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Abstract

The global financial crisis has precipitated an increasing appreciation of the need for a systemic

perspective towards financial stability.  For example:  What role do large banks play in systemic risk?

How should capital adequacy standards recognize this role?  How is stability shaped by concentration

and diversification in the financial system?  We explore these questions using a deliberately simplified,

dynamical model of a banking system which combines three different channels for direct spillovers

from one bank to another:  liquidity hoarding, asset price contagion, and the propagation of defaults via

counterparty credit risk. Importantly, we also introduce a mechanism for capturing how swings in

‘confidence’ in the system may contribute to instability.  Our results highlight that the importance of

relatively large, well-connected banks in system stability scales more than proportionately with their

size:  the impact of their collapse arises not only from their connectivity, but also from their effect on

confidence in the system.  Imposing tougher capital requirements on larger banks than smaller ones can

thus enhance the resilience of the system.  Moreover, these effects are more pronounced in more

concentrated systems, and continue to apply even when allowing for potential diversification benefits

which may be realised by larger banks.  We discuss some tentative implications for policy, as well as

conceptual analogies in ecosystem stability, and in the control of infectious diseases. 
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Summary 

 

What role do large banks play in systemic risk and financial instability? How should capital 

adequacy standards recognize this role? How is stability shaped by concentration and 

diversification in the financial system? This paper explores these questions using a deliberately 

simplified, dynamical model of a banking system. 

 

Developing methods used in epidemiology and ecology, we adopt network techniques which are 

well suited for such questions, particularly in modelling ‘contagion’ that is transmitted through 

linkages in the financial system. Specifically, we bring together three important transmission 

channels into a unified framework: (i) liquidity hoarding, where banks may cut their lending to 

each other as a defensive measure; (ii) asset price contagion linked to the falls in market prices 

which may be generated by asset sales by banks in distress; and (iii) the propagation of losses 

which may occur if banks default on their obligations to other banks in the interbank market (the 

network of lending exposures amongst banks).  Importantly, we also integrate a mechanism for 

capturing how broader swings in ‘confidence’ in the system may contribute to instability, with 

the overall state of the system potentially influencing an individual bank’s actions, and vice 

versa.  

 

The interaction of such network and confidence effects arguably played a major role in the 

collapse of the interbank market and global liquidity ‘freeze’ that occurred during the financial 

crisis. Interbank loans have a range of maturities, from overnight to a matter of years, and may 

often be renewed, or ‘rolled over’, at the point of maturity. A pronounced feature of the 2007-08 

crisis was that, as the system deteriorated, banks stopped lending to each other at all but the 

shortest maturities. The bankruptcy of Lehman Brothers in September 2008 transmitted distress 

further across the financial network. The effects extended well beyond those institutions directly 

exposed to Lehman Brothers, with banks throughout the system withdrawing interbank lending 

outright and propagating distress to the real economy by sharply contracting household and 

corporate lending. 

 

Several specific motivating factors have been proposed to explain ‘liquidity hoarding’ (the 

maturity-shortening and ultimate withdrawal of interbank lending): precautionary measures by 

lending banks in anticipation of future liquidity shortfalls; counterparty concerns over specific 

borrowing banks; or collapses in overall system confidence.  Our framework parsimoniously 
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incorporates all of these mechanisms, while also capturing the idea that a bank’s distress may 

affect not just those directly exposed or linked to it, but also confidence in the market at large. 

  

We use our model to explore the effects of shocks to the system, such as the failure of banks or 

big losses on certain types of lending.  We focus particularly on the adverse feedback dynamics 

arising from each of the contagion channels included, the effects of size disparity amongst banks 

and system concentration, and the effects of diversification.  Our results highlight the 

disproportionate importance of large, well-connected banks for system stability: the impact of 

their collapse arises not only from their connectivity, but also from their effect on confidence in 

the system.  Moreover, we show that while diversification may serve to limit the risk of failure 

of an individual bank, it does not mitigate the importance of that bank to systemic risk, and may 

indeed exacerbate it.  Overall, these results illustrate the different approaches needed for 

regulation focused at the level of individual banks, and that focused on a systemic level. While 

sound microprudential regulation remains important for the former, the latter, macroprudential 

perspective, supports the notion of regulatory requirements concomitant with bank size, 

interconnectedness or (more generally) systemic importance.  In particular, imposing tougher 

capital requirements on larger banks than smaller ones can enhance the resilience of the system.  

Furthermore, such requirements may also have the beneficial side-effect of providing 

disincentives for financial institutions to become ‘too big to fail’.  Our findings have conceptual 

analogies in ecosystem stability, and in the control of infectious diseases, which we also discuss 

briefly. 

 

As with any theoretical approach, there are important caveats to our model.  In particular, a key 

empirical challenge for future work is to quantify the confidence processes which we model.  

Incorporating uncertainty, for example over the underlying health of individual institutions or 

the system as whole, would also be a useful extension.  Another key question is how the 

vulnerabilities in financial systems modelled in this paper emerge, and potentially grow, over 

time.  Finally, while this paper focuses on one aspect of the regulatory response relating to 

capital requirements, other policy responses, such as the use of liquidity requirements or the 

implementation of effective resolution regimes, are also likely to be important in enhancing the 

resilience of the financial system. 

 



 
 Working Paper No. 465 October 2012 5 

1 Introduction 

 

While global financial systems have seen considerable growth in size, concentration and 

complexity over the past few decades (Gai et al (2011)), our understanding of the dynamical 

behaviour of such systems has not necessarily kept pace. Indeed, the current financial crisis has 

presented a stark demonstration of the potential for modern financial systems to amplify and 

disseminate financial distress on a global scale. From a regulatory perspective, these events have 

prompted fresh interest in understanding financial stability from a system level. In particular, 

while pre-crisis regulation (as typified by the Basel II accords) sought to minimize the risk of 

failure of individual banks irrespective of systemic importance, new regulation will seek to 

target the systemic consequences of bank collapse as well. To quote Haldane and May (2011b), 

“What matters is not a bank’s closeness to the edge of the cliff; it is the extent of the fall”. 

 

In this context, a clear feature of interest is the presence of large, highly connected banks. These 

have conceptual parallels in biology: simple models have been influential in underlining the 

importance of ‘superspreaders’ in the spread and control of infectious diseases (Anderson and 

May (1991); Lloyd-Smith et al (2005)), while ‘keystone’ species are thought to serve a valuable 

role in ecosystem stability (Paine (1966); Kareiva and Levin (2003)). Here we develop 

dynamical models to apply and extend these lessons to financial systems. Our approach is 

theoretical, and our models necessarily oversimplified. Nonetheless, by considering 

transmission mechanisms specific to modern financial systems, our approach recognizes some 

important differences between these and other complex systems. We show how, even with such 

distinctions, the basic insights deriving from our model allow us to draw certain parallels with 

other situations where size and complexity are important. 

 

If financial crises may be compared with forest fires, causes for the ‘initiating sparks’ pose 

important questions in their own right: for example the role of excessive leverage and credit 

growth (Bank of England (2011)), or the pricing for complex financial instruments (Caccioli et 

al (2009); Haldane and May (2011a)). Here, however, our focus is on the role of large banks in 

the ‘flammability’ of the system, or its capacity for amplification and propagation of an 

initiating shock. We ask the following questions: how does the impact of a bank’s collapse scale 

with its size? How might capital adequacy standards seek to mitigate this impact? More broadly, 

what is the effect of concentration and diversification on system stability?  

