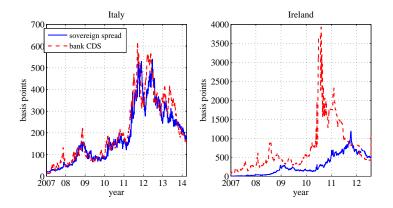
FINANCIAL INTERMEDIATION AND GOVERNMENT DEBT DEFAULT

Huixin Bi, Eric Leeper, and Campbell Leith


Bank of Canada, Indiana University, University of Glasgow

December 2014

The views expressed in this paper are those of the authors and not of the Bank of Canada.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

MOTIVATION

Twin banking/sovereign-default crises:

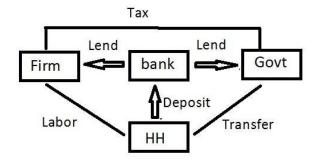
- domestic costs of sovereign defaults through banking sector: Panizza, Sturzenegger and Zettelmeyer (2009)
- ► two-way risk spillover: sovereign default ↔ banking crisis

WHAT WE DO

- Build a nonlinear model:
 - a conventional NK model with
 - financial intermediaries: Gertler and Karadi (2011)
 - fiscal and monetary policy
 - sovereign default: probability depends on debt level

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

WHAT WE DO


- Build a nonlinear model:
 - a conventional NK model with
 - financial intermediaries: Gertler and Karadi (2011)
 - fiscal and monetary policy
 - sovereign default: probability depends on debt level
 - extended to include banking sector downsizing: Gertler and Kiyotaki (2013)

WHAT WE DO

- Build a nonlinear model:
 - a conventional NK model with
 - financial intermediaries: Gertler and Karadi (2011)
 - fiscal and monetary policy
 - sovereign default: probability depends on debt level
 - extended to include banking sector downsizing: Gertler and Kiyotaki (2013)
- Findings:
 - in the baseline case,
 - sovereign default can reduce investment by a substantial margin;
 - but if default doesn't materialize, sovereign risk premia itself has a small impact on the economy
 - if downsizings are possible,
 - even if default doesn't materialize, sovereign risk premia can have pronounced negative impact on the economy

MODEL OVERVIEW

- Financial friction:
 - occasionally binding credit constraint (agency problem)
 - banks lend to government and firms
- Sovereign default risk:
 - default can tighten up the credit constraint and spillover to firms

Following Gertler and Karadi (2011),

Bank's balance sheet,

$$\begin{aligned} N_{jt} + B_{jt} &= Q_t^k K_{jt} + Q_t^d D_{jt} \\ N_{jt+1} &= R_{t+1}^k Q_t^k K_{jt} + R_{t+1}^d Q_t^d D_{jt} - R_{t+1}^b B_{jt} \end{aligned}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Following Gertler and Karadi (2011),

Bank's balance sheet,

$$\begin{aligned} N_{jt} + B_{jt} &= Q_t^k K_{jt} + Q_t^d D_{jt} \\ N_{jt+1} &= R_{t+1}^k Q_t^k K_{jt} + R_{t+1}^d Q_t^d D_{jt} - R_{t+1}^b B_{jt} \end{aligned}$$

Bank's objective,

$$V_{jt} = \max E_t \Lambda_{t,t+1} \left((1 - \theta_{t+1}) N_{jt+1} + \theta_{t+1} V_{jt+1} \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- a banker survives with prob. θ_t
- $1 \theta_t$ new bankers with start-up funds from households

Following Gertler and Karadi (2011),

Bank's balance sheet,

$$N_{jt} + B_{jt} = Q_t^k K_{jt} + Q_t^d D_{jt}$$

$$N_{jt+1} = R_{t+1}^k Q_t^k K_{jt} + R_{t+1}^d Q_t^d D_{jt} - R_{t+1}^b B_{jt}$$

Bank's objective,

$$V_{jt} = \max E_t \Lambda_{t,t+1} \left((1 - \theta_{t+1}) N_{jt+1} + \theta_{t+1} V_{jt+1} \right)$$

