitive and face a price rigidity à la Calvo (1983).
- The production function of intermediate goods producer *j* is

$$y_t(j) = h_t(j)^{1-\nu} k_t(j)^{\nu} \exp\left(\eta_t^f\right).$$

- Final goods producers are perfectly competitive.
- Their production function is

$$y_t = \left(\int_0^1 y_t(j)^{\frac{\sigma-1}{\sigma}} \mathrm{d}j\right)^{\frac{\sigma}{\sigma-1}}.$$

Households' optimization problem

• Households choose $(c_t, h_t, d_t, s_t, k_t, i_t, x_t)_{t \ge 0}$ to maximize

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[\log(c_t) - \frac{h_t^{1+\chi}}{1+\chi}
ight]$$

subject to

- the budget constraint $c_t + d_t + q_t^b s_t + q_t k_t + i_t = w_t h_t + \frac{1+R_{t-1}^D}{\Pi_t} d_{t-1} + s_{t-1}\omega_t^b + z_t k_t + q_t^x x_t + (\omega_t^k + \omega_t^f \tau_t^h),$
- the law of motion of capital $x_t = (1 \delta)k_t + i_t$.

Capital goods producers IV

• A producer *i* using technology S chooses $x_t(i)$ to maximize

$$\beta E_{t} \left\{ \frac{\lambda_{t+1}}{\lambda_{t}} \left[q_{t+1} x_{t} \left(i \right) - \frac{1 + R_{t}^{S}}{\Pi_{t+1}} q_{t}^{X} x_{t} \left(i \right) \right] \right\},$$

where λ_t is households' marginal utility of consumption at date t.

• A producer *i* using technology R chooses $x_t(i)$ to maximize

$$(1-\phi_t)\beta E_t\left\{\frac{\lambda_{t+1}}{\lambda_t}\left[q_{t+1}\exp(\eta_t^R)x_t(i)-\frac{1+R_t^R}{\Pi_{t+1}}q_t^Xx_t(i)\right]\right|\theta_t=1\right\}$$

Banks II

• The representative bank chooses e_t , d_t , l_t^R and l_t^S to maximize

$$E_t \left\{ \beta \frac{\lambda_{t+1} \left(1-\tau\right) \omega_{t+1}^b}{\lambda_t} \right\} - e_t - \left(1-\tau\right) \Psi_t l_t^S,$$

where

$$\omega_{t+1}^{b} = \max\left\{0, \frac{1+R_{t}^{S}}{\Pi_{t+1}}l_{t}^{S} + \theta_{t}\frac{1+R_{t}^{R}}{\Pi_{t+1}}l_{t}^{R} - \frac{1+R_{t}^{D}}{\Pi_{t+1}}d_{t}\right\},\$$

subject to

- $I_t^S + I_t^R = e_t + d_t$,
- $I_t^R \leq \gamma_t I_t^S$,
- $e_t \geq \kappa_t \left(I_t^S + I_t^R \right).$

Gvt's budget constraint and goods market clearing cdt

• The government's budget constraint is

$$\tau_t^h = G_t + \int_0^1 \left\{ \zeta_t(j) - \tau[\omega_t^b(j) + \Psi_t l_t^S(j)] \right\} dj,$$

where losses imposed by bank j on the deposit insurance fund are $\zeta_t(j) =$

$$\max\left\{0, \frac{1+R_{t-1}^{D}}{\Pi_{t}}d_{t-1}(j) - \frac{1+R_{t-1}^{S}}{\Pi_{t}}l_{t-1}^{S}(j) - \theta_{t-1}\frac{1+R_{t-1}^{R}}{\Pi_{t}}l_{t-1}^{R}(j)\right\}.$$

• The goods market clearing condition is

$$c_t + i_t + G_t + \Psi_t I_t^S = y_t.$$

Prudential-policy rule

• Proposition 6: Under the PP rule

$$\kappa_t = \frac{1 - \phi_t}{\phi_t} \frac{\gamma_t}{1 + \gamma_t} \frac{R_t^R - R_t^S}{1 + R_t^D} + \frac{1}{\phi_t} \frac{\gamma_t}{1 + \gamma_t} \Psi_t - \frac{R_t^S - R_t^D}{1 + R_t^D},$$

there exists a unique equilibrium and, at this equilibrium, $l_t^R = 0$ and $\kappa_t = \kappa_t^*$.

- On the right-hand side of this feedback rule, for an individual bank moving from the safe to the risky corner,
 - the first two terms represent the **benefit** of this move: pocketing $R_t^R R_t^S$ if risky projects succeed and saving monitoring costs Ψ_t ,
 - the third term represents the **opportunity cost** of this move: losing $R_t^S R_t^D$ if risky projects fail.

Calibration

Parameter	Description	Value
	Preferences	
β	Discount factor	0.993
X	Inverse of labor supply elasticity	1.000
	Technology	
ν	Capital elasticity	0.340
σ	Elasticity of substitution	11.00
δ	Depreciation rate	0.025
	Nominal rigidities	
α	Price stickiness	0.750
	Banking (steady state)	
τ	Tax rate	0.023
κ^*	Capital requirement	0.080
Ψ	Marginal monitoring cost	0.006
φ	Failure probability	0.031
γ	Maximal risky/safe loans ratio	0.356
η^R	Risk premium	1.005
	Shock processes	
ρ	Persistence	0.950

Appendix 000000000

Responses to a type-1 shock (positive η_t^f shock)

Justification of policy-induced distortions

- There are two policy-induced distortions in the model:
 - deposit insurance, which gives rise to banks' risk-taking incentives,
 - the tax on banks' profits, which makes the capital requirement binding.
- We assume that they are not decided by the mon. and prud. authorities.
- These distortions are prevalent in many countries and do not seem to be likely to be removed any time soon.
- We could probably justify deposit insurance by introducing the possibility of bank runs, at the cost of greater complexity.
- When the tax is arbitrarily small,
 - all our analytical results (from Proposition 1 to Proposition 6) still hold,
 - the condition stated in Prop. 5 (the "if" part of this prop.) may not be met,
 - our model is equivalent, at the first order, to a model with no tax and with deposits in the utility function with an arbitrarily small weight.