Discussion of: Capital Controls: A Normative Analysis

Sylvain Leduc (Federal Reserve Bank of San Francisco)

ECB, December 17, 2012

^{*}The views expressed in this paper are those of the authors should not be attributed to the Federal Reserve Bank of San Francisco or the Federal Reserve System.

Examines a timely question

- 1. Are capital controls beneficial?
- 2. Studies an environments in which, capital controls can be used to:
 - Foster greater international risk sharing
 - TOT movements do not necessarily enhance risk sharing
 - Manage output fluctuations
 - Strategic TOT manipulation (TOT externality)
- 3. Emphasize the importance of the trade elasticity
- 4. Role for coordination, since national policies reduce international risk sharing

Is this the right framework for the question?

- 1. Emphasis typically on concerns about:
 - RER appreciation
 - hot money
 - large inflows
- 2. More recently, emphasis on capital controls as a "macro-prudential" policy in models with pecuniary externalities
 - Korinek (2009), Bianchi (2011)
 - Constrained-efficient allocation improve on competitive equilibrium

Pecuniary externality: CDL (2010, 2011)

- 1. Competitive equilibrium with incomplete asset markets:
 - Suboptimal int'l capital flows reflecting inefficient wealth movements across countries due to pecuniary externalities
 - Strength of pecuniary externality depends on trade elasticity
- 2. For instance, TOT can move the "wrong" way following productivity shocks (negative transmission)
 - HH spend higher income on Home goods
 - TOT improve (pecuniary externality)
 - Boosts increases in relative wealth and consumption
 - Inefficient borrowing and CA deficit
- 3. Capital controls can be used to improve on the competitive equilibrium allocation

First best allocation

1. Efficient TOT movements dictate

$$\widetilde{T}_{t}^{fb} = \frac{\sigma(\widetilde{Y}_{H,t}^{fb} - \widetilde{Y}_{F,t}^{fb})}{4(1 - a_{H})(a_{H})(\sigma(b) - 1) + 1}$$

2. Change in net foreign assets can be characterized by

$$\widetilde{W}_{t}^{fb} - \beta^{-1}\widetilde{W}_{t-1}^{fb} = \sigma^{-1}(1 - a_{H}) \left[2a_{H}(\sigma \phi - 1) + 1 - \sigma \right] \widetilde{T}_{t}^{fb}$$

Allocation with incomplete asset markets

First-best allocation:

$$\widetilde{W}_{t}^{fb} - \widetilde{W}_{t-1}^{fb} = \sigma^{-1}(1 - a_{H})\beta \left[2a_{H}(\sigma\phi - 1) + 1 - \sigma\right]\widetilde{T}_{t}^{fb}$$

Incomplete markets allocation

$$\hat{W}_{t} - \beta^{-1}\hat{W}_{t-1} = -(\beta^{-1} - 1)\hat{W}_{t-1} - \sigma^{-1}(1 - a_{H})\sum_{j=0}^{\infty} \beta^{j} \left[2a_{H}(\sigma\phi - 1) + 1 - \sigma\right]E_{t}(\Delta \widetilde{T}_{t+1+j}^{fb})$$

- Inefficient NFA dynamics because it sub-optimally responds to expected future shocks
- Reflects inefficient terms of trade movements

First best: low trade elasticity

Incomplete markets: low trade elasticity

International risk sharing

Inefficient risk sharing: sticky prices + lcp

Deviations from international risk sharing

$$D_t^{gap} = \sigma \left(\hat{C}_t^{gap} - \hat{C}_t^{*gap} - R\hat{E}R_t^{gap} \right)$$

Rewriting:

$$D_{t}^{gap} = \sigma \left(\hat{Y}_{H,t}^{gap} - \hat{Y}_{F,t}^{gap} - 2(1 - a_{H}) \hat{T}_{t}^{gap} \right) - R \hat{E} R_{t}^{gap}$$
$$-2\sigma \left(\hat{W}_{t}^{gap} - \beta^{-1} \hat{W}_{t-1}^{gap} \right)$$

Where, e.g.,
$$\hat{W}_t^{gap} = \left(\hat{W}_t^{gap} - \tilde{W}_t^{fb}\right)$$

International risk sharing: sticky prices + lcp

Conclusion

Stylized, but relevant, framework to study capital controls

- 1. Could emphasize the role of pecuniary externalities more
- 2. Should examine capital control under a negative international transmission of shocks
- 3. Overall, need more work to determine what is the appropriate second-best policy?

Allocation with incomplete asset markets

First-best allocation:

$$W_{t}^{fb} - W_{t-1}^{fb} = \sigma^{-1}(1 - a_{H})\beta \left[2a_{H}(\sigma\phi - 1) + 1 - \sigma\right]T_{t}^{fb}$$

Incomplete markets allocation

$$\hat{W}_{t} - \beta^{-1}\hat{W}_{t-1} = -(\beta^{-1} - 1)\hat{W}_{t-1} + \sigma^{-1}(1 - a_{H})\sum_{j=0}^{\infty} \beta^{j} \left[2a_{H}(\sigma\phi - 1) + 1 - \sigma\right]E_{t}(\Delta \widetilde{T}_{t+1+j}^{fb})$$

Constrained-efficient allocation

$$W_{t}^{fb} - W_{t-1}^{fb} = \sigma^{-1}(1 - a_{H}) \sum_{j=0}^{\infty} \beta^{j} \left[2a_{H}(\sigma \phi - 1) + 1 - \sigma \right] E_{t}(T_{t+1+j}^{fb} - T_{t+j}^{fb})$$

Sticky prices and Monetary policy

Incomplete markets allocation

$$\hat{W}_{t} - \beta^{-1} \hat{W}_{t-1} = -(\beta^{-1} - 1) \hat{W}_{t-1} - \sigma^{-1} (1 - a_{H}) \sum_{j=0}^{\infty} \beta^{j} \left[2a_{H} (\sigma \phi - 1) + 1 - \sigma \right] E_{t} (\Delta \tilde{T}_{t+1+j}^{fb})$$

$$-\sigma^{-1} (1 - a_{H}) \sum_{j=0}^{\infty} \beta^{j} \left[2a_{H} (\sigma \phi - 1) + 1 - \sigma \right] E_{t} (\Delta \hat{T}_{t+1+j}^{gap})$$

- Inefficient capital flows bc of the response to expected efficient changes in TOT and to TOT misalignments
- Monetary policy takes into account effects of misalignment on capital flows