- a banker survives with prob. θ_t
- $1 \theta_t$ new bankers with start-up funds from households
- The evolution of aggregate net worth,

$$N_t = \theta_t \underbrace{\left(R_t^k Q_{t-1}^k K_{t-1} + R_t^d Q_{t-1}^d D_{t-1} - R_t^b B_{t-1}\right)}_{N_{et}} + \underbrace{\omega(Q_t^k K_{t-1} + Q_t^d D_{t-1})}_{N_{nt}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Agency problem (credit constraint),

 $V_{jt} \ge \lambda (Q_t^k K_{jt} + \eta Q_t^d D_{jt})$

- 1. Interpretation: Gertler and Karadi (2011)
 - banks can divert λ of assets
 - depositors can liquidate banks and recover 1λ of assets
 - agency problem is less severe with government debt ($\eta < 1$)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

Agency problem (credit constraint),

 $V_{jt} \ge \lambda (Q_t^k K_{jt} + \eta Q_t^d D_{jt})$

- 1. Interpretation: Gertler and Karadi (2011)
 - banks can divert \u03c6 of assets
 - depositors can liquidate banks and recover 1λ of assets
 - ▶ agency problem is less severe with government debt (η < 1)</p>
- 2. Alternative interpretation: capital requirement
 - ► the value of the bank must equal to or exceed a share λ of its assets
 - assume government debt has higher quality

$$\begin{split} V_{jt} &= \max E_t \Lambda_{t,t+1} \left((1-\theta_{t+1}) N_{jt+1} + \theta_{t+1} V_{jt+1} \right) \\ s.t. &\quad V_{jt} \geq \lambda Q_t^k K_{jt} + \eta \lambda Q_t^d D_{jt} \quad (\text{with multiplier} \quad \mu_t) \\ N_{jt+1} &= R_{t+1}^k Q_t^k K_{jt} + R_{t+1}^d Q_t^d D_{jt} - R_{t+1}^b B_{jt} \end{split}$$

Let $V_{jt} = f_t N_{jt}$, then first-order conditions are,

$$\begin{aligned} &(K_{jt}) & E_{t}\beta \frac{u_{c}(t+1)}{u_{c}(t)} (1-\theta_{t+1}+\theta_{t+1}f_{t+1})(R_{t+1}^{k}-R_{t+1}^{b}) = \mu_{t}\lambda \\ &(D_{jt}) & E_{t}\beta \frac{u_{c}(t+1)}{u_{c}(t)} (1-\theta_{t+1}+\theta_{t+1}f_{t+1})(R_{t+1}^{d}-R_{t+1}^{b}) = \eta\mu_{t}\lambda \\ &(N_{jt}) & E_{t}\beta \frac{u_{c}(t+1)}{u_{c}(t)} (1-\theta_{t+1}+\theta_{t+1}f_{t+1})R_{t+1}^{b} + \mu_{t}f_{t} = f_{t} \\ &(\mu_{t}) & \mu_{t}(f_{t}N_{t}-\lambda(Q_{t}^{k}k_{t}+\eta Q_{t}^{d}D_{t})) = 0 \end{aligned}$$

Conventional model without banks: $\mu_t = 0, f_t = 1$

FIRMS, HOUSEHOLDS, AND MONETARY POLICY

Firms:

- Cobb-Douglas production
- Capital producing firm: Tobin's Q
- Rotemberg price adjustment cost: distortionary sales tax

$$(1-\epsilon)(1-\tau_t) + \epsilon P_{mt} - \psi\left(\frac{\pi_t}{\pi} - 1\right)\frac{\pi_t}{\pi} + \beta \psi E_t \frac{u_c(t+1)}{u_c(t)} \left(\frac{\pi_{t+1}}{\pi} - 1\right)\frac{\pi_{t+1}}{\pi}\frac{y_{t+1}}{y_t} = 0$$

FIRMS, HOUSEHOLDS, AND MONETARY POLICY

Firms:

- Cobb-Douglas production
- Capital producing firm: Tobin's Q
- Rotemberg price adjustment cost: distortionary sales tax

$$(1-\epsilon)(1-\tau_t) + \epsilon P_{mt} - \psi\left(\frac{\pi_t}{\pi} - 1\right) \frac{\pi_t}{\pi} + \beta \psi E_t \frac{u_c(t+1)}{u_c(t)} \left(\frac{\pi_{t+1}}{\pi} - 1\right) \frac{\pi_{t+1}}{\pi} \frac{y_{t+1}}{y_t} = 0$$