 



 
 Working Paper No. 465 October 2012 6 

Network approaches (Strogatz (2001); Jackson (2008); Allen and Babus (2009); Battiston et al 

(2009); Kirman (2010)) are well-suited for such questions, particularly in modelling ‘contagion’ 

that is transmitted through linkages in the financial system. Here we adopt such an approach to 

bring together three important transmission channels into a unified framework: (i) liquidity 

hoarding, where banks cut lending to each other as a defensive measure (Brunnermeier (2009); 

Gai et al (2011)), (ii) asset price contagion linked to market illiquidity (Cifuentes et al (2005); 

Coval and Stafford (2007); Adrian and Shin (2010)), and (iii) the propagation of defaults via 

counterparty credit risk (Nier et al (2007); Gai and Kapadia (2010); Upper (2011)). 

  

While the ‘network effects’ listed above act on defined webs of connectivity, ‘confidence 

effects’ can operate more broadly, with the overall state of the system potentially influencing an 

individual bank’s actions, and vice versa. This motivates a special feature of our model, which 

explicitly integrates network dynamics with confidence effects. 

 

The interaction of such network and confidence effects arguably played a major role in the 

collapse of the interbank market (a network of lending exposures amongst banks) and global 

liquidity ‘freeze’ that occurred during the crisis (Gorton and Metrick (2012)). Interbank loans 

have a range of maturities, from overnight to a matter of years, and may often be renewed, or 

‘rolled over’, at the point of maturity. A pronounced feature of the 2007-08 crisis was that, as 

the system deteriorated, banks stopped lending to each other at all but the shortest maturities 

(Bank of England (2011); Kapadia et al (2012)). The bankruptcy of Lehman Brothers in 

September 2008 transmitted distress further across the financial network, while signalling that 

there was no guarantee of government support for institutions in distress. The effects extended 

well beyond those institutions directly exposed to Lehman Brothers, with banks throughout the 

system withdrawing interbank lending outright and propagating distress to the real economy by 

sharply contracting household and corporate lending (Ivashina and Scharfstein (2010)). At the 

time of writing, ongoing events illustrate the potential for similar dynamics in the context of 

sovereign and banking sector distress in some eurozone countries.  

 

Several specific motivating factors have been proposed to explain ‘liquidity hoarding’ (the 

maturity-shortening and ultimate withdrawal of interbank lending): precautionary measures by 

lending banks in anticipation of future liquidity shortfalls; counterparty concerns over specific 

borrowing banks; or collapses in overall system confidence (Caballero and Krishnamurthy 

(2008); Acharya and Skeie (2011)). Our framework parsimoniously incorporates all of these 
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mechanisms, while also capturing the idea that a bank’s distress may affect not just those 

directly exposed or linked to it, but also confidence in the market at large.  

 

In what follows we summarize essential features of the model structure, with details provided in 

Appendix 1, and a summary of model parameters and their default values, given in Table 1. We 

use this model to explore the impact of an initiating shock, with particular reference to the non-

linearities arising from each of the contagion channels modelled, the effects of size disparity 

amongst banks and system concentration, and the effects of diversification. We then outline 

tentative implications for regulatory capital requirements before discussing important caveats to 

our work.  Throughout the paper, we abstract from extraordinary policy intervention in crisis, so 

that liquidity cannot be obtained more easily from the central bank than from the market, and 

failing institutions are not bailed out. 

 

2 Model overview 

 

Figure 1 shows a minimal balance sheet representation of an individual ‘bank’, or node in the 

system. On the asset side of Figure 1, this bank lends to other banks in the system and holds a 

small proportion l of assets as ‘liquid assets’ (eg cash, central bank reserves and high-quality 

government bonds). The remainder of the asset side consists of holdings in (and thus exposures 

to) a range of distinct ‘external’ asset classes held against the real economy, such as mortgages, 

corporate lending and commercial real estate lending. The liability side is even simpler, 

consisting of retail deposits (taken to be external to the system) and interbank borrowing.  The 

‘capital buffer’ is the excess of assets over (debt) liabilities and if this falls below zero, the bank 

is insolvent (‘capital default’).   In our treatment, we think of capital in simple terms consisting 

only of common equity, thus excluding any form of unsecured term debt (eg subordinated debt) 

or contingent capital.  Given that we also abstract from risk-weighting of assets, the capital-to-

assets ratio, γ, can be thought of as a simple leverage ratio, with our baseline choice of 4% 

conservatively reflecting typical leverage ratios seen prior to the crisis (Bank of England 

(2011)). 

 

We take a system of 200 banks, interconnected in two distinct ways: (i) the interbank market, 

represented by a directed network with ‘nodes’ being individual banks and each ‘edge’ being a 

loan from one bank to another; and (ii) a system of shared exposures to a set of external assets, 

such that two different banks may hold some external asset classes in common, but not 



 
 Working Paper No. 465 October 2012 8 

necessarily all: see Figure 2 for a schematic illustration of this overall scheme. For the interbank 

network we label half of loans, at random, as initially having ‘long-term’ maturity, and the 

remainder as being ‘short-term’: in our discrete time simulations we assume that long-term loans 

can be made short-term from one time step to the next, while only short-term loans can be 

withdrawn in the same interval.  

 

We assume for simplicity that there are two sizes of banks, where ‘big’ banks are λ times larger 

on average than ‘small’ ones, but are λ times fewer. Thus big banks issue and receive λ times as 

many loans, and – by holding the same number of external asset classes as small banks in our 

baseline setup – they hold λ times as much of each single asset class, including interbank assets. 

We subsequently allow large banks to be more diversified (holding more asset classes) than 

smaller ones. In both setups, bank size and interconnectivity are correlated, in agreement with 

the data (Drehmann and Tarashev (2011)). This formulation also yields ‘heavy-tailed’ bank size 

and connectivity distributions, consistent with available evidence (Boss et al (2004); Soramaki 

et al (2007)). Note also that λ can be interpreted as a ‘concentration’ parameter, as the 

proportion of assets in the system held by big banks, divided by the proportion of banks that are 

big, is easily shown to be ½ (1+ λ).  While this framework lends itself to a straightforward 

comparison of ‘big’ and ‘small’ banks, we explore an alternative bank size distribution in 

Appendix 2.  

 

So far we have described the structure of the system, and its interconnectedness. To describe its 

dynamics, we now explicitly link confidence effects to fundamental balance sheet characteristics 

such as capital and liquidity strength. We define the ‘system confidence’, C, and the ‘individual 

health’, hi, of bank i as follows:   

 

C = AE; hi = ci mi; with   0 ≤ hi ≤ 1 and 0 ≤ E, A ≤ 1,    (1) 

 

where, at a given time, A is the total value of all remaining assets in the system (at the current 

market price) as a proportion of its initial level (reflecting confidence in terms of solvency); E is 

the fraction of interbank loans not withdrawn (reflecting confidence in terms of liquidity); ci is 

the capital of bank i as a proportion of its initial value, and mi reflects the bank’s liquidity 

position, the fraction of its short-term liabilities that it can settle immediately, through its liquid 

and short-term assets (see Appendix 1 for details of how ci and mi are calculated). Since the 

model only analyses the (crisis) dynamics of the system after adverse shocks, asset prices (and 
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thus A) cannot increase above their initial values, as discussed further in Appendix 1.  Similarly, 

E, ci and mi cannot exceed 1.    

