Predicting Distress and Identifying Interdependencies among European Banks

> Peter Sarlin joint with Frank Betz, Silviu Oprica and Tuomas Peltonen

> > 30 October 2012

Second Conference of the ESCB Macroprudential Research (MaRs) Network

Motivation

- The global financial crisis has brought the banking system in several EU countries to the verge of collapse
- State interventions to EU banking sector peaked at 1.5 trl at the end-2009 (>13% of EU GDP)
- The costs in terms of lost output are even higher (20-25% of GDP, e.g. in Dell Arriccia et al. (2010), Laeven and Valencia (2010))

This Project. . .

- Presents one of the first early-warning models for European banks
- Introduces a new dataset of bank distress in Europe
- Applies a micro-macro perspective to predict bank distress, using macroeconomic and financial imbalances from the EU Macroeconomic Imbalance Procedure (MIP)
- Uses a state-of-the-art evaluation of early-warning signals, including importance of individual banks, as the policy maker needs to know how to interpret the signals of the model

Outline

- 1. Introduction
- 2. Data and Methodology
- 3. Results
- 4. Conclusion
- 5. Research in progress

Measuring bank distress

- Bankruptcies, liquidations and defaults
 - Captures direct bank failures (Sources: Moody's, Fitch and Bankscope)
- State aid
 - A bank is defined to be in distress if it receives a capital injection from the state or participates in an asset relief programme (asset protection or asset guarantees). It does not capture liquidity support or guarantees on banks' liabilities (Sources: EC and ECB (using Bloomberg and Reuters))
- Mergers in distress
 - Merged entities are defined to be in distress if a parent receives state aid within 12 months after merger or if a merged entity has a coverage ratio < 0 within 12 months before the merger (where the coverage ratio is denied as the ratio of equity + loan loss reserves - non-performing loans to total assets) (Sources: Bloomberg and Bankscope)

Sample & distress

- 546 EU banks with at least EUR 1 bn in assets (26,852 observations)
- Quarterly data from 2000Q1-2011Q4
- Obtain 194 bank-quarter distress events

Explanatory variables

- Bank-specific balance-sheet indicators
 - Publicly available CAMELS variables (Capital Adequacy, Asset Quality, Management Quality, Earnings Performance, Liquidity, and Sensitivity to Market Risk)
- Country-specific banking sector indicators
 - Variables such as system leverage, asset growth, loans/deposits, etc.
- Country-specfic macro-financial indicators
 - EU Macroeconomic Imbalance Procedure (MIP) variables (internal and external), asset prices (house and stock prices, government bond spread) and business cycle variables (GDP, inflation)

Evaluation criterion

• Apply extended Alessi and Detken (2011) usefulness criterion as in Sarlin (2012):

		Actual class		
		1	-1	
Predicted class	1^{-}	True positive (TP)	False positive (FP)	
	-1	False negative (FN)	True negative (TN)	

• Find the threshold that minimizes a loss function that depends on policymakers' preferences μ between Type I ($T_1 = FN / (FN+TP)$) errors (missing crises) and Type II errors ($T_2 = FP / (TN+FP)$) (false alarms) and unconditional probabilities of the events P_c and $1 - P_c$

$$L(\mu) = \mu P_c T_1 + (1 - \mu)(1 - P_c) T_2$$

• Define absolute usefulness U_a as the difference between the loss of disregarding the model (available usefulness) and the loss of the model

$$U_a = \min[\mu P_{c'}(1-\mu)(1-P_c)] - L(\mu)$$

Evaluation & estimation

• Relative usefulness U_r is the ratio of absolute usefulness to available usefulness given preferences and unconditional probabilities

$$U_r = U_a / \min[\mu P_{c'}(1-\mu)(1-P_c)]$$

 Also, we compute the Usefulness when including observation-specific misclassification costs by letting the policymaker define the importance w_i of each bank-year observation, e.g.

$$T_{w1} \in [0,1] = \sum_{j=1}^{N} w_{j} F N_{j} / \left(\sum_{j=1}^{N} w_{j} T P_{j} + \sum_{j=1}^{N} w_{j} F N_{j} \right)$$