 \blacktriangleright Households work, save, and receive transfers from bankers and government

$$\max \qquad E_0 \sum_{t=0}^{\infty} \beta^t u\left(c_t, L_t\right)$$

s.t.
$$c_t = w_t L_t + \Upsilon_t + R_t^b B_{t-1} - B_t + z_t$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

FIRMS, HOUSEHOLDS, AND MONETARY POLICY

Firms:

- Cobb-Douglas production
- Capital producing firm: Tobin's Q
- Rotemberg price adjustment cost: distortionary sales tax

$$1-\epsilon)(1-\tau_t)+\epsilon P_{mt}-\psi\left(\frac{\pi_t}{\pi}-1\right)\frac{\pi_t}{\pi}+\beta\psi E_t\frac{u_c(t+1)}{u_c(t)}\left(\frac{\pi_{t+1}}{\pi}-1\right)\frac{\pi_{t+1}}{\pi}\frac{y_{t+1}}{y_t}=0$$

Households work, save, and receive transfers from bankers and government

$$\max \qquad E_0 \sum_{t=0}^{\infty} \beta^t u\left(c_t, L_t\right)$$

s.t.
$$c_t = w_t L_t + \Upsilon_t + R_t^b B_{t-1} - B_t + z_t$$

Taylor rule:

$$\frac{i_t}{i} = \left(\frac{\pi_t}{\pi}\right)^{k_\pi} i_t = R^b_{t+1} \pi_{t+1}$$

returns on deposits aren't indexed to inflation

FISCAL POLICY AND SHOCKS

Government budget constraint,

$$g + z_t - \tau_t y_t + \underbrace{(1 - \Delta_t)(1 - \rho_d + \rho_d(1 + Q_t^d))\frac{D_{t-1}}{\pi_t}}_{R_t^d Q_{t-1}^d D_{t-1}} = Q_t^d D_t$$

▶ long-term bond: share of $1 - \rho_d$ matures, share of ρ_d receives coupon and is resold

$$R_t^d = (1 - \Delta_t) \frac{1 + \rho_d Q_t^d}{Q_{t-1}^d \pi_t}$$

- government may default $\Delta_t \ge 0$
- tax policy:

$$\frac{\tau_t}{\tau} = \left(\frac{(1-\Delta_t)D_{t-1}}{D}\right)^{\gamma_d}$$

transfers: exog shock follows AR(1)

SOVEREIGN DEFAULT

Different approaches:

- Exogenous default: Bocola (2014)
 - default probability doesn't depend on the state of the economy
- Optimal default: Arellano (2008), Yue and Mendoza (2010)
- Fiscal limits: Bi (2012), Davig, Leeper and Walker (2010)

$$\Delta_t = \begin{cases} 0 & \text{if } D_{t-1} < D_t^* \\ \Delta & \text{if } D_{t-1} \ge D_t^* \end{cases}$$
$$p_{t-1} \equiv P(D_{t-1} \ge D_t^*) = \frac{\exp(\eta_1 + \eta_2 D_{t-1})}{1 + \exp(\eta_1 + \eta_2 D_{t-1})},$$

allow two-way spillover between sovereign and banking crises

BASELINE VS. EXTENDED MODELS

- Baseline case
 - θ_t is fixed at $\bar{\theta}$
- Extended case: financial sector downsizing
 - Survival rate increases with net worth and decreases with leverage (Gertler and Kiyotaki (2013))
 - Given $B_t = Q_t^k K_t + Q_t^d D_t N_t$, it decreases with deposits

$$\theta_t = \frac{\exp(\eta_1^b - \eta_2^b B_{t-1})}{1 + \exp(\eta_1^b - \eta_2^b B_{t-1})} (\bar{\theta} - \theta_{min}) + \theta_{min}$$

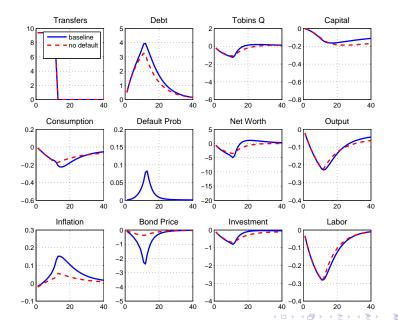
The evolution of aggregate net worth,

$$N_{t} = \underbrace{\theta_{t}}_{\downarrow} (R_{t}^{k} Q_{t-1}^{k} K_{t-1} + R_{t}^{d} Q_{t-1}^{d} D_{t-1} - R_{t}^{b} B_{t-1}) + \underbrace{\omega(Q_{t}^{k} K_{t-1} + Q_{t}^{d} D_{t-1})}_{\downarrow}$$