 

We interpret C  as reflecting the condition of the system, equally felt by all participants, given 

that A and E are taken to be common knowledge. Equation (1) is of course one of many possible 

functional forms. In particular, it neglects the effect of maturity shortening on system confidence 

C. Results of an alternative formulation, aiming to incorporate this effect, are presented in 

Appendix 2.1

 

 

We discussed above how liquidity hoarding could arise from a combination of factors, including 

a bank’s own health; that of its counterparties; and more broadly, confidence in the system as a 

whole. Terms in equation (1) can be used to capture all three factors. Specifically, we suppose 

simply that a long-term link from bank i to bank j (these being lender and borrower, 

respectively) is made short term whenever 

 

hi hj < (1 – C).           (2) 

 

As described in Appendix 1, such behaviour raises mi, thus allowing an individual bank to 

improve its own health. We also suppose that a short-term loan is withdrawn altogether (ie the 

corresponding ‘link’ is removed from the network) whenever 

 

hi hj < (1 – C)2 .          (3) 

 

Withdrawals can also propagate through the interbank network if borrowers need to recall their 

own interbank lending to meet their obligations, with banks experiencing ‘liquidity default’ if 

they have insufficient liquidity to do so.   

 

The intuitive basis for the rules embodied in (2) and (3) is as follows: when C  = 1, there is no 

hoarding. With a perturbation to C, however, hoarding may potentially be triggered anywhere in 

the system either because of precautionary motives (driven by the bank’s own health, hi) or 

counterparty concerns (driven by hj), both causing and exacerbated by further deterioration in C 

– in particular, falls in A, which might be associated with market illiquidity (see below), drive 

                                                 
1 In principle, this framework could also be extended to incorporate exogenous confidence shocks driven by a deterioration in market 
conditions or heightened volatility, perhaps as might be embodied in the VIX; or uncertainty over A and E in equation (1). 
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down C and thus contribute to funding illiquidity (a reduction in E). In equation (3), the 

exponent on the right-hand side ensures that withdrawals – being a last resort – happen only 

under more extreme stress than shortening of loan maturities. While clearly stylized, these rules 

are broadly consistent both with observed behaviour during the crisis and with notions of 

optimizing balance sheet management by individual banks (Acharya and Skeie (2011); Kapadia 

et al (2012)), though as will become evident below, such behaviour has clear adverse spillovers 

for other banks in the system.  As illustrated in the simulations, equations (2) and (3) can also 

drive large fluctuations in balance sheets operating through changes in debt rather than equity, 

thus allowing the model to generate the procylicality in leverage that many financial institutions 

are seen to exhibit in the data  (Kim et al (2012)).  

 

While liquidity hoarding acts on the interbank network, we also incorporate shocks transmitted 

through the system of external assets. As a bank fails, the sale of its assets to outside investors 

has the potential to drive down the price of those assets in the market, adversely affecting the 

capital position of other banks also holding these assets. Previous work (Cifuentes et al (2005); 

Nier et al (2007); Gai and Kapadia (2010); May and Arinaminpathy (2010)) has illustrated the 

potential for this process to push these additional banks to default, thus reinforcing the 

downward pressure on asset prices. The ‘intensity’ of this process is related to ‘market 

liquidity’, or the ability of assets to be sold without significant price movements. In our 

framework, we directly link market liquidity to system confidence C, as detailed in Appendix 1.  

This captures the idea that confidence effects – for example, as driven by social contagion 

(Marsili et al (2010)) – are likely to cause market liquidity to deteriorate in times of crisis; it 

also implies that funding illiquidity, as captured by a reduction in E, can exacerbate market 

illiquidity. Overall, then, asset price contagion is determined both by the amount of assets 

liquidated and by overall market conditions at that time. In Appendix 2, we also consider the 

behaviour of the model under two alternative formulations of asset price contagion – one in 

which banks can sell their external assets prior to failure in an attempt to avoid liquidity default, 

and one in which system confidence does not affect market illiquidity. 

 

Finally, we include the potential for cascades of capital default through the interbank network, 

as explored by other authors (Nier et al (2007); Gai and Kapadia (2010); May and 

Arinaminpathy (2010)): should bank i undergo capital default, it cannot settle its debt in its 

entirety, and thus its creditors, in turn, lose value on their interbank lending, eroding their own 

assets and thus their own capital. Further details are given in Appendix 1. In summary, our 
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model combines channels for ‘direct’ transmission between banks (that is, of asset contagion 

and counterparty default) with the ‘indirect’, system-wide effects represented by equations (1)-

(3). It also captures how the interplay of market and funding illiquidity can generate a 

downward spiral during crises (Brunnermeier and Pedersen (2009)). 

 

3 Results 

 

For our baseline simulations, we take λ = 24, giving a system with 8 ‘large’ banks and 192 

‘small’ ones. We assume that all banks have the same capital and liquidity ratios (broadly in line 

with observed median pre-crisis ratios (Bank of England (2011)), with parameters given in 

Table 1.  Clearly the results presented here are dependent on the type of shock and initial 

parameters chosen, so should be interpreted as an illustration of systemic effects only.  

 

To demonstrate the significance of liquidity hoarding and confidence effects, we apply a shock 

to the capital buffer of a randomly chosen, large ‘index bank’ by setting the value of one of its 

external assets, also selected at random, to zero (other banks holding this asset are unaffected). 

As a measure of impact, we then record the loss in total assets across the system as a fraction of 

its initial value, thus counting large banks in proportion to their size. Figure 3 shows mean 

results, both with and without liquidity hoarding. Counterparty credit risk and asset price 

contagion generate losses in both cases, but hoarding has a clear negative externality on the 

system: although representing defensive behaviour on the part of individual banks to improve 

their own liquidity position, it leads to a decrease in E and thus C in equation (1). Its effects are 

also amplified by an adverse feedback with asset price contagion.  

 

Considering the evolution of bank balance sheets is a useful approach for unpicking the relative 

contributions of different contagion channels illustrated in Figure 3, and comparing this to data.  

Figure 4 (panel A) illustrates recent empirical findings (Kim et al (2012)), that contractions in 

balance sheets tend to be associated primarily with debt (linked to the withdrawal of interbank 

lending), rather than with diminishing equity (eg from asset contagion or counterparty credit 

risk). Figure 4 (panel B) shows corresponding model results, illustrating behaviour qualitatively 

consistent with panel A, owing to the inclusion of confidence effects and liquidity hoarding. 