Estimation

- Use pooled logit to predict vulnerable states, i.e. periods that preceed bank distress by up to 8 quarters (pre-distress)
- Recursive estimations:
 - Estimation sample: increasing window starting from 2000Q1-2006Q4
 - Out-of-sample prediction: for 2007Q1-2011Q4, predict each quarter *t* with data up to *t*-1

Predictive performance

• Out-of-sample prediction from 2007Q1-2011Q4

	(1)	(2)	(3)	(4)
	Benchmark	BS Model	BSI Model	MF Model
μ	$U_r(\mu)$	$U_r(\mu)$	$U_r(\mu)$	$U_r(\mu)$
0.6	0.02	0.00	0.00	0.00
0.7	0.12	0.02	-0.01	-0.01
0.8	0.23	0.05	0.01	0.10
0.9	0.37	0.16	0.02	0.24
R^2	0.32	0.17	0.06	0.14
N	10898	10898	10898	10898

The benchmark model in column (1) includes bank-specific balance sheet variables (BS), banking sector balance sheet items (BSI), and macro-financial indicators (MF). The models in columns (2) - (4) only include the variable group in the header. The frequency of pre-distress events in the sample is 7%. R^2 and N refer to the whole sample 2000Q1-2011Q4.

Policymakers' preferences

• Out-of-sample prediction from 2007Q1-2011Q4

Benchmark model					
μ	Predicted distress	Missed distress	False alarms	$U_r(\mu)$	U _r (w _i ,μ)
0.0	0	605	0	NA	NĂ
0.1	0	605	0	0.00	0.00
0.2	0	605	0	0.00	0.00
0.3	0	605	0	0.00	0.01
0.4	20	585	26	-0.03	0.06
0.5	78	527	91	-0.02	0.11
0.6	119	486	161	0.02	0.19
0.7	187	418	262	0.12	0.32
0.8	243	362	414	0.23	0.26
0.9	336	269	746	0.37	0.16
1.0	605	0	5025	NA	NA

A case study – Bank of Ireland

• Out-of-sample prediction from 2007Q1-2011Q4

EBA sample

• Out-of-sample prediction in 2012Q2

The main findings are. . .

- One of the first early-warning models for European banks and a new dataset of bank distress in Europe
- A micro-macro perspective to predict bank distress with results that highlight the importance to complement bank-specific vulnerabilities with indicators for macro-financial imbalances.
- The early-warning model based on publicly available data would have been useful to predict individual bank distress related to the ongoing global financial crisis.
- For a policymaker, it is important to be more concerned of misclassifying bank distress events and to signals related to systemically important (large vs. small) banks.

Research in progress

- Does predictive performance improve if an early-warning model is augmented with bank interdependencies?
- **Motivation**: Banking systems are highly interconnected. Early-warning models have in the past focused on individual bank distress
- Idea: To take into account estimated interconnectedness among banks (as in Hautsch *et al.*, 2012) in an early-warning model
- Implementation:
 - Estimate a tail-dependence network using quantile regression of stock returns of bank *i* on the unconditional VaR exceedances of all other banks in the sample (10th percentile). Use LASSO to obtain the set of relevant tail-risk drivers
 - Use an indicator of signals in a bank's neighbourhood to predict distress

Bank of Ireland in the tail dependence network

Predicting Distress in European Banks

Preliminary results

• Out-of-sample prediction from 2007Q1-2011Q4

	(1)	(2)	(3)	(4)
	Benchmark	Network	Country	ÈÚ
Network		3.91***		
Country			0.22***	
EU				0.03***
R^2	0.32	0.41	0.39	0.43
N	5783	5783	5783	5783
μ	$U_r(\mu)$	$U_r(\mu)$	$U_r(\mu)$	$U_r(\mu)$
0.9	0.14	0.30	0.18	0.22

The performance of the benchmark model on this sample is shown in column (1). The models in columns (2) - (4) also include the signals through the neighborhood relation in the header. The frequency of predistress events in the sample is 13%.

Thank you for your attention!