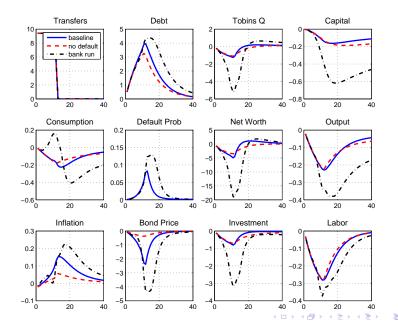
- Simplified version of bank runs in Gertler and Kiyotaki (2013)
 - > At each period, banks that receive a 'bank-run' signal have to exit.

- The signal is random for individual banks
- ... but at aggregate, the probability of runs depends on the balance sheet of the aggregate banking sector.
- State-dependent survival rate
- Capture the downsizing of financial sector in crises

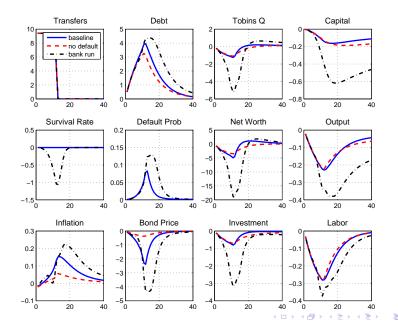
- Use policy function iteration to solve the nonlinear model
 - the state space $\mathbf{S}_t = \{D_{t-1}, K_{t-1}, B_{t-1}, i_{t-1}, \epsilon_t^z\}$
 - iterate on the decision rules f_i^L , f_i^{π} , f_i^D , f_i^{pm} , f_i^f until converge


- Calibration (preliminary):
 - ▶ fiscal limit distribution close to steady state (within 10%)
 - small haircut (0.08)

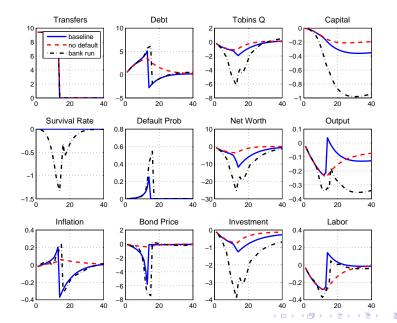
- Cost of sovereign risk premia/default
 - Baseline vs. no-default model
 - Extended (with downsizing) vs. baseline vs. no-default model


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two-way risk spillovers

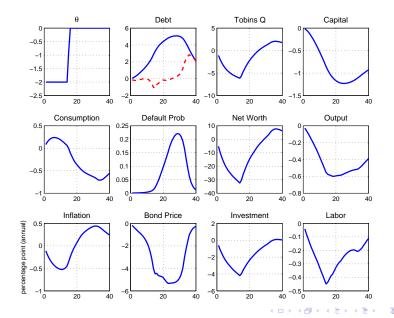

COST OF SOVEREIGN RISK PREMIA

COST OF SOVEREIGN RISK PREMIA


COST OF SOVEREIGN RISK PREMIA

Without default materializing, sovereign risk premia

- has a small impact on the economy in the baseline model through the standard financial accelerator channel
- but is stagflationary and has pronounced negative impact on the economy in the bank run model
 - lower net worth by 15%, triple the reduction in capital, double the output loss


COST OF SOVEREIGN DEFAULT

- Cost of sovereign risk premia/default
- Two-way risk spillovers
 - ► Banking risk → government:
 - exogenous θ_t : AR(1) process
 - lower bank survival rate (θ_t) reduces bank net worth

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

BASELINE MODEL IRFS: (BANKS \rightarrow SOVEREIGN)

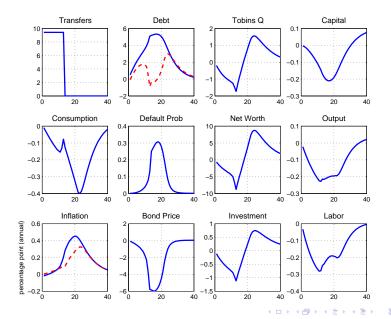
~ ~ ~ ~ ~

Findings: sovereign default/risk premia

- has a small impact on the economy through the standard financial accelerator channel
- but has pronounced negative impact if downsizings are possible
- Work in progress:
 - capital requirement depends on the riskiness of government bond