Omitting hoarding, and withdrawal of lending in particular, yields the converse outcome in 

which the blue line has zero gradient, and the red accounts for all changes in bank assets.  
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Next, we explore connections between idiosyncratic and systemic risk, in particular how the 

systemic importance of a given bank depends on its size. Here, we measure the ‘importance’ of 

a given bank as the overall impact to the system arising from its idiosyncratic failure: we choose 

an ‘index’ bank of given size at random, and force it to default by setting its capital buffer to 

zero.2

 

 Without affecting any other part of the balance sheet, this initial condition ensures that, 

beyond the system’s exposures to the failing bank (through shared assets and counterparty 

links), there is no exogenous difference between the collapse of a small bank and a big one: in 

particular, while the initial capital loss is greater when a big index bank fails, this does not affect 

simulation outcomes since (for example) system confidence, C, depends on asset, and not 

capital, positions. Figure 5 (panels A and B) shows frequency distributions for the resulting 

number of failed banks, comparing the cases of small and big index banks. They demonstrate 

that, while the failure of a small bank affects a relatively small group of other banks, the impact 

of a large bank collapse scales more than proportionately with size, entailing a non-zero 

probability of whole-system collapse.  

To explore this systematically, as a measure of ‘impact’ we write fS for the mean fraction of total 

assets lost following the collapse of a small index bank, and correspondingly fB in the case of a 

large index bank. The ratio R = fB / fS thus gives some measure of the disparity between the 

impact of big and small bank collapse, and Figure 5 (panel C) plots this ratio for a range of λ. If 

the impact of bank collapse scales in proportion with bank size, we would expect R = λ, as 

represented by the bottom, grey line. In agreement with panels A and B, however, the upper 

(blue) curve illustrates that R consistently exceeds proportional scaling. Intermediate curves 

show corresponding results in reduced models where either liquidity hoarding or asset price 

contagion are excluded: for the parameter ranges considered here and when the initiating shock 

is only a single bank failure, these channels in isolation are relatively limited in their capacity to 

precipitate system-wide collapse following the failure of a large index bank. (The strength of 

asset contagion, for example, grows too slowly here with declining C to spread significantly 

beyond the index bank, whether big or small.) However, these results illustrate how, in 

combination, these channels mutually reinforce each other in a non-linear way: for example, 

liquidity hoarding has a negative externality realised in a reduction in C, which in turn can 

                                                 
2 Although constructed with a focus on exploring the systemic importance of individual institutions, this shock may be seen in practical 
terms as arising, for example, from the crystallization of operational risk (eg fraud) or from an aggregate shock that has particularly 
adverse consequences for one institution. In later simulations (Figure 6), we consider results following aggregate shocks in which 
several small banks fail alongside a single large bank. 
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exacerbate market illiquidity to intensify asset shocks, further pushing remaining banks nearer to 

collapse. 

 

Next, how can loss-absorbing capital serve to mitigate the systemic effects of an asset shock? 

Taking λ = 24 once again, we now consider a scenario in which banks suffer losses because the 

value of a specific asset class, taken at random subject to being held by 9 small banks and one 

large one, falls to zero. Figure 6 (panel A) illustrates results, exploring different capital ratios for 

small and big banks. Higher levels of capital promote system stability in general, but there is an 

asymmetry with respect to bank size. In particular, the diagonal in the xy plane running from the 

foreground (at (0.15, 0.15)) to the hidden origin (at (0,0)) represents the case where all banks 

have the same capital ratio irrespective of size. Along this line, contagion may be contained as 

long as capital is sufficiently high. If not, however, there is a sharp transition in which much of 

the system collapses. A system in which larger banks have higher capital ratios (ie, where the 

absolute size of the capital buffer scales more than proportionately with size) lies in the region 

to the left of this line, and conversely for the region to the right. A comparison of these regions 

illustrates the essential result that contagion is better mitigated by well-capitalized big banks, 

than by well-capitalized small ones: arguably the converse of the pattern of capital ratios prior to 

the current financial crisis. 

  

The differences between these regions, while broadly illustrative, will of course depend on 

concentration, λ, in the system. Recent data (FDIC (2011)) indicates that in the first quarter of 

2011, 79% of US banking system assets were held by the largest 1.4% of banks. Translated into 

our simple framework, this roughly corresponds to a highly concentrated scenario in which the 

big banks are 250 times the size of small ones, while numbering 3 in a system of 200. Figure 6 

(panel B) shows results of simulations adopting these parameters; although highly stylized, 

these illustrate nonetheless how increasing concentration serves to widen the disparity between 

the two regions described above. Figure 9 (discussed in Appendix 2) presents results from an 

alternative model that seeks more faithfully to reproduce the actual distribution of US bank 

sizes. 

 

So far these results take big banks as simply proportionately scaled versions of small ones and 

thus neglect the potential for larger banks to mitigate their own risk by having more diversified 

asset portfolios. Could such behaviour also serve to limit the systemic importance of big banks? 

Returning to the case λ  = 24, Figure 6 (panel C) allows big banks to hold twice as many asset 
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classes as small banks, under the same asset-specific initiating shock as in panel A. It illustrates 

the risk-mitigating effects of diversification on the part of individual banks: large banks remain 

solvent with lower levels of capital than in panel A because they are less vulnerable to losses on 

any individual asset class. Importantly, however, the steepness of the surface is not mitigated by 

increasing diversification, and is in fact increased. This is because greater diversification 

increases the overall number of exposures through shared assets, exacerbating the role of asset 

contagion in system collapse. This effect is underscored by Figure 6 (panel D), which repeats 

Figure 5 (panel C) while incorporating diversification (see Appendix 1 for details). For 

sufficiently concentrated systems, this illustrates the potential for asset contagion by itself (red 

curve) to cause system collapse following the failure of a large index bank, an outcome not 

apparent in Figure 5 (panel C). Indeed, in the limit, perfectly diversified banks holding an equal 

fraction of all available assets will also be perfectly correlated (see also Wagner (2011)). In 

addition, it is clear from these results that the systemic consequences of large bank collapse 

continue to scale more than proportionately with size. 

   

4 Discussion 

 

The systemic importance of large, well-connected banks has gained recognition in policy 

discussion, most notably in proposals from the Financial Stability Board and Bank for 

International Settlements (2011), the UK Independent Commission on Banking (2011), and in 

the so-called ‘Swiss finish’ (State Secretariat for International Financial Matters (2010)). 

However, policy recommendations for requirements concomitant with systemic importance (as 

reflected in metrics such as bank size and interconnectedness) have drawn some contention from 

the financial industry.  

 

Our work aims to contribute to this discussion from a dynamical perspective, drawing together 

different channels of contagion into a unified framework, while incorporating system-level 

confidence effects. We demonstrate a key consequence of the resulting non-linearities: the 

disproportionate importance of large, well-connected banks for system stability. Moreover, we 

show that while asset portfolio diversification may serve to limit the risk of failure of an 

individual bank, it does not mitigate the importance of that bank to systemic risk, and may 

indeed exacerbate it. Overall, these results illustrate the different approaches needed for 

regulation focused on idiosyncratic risk, and that focused at a systemic level. While sound 

microprudential regulation remains important for the former, the latter, relating to the so-called 
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‘structural’ dimension of macroprudential policy (Bank of England (2009)), supports the notion 

of regulatory requirements concomitant with bank size, interconnectedness or (more generally) 

systemic importance. Furthermore, such requirements may also have the beneficial side-effect of 

providing much-needed disincentives for financial institutions to become ‘too big to fail’. 

 

Our findings echo familiar concepts in other complex systems. Like keystone species in 

ecosystems (Paine (1966); Kareiva and Levin (2003)), large banks can perform a stabilizing 

function as long as they remain healthy (Figure 6). Conversely their failure can adversely affect 

the entire system (Figure 5). In the context of infectious diseases, the largest banks – by their 

connectivity – are comparable with ‘superspreaders’ of infection (Anderson and May (1991); 

Lloyd-Smith et al (2005)). There too, targeted intervention pays dividends: concentrating 

vaccination in the most well-connected or the most infectious individuals achieves disease 

eradication with lower coverage than is required in the case of random vaccination (Anderson 

and May (1991); Lloyd-Smith et al (2005)). As we have explored here, however, balance sheet 

linkages and pervasive confidence effects can play a distinctive role in financial systems, 

intensifying these dynamics (Figure 5, panel C).  

 

As with any theoretical approach, there are important caveats to our model. First, our 

representation of confidence dynamics is a necessarily phenomenological approach for an 

important, yet poorly understood mechanism. A key empirical challenge for future work is to 

quantify these confidence processes, for example the relative weights of the different factors in 

equations (1)-(3). Second, we assume individual and system fundamentals are fully transparent 

to all in the system. We thus potentially neglect the effects of uncertainty, for example over the 

actual health of counterparties or the extent of system-wide liquidity hoarding. Nonetheless, 

given that such uncertainty would intensify with deteriorating fundamentals and confidence, we 

would expect these effects to accentuate the dynamics we have explored. Third, it is also 

important to consider how the vulnerabilities in financial systems modelled in this paper 

emerge, and potentially grow, over time.  Fourth, while this work has concentrated on capital 

ratios, liquidity requirements are potentially also an important policy response. Future work may 

seek to treat these more systematically, for example by considering the impact of ‘haircut 

shocks’, which can exogenously generate liquidity shortfalls (Gai et al (2011); Gorton and 

Metrick (2012)). Similarly, effective resolution mechanisms could also enhance the resilience of 

the system to the risks posed by systemically important institutions. Finally, our work 

contributes towards the identification of indicators for the systemic importance of institutions by 
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exploring the role of size and interconnectedness, as correlated attributes. Future refinements of 

this approach may seek to examine more closely the separate effects of these two important 

factors. 

 

To conclude, market confidence and unprecedented interconnectivity make for far-reaching, 

complex dynamics in modern financial systems. Any attempt at regulating on a systemic scale 

can, therefore, only benefit from a deeper understanding of these dynamics. Simple dynamical 

models, for all their limitations, can offer a valuable starting point for guiding such essential 

insights. 
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Appendix 1: Details of the model 

 

Network details 

 

We represent the lending network as a directed graph, taking each individual loan to be the same 

size; we allow multiple loans in both directions between any given pair of banks, which are then 

aggregated to give the total bilateral exposure between pairs of banks. Small banks have an in- 

and out-degree (equivalently, numbers of interbank borrowing and lending links) drawn from a 

Poisson distribution with mean zs (we typically take zS = 5), while big banks have mean λzS (to 

begin we take λ = 24). Thus big banks have systematically higher levels of interbank exposure 

than small banks. In the baseline model, we assume a purely random structure for the interbank 

lending network; in Appendix 2, however, we show results allowing for ‘preferential lending’ 

between banks of different sizes. 

 

For external assets, we define a sharing scheme by assuming that there exists a fixed number Γ 

of distinct asset classes. Of these, big banks hold nB distinct asset classes each, in equal value, 

and small banks hold nS asset classes each. In the baseline setup we assume simply that nB = nS 

= 10. Moreover, every asset class is held in common by g banks (typically 10). This implies that 

Γ = (NBnB + NSnS)/g, where NB, NS are the number of big and small banks respectively.  

 

Developing the baseline setup to allow for diversification (Figure 6, panels C and D), we write:  

nB = nS λx, such that x = 0 recovers the baseline scenario (all banks being equally diversified), 

and x > 0 yields nB > nS so that larger banks are diversified over a wider range of asset classes 

than small banks (this also allows for the possibility that some asset classes are only held by 

large banks.). Note that, with other parameters fixed, specifying x fixes nB and nS. In particular, 

nB, nS are respectively increasing and decreasing functions of x. Where any of these calculations 

imply non-integer values for nB, nS, etc, we adopt the nearest non-integer value.  

 

Health expressions 

 

Hoarding is driven by health and confidence effects, as outlined in the main text, with an 

alternative formulation presented in Appendix 2. In particular, to calculate an individual bank’s 
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liquidity position, mi, in equation (1), we assume that both short-term interbank loans and liquid 

assets li are available on demand to meet funding outflows. An expression for mi is thus: 

 

 
 

where Li
ST is the total value of the bank’s short-term interbank liabilities; Ai

ST is the total value 

of the bank’s short-term interbank assets; and li is the amount of liquid assets held by the bank.  

 

Initiating shocks 

 

With the system thus constructed, we initiate contagion by either: (i) an idiosyncratic capital 

shock applied to a single, randomly selected bank (Figures 3 and 5) or (ii) an aggregate shock, 

simultaneously affecting the capital positions of all g banks holding a randomly selected 

(‘distressed’) asset (Figure 6). We then calculate the system-level confidence and individual 

‘healths’, C and hi, to propagate shocks in discrete time as follows. 

 

Shock propagation and bank failure  

 

A bank fails for solvency reasons if shocks to its assets erode its capital buffer to zero. A bank 

may also fail for liquidity reasons: that is, having insufficient cash to meet immediate 

obligations. We describe here how both of these may occur with reference to the propagation of: 

(i) lending withdrawals (‘liquidity hoarding’), (ii) asset price contagion, and (iii) counterparty 

defaults.  

 

(i) Lending withdrawals: Banks may cut lending in the interbank market as a result of effects 

acting through C and hi. When a bank withdraws lending from a debtor bank j, this amounts to 

the loss of short-term borrowing on the liability side of bank j. In such an event, bank j must 

settle these claims immediately and – if liquid assets are insufficient – will raise cash by 

withdrawing a necessary and sufficient amount of its own, short-term lending, Aj
ST (asset side, 

Figure 1). If, however, even these measures are insufficient, bank j is assumed to undergo 

liquidity default, given the difficulty in realizing the full value of external assets quickly. Thus, 

for example, if mj < 1 in equation (1), bank j is vulnerable to liquidity default if all of its 

interbank creditors withdraw funding simultaneously (a wholesale ‘bank run’, which would be 
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prompted as hj → 0 in equation (3)). In Appendix 2, we extend this framework to allow for 

banks selling their external assets to try to avoid liquidity default. 

 

(ii) Asset price contagion: We assume that, by liquidating its external assets, a failing bank may 

depress the price of those assets in the market. This causes the capital position of other banks 

holding these same assets to be eroded. Previous work (Cifuentes et al (2005); Nier et al (2007); 

Gai and Kapadia (2010); May and Arinaminpathy (2010)) has modelled this process by 

assuming that the price of asset i is diminished to a fraction exp(–αxi) of its original value, 

where xi is the proportion of that asset being sold by the failing bank, and α > 0 is a constant 

denoting systemic ‘market illiquidity’. In our baseline model, market illiquidity is also linked 

directly to confidence effects, writing  α = 1 – C, though we relax this assumption in Appendix 

2. Thus confidence effects on asset prices are mild or negligible when C = 1, but become more 

severe as C declines. Note that for simplicity, we suppose that assets are sold to outside 

investors rather than to other banks in the network, and also make the conservative assumption 

that the prices of different assets are uncorrelated, aside from their common dependence on C – 

allowing for the increase in asset correlations which typically occurs during crises would 

amplify our results.  

 

(iii) Counterparty defaults: These propagate through the interbank network in the opposite 

direction to liquidity hoarding, that is from borrower to lender. Suppose that a bank i suffers a 

shock of size S exceeding its capital γi, causing insolvency. Its z creditors will then suffer a loss 

on their lending to this bank: in particular, neglecting bankruptcy costs, we assume that they 

each receive an asset-side shock of size (S – γi)/z, bounded above by the total size of their 

exposure to the failing bank. This erodes their own capital position and can cause cascades of 

capital defaults (May and Arinaminpathy (2010)). 
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Appendix 2: Extensions to the model 

 

In what follows we present extensions of the model formulation described in the main text and 

Appendix 1.  

 

1. Alternative form for confidence expression, C 

 

As noted in Appendix 1, we have adopted a simple form for system confidence C that captures 

liquidity health at a given time by the proportion of interbank loans in the system that have not 

been withdrawn. However, systemic ‘shortening’ of lending maturities – even in the absence of 

any outright withdrawals – may also play a significant role in system health by making banks 

more vulnerable to subsequent liquidity outflows. To incorporate this, we use an alternative 

form: 

 

C = ½ (E + V)A,  

 

where, at a given time, V is the proportion of initially long-term interbank lending that remains 

long-term. As in the main text, A is the sum of all remaining assets in the system (at the current 

market price) as a proportion of its initial value, while E is the fraction of interbank loans not 

withdrawn.  

 

Thus, if all loans are shortened (ie V = 0) and none withdrawn (ie E = 1), then C = 0.5A, while if 

all loans have also been withdrawn (ie additionally E = 0), then C = 0. Figure 7 (panel A) 

repeats the simulations presented in Figure 5, illustrating qualitatively similar results. Figure 7 

(panel B) additionally compares this framework with the ‘baseline’ model from the main text, 

plotting (as in Figure 3) the extent of contagion when the value of a single asset class of a 

randomly selected big bank is set to zero. As loan shortening precedes outright withdrawal, 

system-level confidence deteriorates more quickly when it also depends on the extent of 

shortening, and the amount of contagion is concomitantly increased. 

 

2. Interbank lending network: ‘preferential mixing’ between banks 

 

Here we relax the assumption that the interbank lending network is a random web. A study of 

the Fedwire payments system (National Research Council (2007); May et al (2008)) suggests 



 
 Working Paper No. 465 October 2012 21 

that the financial lending network may in fact be disassortative, that is with low-degree nodes 

(equivalently, small banks) tending to connect more to high-degree nodes (ie large banks) than 

other low-degree nodes. We consider both this and its converse, the ‘assortative’ case. 

 

In particular, write NB, NS for the number of large and small banks respectively, and zB, zS for 

the mean number of loans made by large and small banks respectively. We now assume that a 

proportion P of all loans are made between banks of different size classes: that is, the loans 

made by big banks to small ones, or vice versa. It is straightforward to show, under the size 

distribution described in the main text and parameterized by λ, that P = ½ corresponds to a 

random web; P < ½ yields an assortative network; and P > ½ yields a disassortative one. Figure 

8 (panels A and B) show results for the latter two cases, illustrating that essential results shown 

in Figure 5 are qualitatively unchanged.  

 

3. Non-Poisson bank size distributions 

 

As described in Appendix 1, the number of loans made by a given bank is drawn from a Poisson 

distribution, whose mean depends on whether the bank is large or small. Here we adopt a 

different scheme, in particular relaxing the assumption that there are two distinct sizes of banks 

(as parameterized by λ in the main text). Figure 9 (panel A) shows data relating to the US 

banking sector, drawn from the Federal Deposit Insurance Corporation (FDIC). The closest fit to 

a Pareto distribution is shown. Originally applied to the distribution of wealth amongst 

individuals in a society, this distribution has the cumulative function: 

 

 
 

defined for all x ≥ x0, for a given x0 > 0. With the caveat that only three points are available here, 

the data suggest a Pareto shape parameter α of 0.83. Consistent with the main text, we take a 

system of 200 banks with the smallest banks making 5 interbank loans (recalling our assumption 

that this constitutes 20% of their balance sheet – see Table 1). Thus we take x0 = 5 for the 

interbank ‘degree distribution’. Moreover we assume a cut-off on bank sizes such that the 

biggest bank is no more than 104  times larger than the smallest. 
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This approach necessitates some minor adaptations of the plotting scheme used in Figure 5. 

First, for given parameters, the present approach has some variability in the realized 

composition of bank sizes from one simulation to the next. To accumulate the results of 

successive simulations on a single plot, therefore, we measure the size of the index bank, not in 

absolute terms, but as a proportion of the system’s initial, total assets. Second, in the present 

framework, the index bank can be so large as to account for a significant proportion of the total 

system’s assets by itself. Accordingly, we measure ‘impact’ here as the proportion lost of total 

initial assets excluding the index bank. Similar to Figure 5 in the main text, we select a random 

index bank (in this case, of any size) and force it to fail by setting its capital to zero, without 

affecting the remainder of its balance sheet. 

 

Figure 9 (panels B-D) plot results from this approach. Here different combinations of channels 

are shown on different plots, to provide a better illustration of respective sets of individual 

simulation outcomes (‘dots’ in grey), that give rise to the mean impact plotted. The full model 

(panel B) illustrates strong non-linearities: while index banks smaller than about 15% of the 

whole system do not initiate contagion, those above this threshold are liable to bring down the 

whole system. Indeed, the ‘intermediate’ points in the figure represent outcomes where only a 

single bank remains, always being the largest bank originally present. Panels C and D explore 

less extreme cases, where either asset shocks or liquidity hoarding are deactivated. Here it is 

possible for system failure to be only partial (eg panel D). Nonetheless, the essential result is in 

accordance with that shown in Figure 5: the effect of index bank collapse scales more than 

linearly with index bank size.  

 

4. Alternative formulations of asset price contagion 

 

In the main text, banks only liquidate their external assets upon failure, and the price effects of 

such action increase as system-wide confidence deteriorates. Here we relax these assumptions in 

turn.  

 

First, we allow banks to sell their external assets prior to failure to try to avoid liquidity default. 

In particular we assume that, if withdrawals of interbank lending are insufficient to meet funding 

shortfalls, a bank may additionally sell a necessary and sufficient amount of its external assets, 

distributed evenly across asset classes in its portfolio. However, if this too is insufficient, the 

bank undergoes liquidity default. Figure 10 (panel A) shows that allowing for asset sales prior to 
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default yields qualitatively similar results to Figure 5 (panel C) in the main text. And Figure 10 

(panel C, blue curve) shows that for the parameter values employed here, this change has a 

minimal effect on overall outcomes when the value of one of a random large index bank’s 

external asset classes is set to zero. This arises because, while liquidity hoarding in the ‘baseline 

model’ plays a significant role in the model dynamics (see eg Figures 3 and 5 (panel C)), only a 

minority of banks ultimately fail for liquidity reasons; for those for which asset sales could help 

prevent this, it is likely that they will subsequently fail either for solvency reasons or due to 

ever-greater funding withdrawals, in instances of systemic collapse. In other words, for the 

parameters adopted here, avoiding illiquidity tends merely to delay failure. So allowing banks to 

sell their assets for liquidity reasons prior to failure has only a limited effect on overall outcomes 

for the system.  

 

Second, we uncouple market liquidity from system confidence C, fixing α = 0.1, a 

comparatively low value for market illiquidity (recalling that α = 0 corresponds to a perfectly 

liquid market). Although the blue curve in Figure 10 (panel B) does not reach the same plateau 

as in Figure 5 (panel C) (as there is a lower probability of big index banks causing system 

collapse in this framework), the greater-than-proportional scaling with respect to bank size is 

still evident. But as Figure 10 (panel C, green curve) confirms, with α fixed at 0.1, contagion is 

indeed weaker under this assumption than in the baseline model, as would be expected given 

that one of the amplifying dynamics of the model is switched off. 



 
 Working Paper No. 465 October 2012 24 

Tables and Figures 

 

Table 1: Parameters and their default values 

 

Category Symbol Meaning Default value 

Global  
N Total number of banks 200 
λ Bank size disparity 24 
πS Initial proportion loans being short term 0.5 

Balance sheet 

z Number of outgoing loans, small banks 5 

θ Proportion of total assets initially in 
interbank lending 0.2 

li 
Proportion of bank i’s total assets initially 
liquid 0.01 

γi Bank i’s initial capital (to assets) ratio 0.04 

Asset class 

Γ Total number of distinct asset classes in the 
system  200 

g Number of banks sharing an asset class 10 

nB Number of asset classes held by each big 
bank  10 

nS 
Number of asset classes held by each small 
bank 10 
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Figure 1: Schematic, balance sheet representation of a single bank. See Figure 2 for a 

schematic of how this bank interacts with others in the network.  

 
 

Figure 2: Schematic representation of different modes of connectivity.  A schematic 

illustrating two different modes of connectivity in the model, showing for simplicity the case 

where all banks have the same size. Arrows represent loans in the interbank network, pointing 

from lender to borrower. Independently of this network, banks may also hold external assets in 

common (shown ‘hatched’ in different patterns). For example, bank 1 holds one asset in 

common with bank 2, and two assets in common with bank 3. 
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Figure 3: Baseline results and the effect of liquidity hoarding. Although intended as a 

defensive action (increasing hi), hoarding imposes negative externalities on other banks in the 

system. 
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Figure 4: Relating changes in assets to changes in debt and equity.  

 

Panel A: Empirical findings (Kim et al (2012)), illustrating that the dynamics of a bank’s total 

assets (x-axis) arise predominantly from changes in debt (blue line) rather than equity (red line). 

Although shown for the example of Morgan Stanley, qualitatively similar behaviour applies for 

other banks. Reproduced with permission from Hyun Shin.  

 
 

Panel B: Simulation results corresponding to the lower left quadrant of Panel A. Plotted points 

are accumulated by following the evolution of a random bank’s balance sheet through a 

simulation, repeating, and superimposing all results over 50 simulations. Note that both axes are 

negative since we simulate here only the post-shock, contractionary phase.  
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Figure 5: Small and big bank failure in the baseline setup.  Frequency distributions for 

numbers of banks failing in the baseline setup (λ = 24), following the failure of a single index 

bank of given size. Comparing distributions from: (A) small index bank collapse, and (B) big 

index bank collapse. Panel C: comparing the effects of large bank collapse, relative to those of 

small bank collapse, as a function of λ. The upper (blue) curve reaches a plateau at the 

maximum possible value for a finite system with 200 banks. See text for details. 
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Figure 6: Exploring the relative importance of big and small bank capital ratios, under 

different scenarios. Here, γB, γS represent capital ratios of big and small banks respectively. As 

described in the text, nB, nS are the numbers of asset classes held by each big and small bank 

respectively, and λ is the ‘concentration parameter’, denoting both the relative size and number 

of big and small banks. (A) λ = 24, giving 8 big banks and 192 small ones (B) Big banks are 250 

times the size of small ones, but 70 times less numerous, giving 3 big banks and 197 small ones. 

(C) λ = 24, with big banks having more diversified assets. Here nB, nS denote the number of 

asset classes held by big and small banks, respectively. (D) Repeating Figure 5 (panel C), in the 

case where relative diversification (nB/nS) scales with λ as indicated. (See Appendix 1 for 

details.) 
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Figure 7: Model results under alternative form for confidence expression. Panel A repeats 

Figure 5 (panel C) under an alternative expression for system confidence (see Appendix 2, 

Section 1). Panel B compares the extent of contagion under this specification with the ‘baseline’ 

model in the main text – in analogy to Figure 3, the initiating shock is applied to a randomly 

selected large bank, setting the value of one of its external asset classes to zero without affecting 

other banks holding the same asset class. 

 

Panel A   

 
Panel B 

 



 
 Working Paper No. 465 October 2012 31 

Figure 8: Model results when allowing a non-random lending network between big and 

small banks (see Appendix 2, Section 2) 

 

Panel A: assortative network 

 
Panel B: dissassortative network 
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Figure 9: Model results in the case of a Pareto distribution for bank sizes (see Appendix 2, 

Section 3). (A) Cumulative distribution of bank sizes in the US banking sector (FDIC), and its 

closest fit with a Pareto distribution, implying a ‘shape parameter’ of 0.83. (B) Impact of index 

bank collapse according to the full model, as a function of the index bank size. Grey points 

indicate individual simulation outcomes, while the blue line shows the mean outcome. Note that 

‘system impact’ here refers to the proportion of the initial system’s assets, excluding the index 

bank, that is ultimately lost as a result of index bank collapse. ‘Intermediate’ points all 

correspond to the survival of a single large bank, as described in Section 3.  (C, D) As for panel 

B, but individual channels acting alone (as indicated). 
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Figure 10: Model results under alternative formulations of asset price contagion (see 

Appendix 2, Section 4).  Repeating Figure 5 (panel C) for the ‘full model’ (ie including 

hoarding), in the case of: (A) banks being able to sell external assets to avoid liquidity default, 

and (B) a ‘milder’ contagion scenario of constant market liquidity not linked to system 

confidence, here taking α = 0.1. (C) As for Figure 3, comparing the extent of contagion under 

different models presented in Section 4 of Appendix 2. 

 

 

 



 
 Working Paper No. 465 October 2012 34 

References 
 
Acharya, V and Skeie, D (2011), ‘A model of liquidity hoarding and term premia in inter-bank 
markets’, Journal of Monetary Economics, Vol. 58(5), pages 436-47.  

Adrian, T and Shin, H S (2010), ‘Liquidity and leverage’, Journal of Financial Intermediation, 
Vol. 19(3), pages 418-37. 

Allen, F and Babus, A (2009), ‘Networks in finance’, in Kleindorfer, P, Wind, Y and Gunther, 
R (eds), The network challenge: strategy, profit, and risk in an interlinked world, Wharton 
School Publishing. 

Anderson, R and May, R (1991), Infectious diseases of humans: dynamics and control, Oxford 
University Press. 

Bank for International Settlements (2011), ‘Global systemically important banks: assessment 
methodology and the additional loss absorbency requirement’, available from: 
http://www.bis.org/publ/bcbs207.pdf  

Bank of England (2009), The role of macroprudential policy. Discussion paper, November. 

Bank of England (2011), Instruments of macroprudential policy. Discussion paper, December. 

Battiston, S, Gatti, D D, Gallegati, M, Greenwald, B C and Stiglitz, J E (2009), ‘Liaisons 
dangereuses: increasing connectivity, risk sharing, and systemic risk’, NBER Working Paper No. 
15611. 

Boss, M, Elsinger, H, Summer, M and Thurner, S (2004), ‘Network topology of the 
interbank market’, Quantitative Finance, Vol. 4, pages 677–84. 

Brunnermeier, M K (2009), ‘Deciphering the 2007-08 liquidity and credit crunch’, Journal of 
Economic Perspectives, Vol. 23, pages 77–100. 

Brunnermeier, M K and Pedersen, L H (2009), ‘Market liquidity and funding liquidity’, 
Review of Financial Studies, Vol. 22(6), pages 2,201-38. 

Caballero, R J and Krishnamurthy, A (2008), ‘Collective risk management in a flight to 
quality episode’, Journal of Finance, Vol. 63, pages 2,195–230. 

Caccioli, F, Marsili, M and Vivo, P (2009), ‘Eroding market stability by proliferation of 
financial instruments’, The European Physical Journal B-Condensed Matter and Complex 
Systems, Vol. 71, pages 467–79. 

Cifuentes, R, Ferrucci, G and Shin, H S (2005), ‘Liquidity risk and contagion’, Bank of 
England Working Paper No. 264. 

Coval, J D and Stafford, E (2007), ‘Asset fire sales (and purchases) in equity markets’, 
Journal of Financial Economics, Vol. 86, pages 479–512. 

Drehmann, M and Tarashev, N (2011), ‘Systemic importance: some simple indicators’, BIS 
Quarterly Review, available from: http://www.bis.org/publ/qtrpdf/r_qt1103e.htm.   



 
 Working Paper No. 465 October 2012 35 

FDIC (2011) ‘Quarterly Banking Profile, First Quarter 2011’, available from: 
http://www2.fdic.gov/qbp/2011mar/qbp.pdf. 

Gai, P, Haldane, A and Kapadia, S (2011), ‘Complexity, concentration and contagion’, 
Journal of Monetary Economics, Vol. 58(5), pages 453-70. 

Gai, P and Kapadia, S (2010), ‘Contagion in financial networks’, Proceedings of the Royal 
Society A, Vol. 466, No. 2120, pages 2,401-23. 

Gorton, G B and Metrick, A (2012), ‘Securitized banking and the run on repo’, Journal of 
Financial Economics, Vol. 104(3), pages 425-51. 

Haldane, A G and May, R M (2011a), ‘Systemic risk in banking ecosystems’, Nature, Vol. 
469, pages 351–55. 

Haldane, A G and May, R M (2011b), ‘The birds and the bees, and the big banks’, Financial 
Times, available from: http://www.ft.com/intl/cms/s/0/5c7fa72e-3d20-11e0-bbff-
00144feabdc0.html#axzz28Fr58fK4 (accessed 3 Aug 2012). 

Independent Commission on Banking (2011), Final report, September. 

Ivashina, V and Scharfstein, D S (2010), ‘Bank lending during the financial crisis of 2008’, 
Journal of Financial Economics, Vol. 97(3) pages 319-38. 

Jackson, M O (2008), Social and economic networks, Princeton University Press. 

Kapadia, S, Drehmann, M, Elliott, J and Sterne, G. (2012), ‘Liquidity risk, cash flow 
constraints, and systemic feedbacks’. Forthcoming in Haubrich, J G and Lo, A W (eds), 
Quantifying Systemic Risk, University of Chicago Press. 

Kareiva, P M and Levin, S A (2003), The importance of species: perspectives on expendability 
and triage, Princeton University Press. 

Kim, H G, Shin, H S and Yun, J (2012), ‘Monetary aggregates and the Central Bank's 
financial stability mandate’, paper presented at Federal Reserve conference 23-24 March 2012, 
available from: http://www.princeton.edu/~hsshin/www/monetary_aggregates.pdf. 

Kirman, A (2010), Complex economics: individual and collective rationality (The Graz 
Schumpeter Lectures), Routledge. 

Lloyd-Smith, J O, Schreiber, S J, Kopp, P E and Getz, W M (2005), ‘Superspreading and 
the effect of individual variation on disease emergence’, Nature, Vol. 438, pages 355–59. 

Marsili, M, Kirman, A and Anand, K (2010), ‘Epidemics of rules, information aggregation 
failure and market crashes’, mimeo, available at 
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1624803.  

May, R M and Arinaminpathy, N (2010), ‘Systemic risk: the dynamics of model banking 
systems’, Journal of the Royal Society Interface, Vol. 7, pages 823-38. 

May, R M, Levin, S A and Sugihara, G (2008), ‘Ecology for bankers’, Nature, Vol. 451, 
pages 893–95. 



 
 Working Paper No. 465 October 2012 36 

National Research Council (2007), ‘New directions for understanding systemic risk: a report 
on a conference cosponsored by the Federal Reserve Bank of New York and the National 
Academy of Sciences’.  

Nier, E, Yang, J, Yorulmazer, T and Alentorn, A (2007), ‘Network models and financial 
stability’, Journal of Economic Dynamics and Control, Vol. 31, pages 2,033–60. 

Paine, R T (1966), ‘Food web complexity and species diversity’, American Naturalist, Vol. 
100, pages 65–75. 

Soramaki, K, Bech, M L, Arnold, J, Glass, R J and Beyeler, W E (2007), ‘The topology of 
interbank payment flows’, Physica A: Statistical Mechanics and its Applications, Vol. 379, 
pages 317–33. 

Strogatz, S H (2001), ‘Exploring complex networks’, Nature, Vol. 410, pages 268–76. 

Switzerland State Secretariat for International Financial Matters (2010), ‘Final report of 
the Commission of Experts for limiting the economic risks posed by large companies’, available 
at: http://www.sif.admin.ch/dokumentation/00514/00519/00592/index.html?lang=en.  

Upper, C (2011), ‘Simulation methods to assess the danger of contagion in interbank markets’, 
Journal of Financial Stability, Vol. 7(3), pages 111-25.  

Wagner, W (2011), ‘Systemic liquidation risk and the diversity–diversification trade-off’, 
Journal of Finance, Vol. 66, pages 1,141–75. 

 

 


	Summary
	1 Introduction
	2 Model overview
	3 Results
	4 Discussion
	Appendix 1: Details of the model
	Appendix 2: Extensions to the model
	Tables and Figures
	References