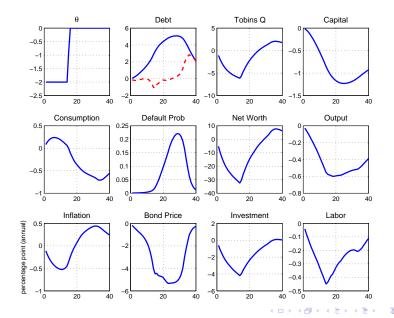
 $V_{jt} \ge \lambda (Q_t^k K_{jt} + \eta(?) Q_t^d D_{jt})$

- default scheme: government considers sovereign default costs through banking sector
- endogenize the financial sector downsizing


- Extend to a small open economy
- Empirical evidence (joint with Nora Traum)
 - sovereign default/risk premia spillover across countries through banking sector channel

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Two-way risk spillovers
 - Sovereign risk → banks: higher transfers (z_t) raise government debt and default probability
 - ► Banking risk \rightarrow government: lower bank survival rate (θ_t) reduces bank net worth

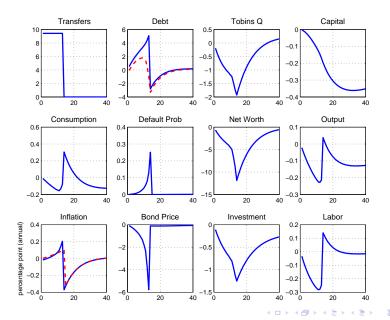

exogenous θ_t: AR(1) process

BASELINE MODEL IRFS: (SOVEREIGN \rightarrow BANKS)

うくで

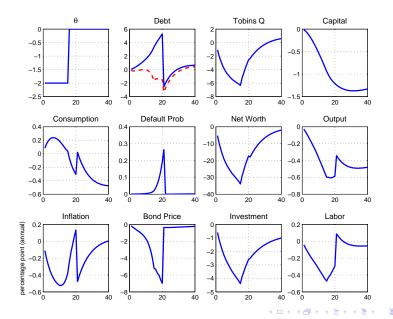
BASELINE MODEL IRFS: (BANKS \rightarrow SOVEREIGN)

~ ~ ~ ~ ~


Sovereign risk without default occurring,

 Bank net worth & firm capital stock recover rapidly: risk premia raises net worth

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

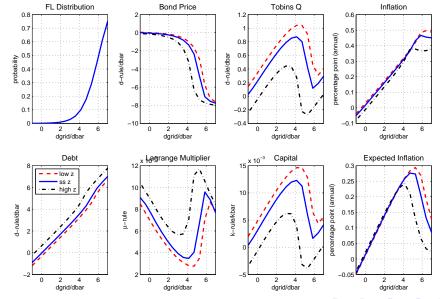

- Sovereign risk premia is inflationary (due to higher taxes)
- Output recovers slowly

BASELINE MODEL IRFS: (SOVEREIGN \rightarrow BANKS)

~ ~ ~ ~

BASELINE MODEL IRFS: (BANKS \rightarrow SOVEREIGN)

With sovereign default,

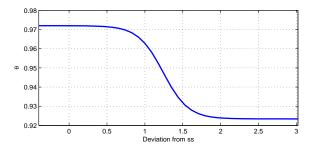

- ▶ Bank net worth recovers slowly \rightarrow tighten up credit constraint \rightarrow firm capital stock recover slowly
- Sovereign risk premia is inflationary, sovereign default is deflationary
- Rapid tax reduction \rightarrow labor recovers rapidly
- Output recovers rapidly upon default (labor supply) but stays low in the long run (capital)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

APPENDIX: CALIBRATION

	parameters	
β	discount rate	0.995
μ^k	capital adjustment cost para	71.2
α	capital ratio	0.33
g/y	government spending-output ratio	0.15
z/y	government transfers-output ratio	0.1
$\frac{Q^d D}{4y}$	Annualised Govt Debt to GDP	0.49
π	steady-state inflation	1
ψ	price adjustment cost para	49.64
ϵ	substitution elasticity	4.167
κ_{π}	taylor coefficient	1.5
γ_d	tax response coefficient	1
$1/\zeta_l$	inverse of Frisch	0.276
ϵ^{z}	shock standard deviation	0.03
$R^k - R^b$	premium on bank loans	100 bpt (annual)
θ	banker survival rate	0.972
ϕ	leverage ratio	4
$ ho_d$	maturity of bonds	1 - 1/8
Δ	haircut	0.08

APPENDIX: DECISION RULES (BASELINE)


ロト 《聞 》 《 臣 》 《 臣 》 の Q () 。

APPENDIX: EXTENDED MODEL

- Assume survival rate increases with net worth and decreases with leverage (Gertler and Kiyotaki (2013))
- Given $B_t = Q_t^k K_t + Q_t^d D_t N_t$, it decreases with deposits

$$\theta_t = \frac{\exp(\eta_1^b - \eta_2^b B_{t-1})}{1 + \exp(\eta_1^b - \eta_2^b B_{t-1})} (\bar{\theta} - \theta_{min}) + \theta_{min}$$

• Calibration: $\Delta^b = 0, \theta_{min} = 0.95\bar{\theta}$

APPENDIX: EXTENDED MODEL

Each bank's objective becomes,

$$V_{jt} = \max E_t \Lambda_{t,t+1} \left((1-\bar{\theta}) N_{jt+1} |_{nr} + (\bar{\theta} - \theta_{t+1}) N_{jt+1} |_{run} + \theta_{t+1} V_{jt+1} \right)$$

with
$$N_{jt+1} |_{nr} = R_{t+1}^k Q_t^k K_{jt} + R_{t+1}^d Q_t^d D_{jt} - R_{t+1}^b B_{jt}$$

$$N_{jt+1} |_{run} = R_{t+1}^k Q_t^k K_{jt} + R_{t+1}^d Q_t^d D_{jt} - R_{t+1}^b (1-\Delta_{t+1}^b) B_{jt}$$

The first-order conditions are,

$$E_{t}\beta\frac{u_{c}(t+1)}{u_{c}(t)}\left((1-\theta_{t+1}+\theta_{t+1}f_{t+1})(R_{t+1}^{k}-R_{t+1}^{b})+(\bar{\theta}-\theta_{t+1})\Delta_{t+1}^{b}R_{t+1}^{b}\right)=\mu_{t}\lambda$$

$$E_{t}\beta\frac{u_{c}(t+1)}{u_{c}(t)}\left((1-\theta_{t+1}+\theta_{t+1}f_{t+1})(R_{t+1}^{d}-R_{t+1}^{b})+(\bar{\theta}-\theta_{t+1})\Delta_{t+1}^{b}R_{t+1}^{b}\right)=\eta\mu_{t}\lambda$$

$$E_{t}\beta\frac{u_{c}(t+1)}{u_{c}(t)}\left(1-\theta_{t+1}+\theta_{t+1}f_{t+1}-(\bar{\theta}-\theta_{t+1})\Delta_{t+1}^{b}\right)R_{t+1}^{b}+\mu_{t}f_{t}=f_{t}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

APPENDIX: NOMINAL TO REAL ASSETS

Bank balance sheet:

$$Q_t^k K_{jt} P_t + Q_t^d D_{jt}^n = N_{jt}^n + B_{jt}^n$$
$$\rightarrow Q_t^k K_{jt} + Q_t^d D_{jt} = N_{jt} + B_{jt}$$

The net worth evolves:

$$\frac{N_{jt+1}^n}{P_{t+1}} = R_{t+1}^k Q_t^k K_{jt} + \frac{i_{t+1}^d}{\pi_{t+1}} Q_t^d \frac{D_{jt}^n}{P_t} - \frac{i_{t+1}}{\pi_{t+1}} \frac{B_{jt}^n}{P_t}$$
$$\to N_{jt+1} = R_{t+1}^k Q_t^k K_{jt} + \underbrace{\frac{i_{t+1}^d}{\pi_{t+1}}}_{R_{t+1}^d} Q_t^d D_{jt} - \underbrace{\frac{i_{t+1}}{\pi_{t+1}}}_{R_{t+1}} B_{jt}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで