A Dynamic Yield Curve Model with Stochastic Volatility and Non-Gaussian Interactions: An Empirical Study of Non-Standard Monetary Policy in the Euro Area

by G. Mesters, B. Schwaab and S.J. Koopman

Discussion:

Jean-Paul Renne, Banque de France

The views presented here are not necessarily those of the Banque de France.

Overview

- Study of the yield curve and its interactions with measures of non-standard monetary-policy.
- (Separate) Modeling of German, French, Italian and Spanish yield curves.
- Various non-Gaussian features.
- Estimation based on importance sampling techniques.
- Results:
 - SMP had a direct and temporary effect on yield curves (10 weeks),
 - Limited evidence that purchases changed the relationship between EONIA and the yield curve.
 - During crisis, response of the yield curve to EONIA was different (impaired) in some countries.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

• Yield curves have Nelson-Siegel parametric form:

$$y_{\tau,t} = \underbrace{\beta_{1,t}}_{level} + \underbrace{\beta_{2,t}}_{slope} \left(\frac{1 - e^{-\lambda \tau}}{\lambda \tau} \right) + \underbrace{\epsilon_{\tau,t}}_{measur.error}.$$
 (1)

< 47 ▶

э

• Yield curves have Nelson-Siegel parametric form:

$$y_{\tau,t} = \underbrace{\beta_{1,t}}_{level} + \underbrace{\beta_{2,t}}_{slope} \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau} \right) + \underbrace{\epsilon_{\tau,t}}_{measur.error}.$$
 (1)

• The $x_{i,t}s$ are monetary-policy-related explanatory variables. Their conditional distributions depend on factors $\theta_{i,t}s$ whose dynamics interact with the $\beta_{i,t}s$.

• Yield curves have Nelson-Siegel parametric form:

$$y_{\tau,t} = \underbrace{\beta_{1,t}}_{level} + \underbrace{\beta_{2,t}}_{slope} \left(\frac{1 - e^{-\lambda\tau}}{\lambda\tau} \right) + \underbrace{\epsilon_{\tau,t}}_{measur.error}.$$
 (1)

- The x_{i,t}s are monetary-policy-related explanatory variables. Their conditional distributions depend on factors θ_{i,t}s whose dynamics interact with the β_{i,t}s.
- The state vector is $\alpha_t = (\beta_{1,t}, \beta_{2,t}, \theta_{1,t}, \theta_{2,t})'$. It follows a Gaussian VAR:

$$\alpha_t - \mu = H(\alpha_{t-1} - \mu) + \xi_t, \qquad \xi_t \sim \mathcal{N}(0, Q).$$
(2)

• $x_{1,t}$ is the EONIA rate.

Conditionally on α_t , the log of the EONIA is Gaussian:

$$\log(x_{1,t})|\theta_t \sim \mathcal{N}(\theta_{1,t},\sigma^2).$$

• $x_{2,t}$ are the the SMP-purchased amounts.

Conditionally on α_t , the amounts purchased are Poisson-distributed with intensity $\exp(\theta_{2,t})$:

$$\log(x_{1,t})|\theta_t \sim \mathcal{P}(\exp(\theta_{2,t})).$$

• Conditionally on α_t , the $x_{i,t}$ s are independent from all other factors.

Comments 1 Arbitrage Opportunities

- Over the last decade, the bulk of interest-rate term-structure (TS) studies relies on the theoretically-appealing no-arbitrage framework.
- This paper does not follow this strand of literature. In particular, this prevents the authors from studying the influence of agents' aversion to interest-rate risks on yields (= computation of term premia).

Comments 1

Arbitrage Opportunities

- Over the last decade, the bulk of interest-rate term-structure (TS) studies relies on the theoretically-appealing no-arbitrage framework.
- This paper does not follow this strand of literature. In particular, this prevents the authors from studying the influence of agents' aversion to interest-rate risks on yields (= computation of term premia).
- However, important advantage of the present framework: less constraints on the dynamics.
 - ► To remain tractable, no-arbitrage TS models have to involve "affine" processes (such that E_t(exp(-z_{t+1} ··· z_{t+h})) = exp(A_h + B_hz_t)).
 - Then, why using a simple (single-lag) Gaussian VAR for α_t ?
 - ▶ In particular, easy to design a ZLB-consistent dynamics where $\beta_{1,t} + \beta_{2,t}$ (shortest-term rate) and $\beta_{1,t}$ (rate of maturity ∞) are > 0.
- \Rightarrow This "advantage" is somewhat underexploited here.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Comments 2

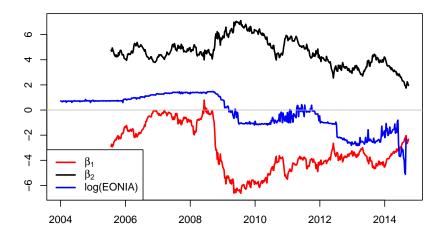
The estimation

- Maximization of likelihood whose computation is based on an importance sampling approach; computationally intensive.
- Advantages of the method should be highlighted/demonstrated.
- Far less sophisticated/complicated approach can be designed to quickly estimate the model.

Comments 2

The estimation

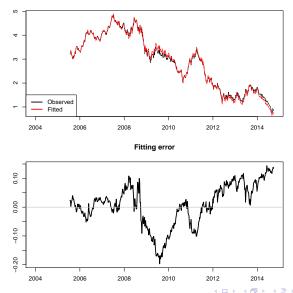
- Maximization of likelihood whose computation is based on an importance sampling approach; computationally intensive.
- Advantages of the method should be highlighted/demonstrated.
- Far less sophisticated/complicated approach can be designed to quickly estimate the model.
- For instance, recall that (Λ = Nelson-Siegel factor loadings):


$$\underbrace{Y_t}_{(N\times 1)} = \underbrace{\Lambda'}_{(N\times 2)} \underbrace{\beta_t}_{(2\times 1)} + \epsilon_t,$$

 \Rightarrow Immediate estimates of β_t can be obtained by regressing Y_t on Λ (Renne, 2012):

$$\underbrace{\hat{\beta}}_{(T\times 2)} = ((\Lambda\Lambda')^{-1}\Lambda\underbrace{Y}_{(N\times T)})'.$$

(日) (周) (日) (日)


Quick $\hat{\beta}s$

글 > 글

(日) (四) (三)

Persistence in fitting errors (not addressed by the model)

Observed versus fitted 10-year yield

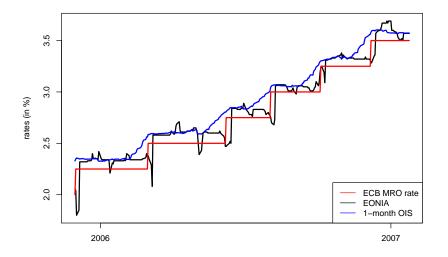
э

Comment 3

About the use of the EONIA

- (a) While it is also a yield (au
 ightarrow 0), the EONIA is treated in a very different way:
 - Up to the (assumed i.i.d.) measurement errors, the model reckons that yields are (marginally and conditionally) Gaussian whereas EONIA is lognormal.
 - ► The (mean) log of the EONIA enters the VAR ⇒ a cut in the policy rate is expected to have a stronger impact on yields in low-yield environment.

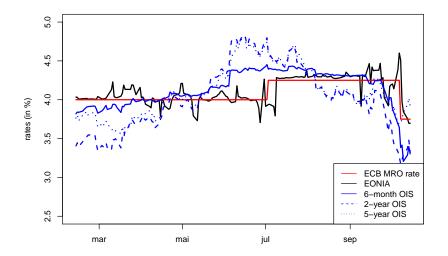
(日) (周) (日) (日)


Comment 3

About the use of the EONIA

- (a) While it is also a yield ($\tau \rightarrow$ 0), the EONIA is treated in a very different way:
 - Up to the (assumed i.i.d.) measurement errors, the model reckons that yields are (marginally and conditionally) Gaussian whereas EONIA is lognormal.
 - ► The (mean) log of the EONIA enters the VAR ⇒ a cut in the policy rate is expected to have a stronger impact on yields in low-yield environment.
- (b) The EONIA is used as a proxy of the monetary-policy stance. However, the EONIA is a lagged proxy of the monetary-policy stance:
 - Interest-rate decisions (MRO, Deposit facility, Lending facility) are taken on Thursdays.
 - The EONIA tends to be affected on the next Tuesday (first day on which new MROs are operated).

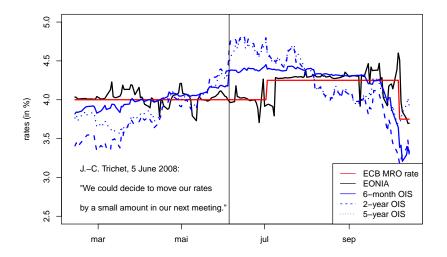
< □ > < □ > < □ > < □ > < □ > < □ >


The EONIA is a lagged proxy of monetary-policy stance

< 67 ▶

э

The EONIA does not react contemporaneously to key MP announcements



(ECB workshop on non-standard moneta

6 October 2014 11 / 16

æ

The EONIA does not react contemporaneously to key MP announcements

(ECB workshop on non-standard moneta

6 October 2014 12 / 16

Table: Regressing yields on EONIA

Dependent variable:			
rate_2yrs		rate_10yrs	
(1)	(2)	(3)	(4)
1.010 ^{***} (0.010)	0.999*** (0.003)	0.991 ^{***} (0.008)	1.000 ^{***} (0.004)
-0.012 (0.010)		0.007 (0.006)	
	0.039 (0.025)		-0.007 (0.026)
561	561	479	479
0.996	0.996	0.993	0.993
0.996	0.996	0.993	0.993
	(1) 1.010*** (0.010) -0.012 (0.010) 561 0.996	rate_2yrs (1) (2) 1.010*** 0.999*** (0.010) (0.003) -0.012 0.039 (0.025) 561 561 561 0.996 0.996	rate_2yrs rate_(1) (2) (3) 1.010*** 0.999*** 0.991*** (0.008) -0.012 0.007 (0.006) 0.039 (0.025) 0.099 561 561 479 0.996 0.996 0.993

p<0.1; ‴ p<0.05; p<0.01

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Dependent variable:			
rate_2yrs		rate_10yrs	
(1)	(2)	(3)	(4)
1.018 ^{***} (0.009)	0.999 ^{***} (0.003)	0.992 ^{***} (0.009)	0.999 ^{***} (0.004)
-0.023 ^{**} (0.010)		0.007 (0.007)	
	0.158*** (0.056)		0.155*** (0.057)
561	561	479	479
0.996	0.996	0.993	0.993
0.996	0.996	0.993	0.993
	(1) 1.018*** (0.009) -0.023** (0.010) 561 0.996	rate_2yrs (1) (2) 1.018*** 0.999*** (0.009) (0.003) -0.023** (0.010) 0.158*** (0.056) 561 561 0.996 0.996	rate_2yrs rate_(1) (2) (3) 1.018*** 0.999*** 0.992*** (0.009) (0.009) (0.003) (0.009) -0.023** 0.007 (0.007) 0.158*** (0.056) 561 561 561 479 0.996 0.996 0.993

Table: Regressing yields on MRO (policy rate)

p<0.05; p<0.01

イロト 不得下 イヨト イヨト

3

Comment 3 About the use of the EONIA

- EONIA should be replaced with more appropriate measures of monetary-policy surprises.
- $\Delta(MRO)_t$ (used in previous slides) is only a rough measure.
- See Kuttner (2001) or Piazzesi & Swanson (2008) for market-based measures of monetary-policy surprises:

e.g.: Changes in OIS prices around ECB announcements events reflect unanticipated changes in future policy rates (Jardet and Monks, 2014).

• The distribution of these shocks is far from Gaussian. The model/estimation method could be appropriately exploited to handle that.

- 4 同 6 4 日 6 4 日 6

Conclusion

- Nicely-written, interesting and stimulating paper.
- The SMP analysis is too short; bond-purchase factors show up at the very end of the paper.
- The study of the impact of ECB stance on yield curve could be improved.
- The fact that authors do not have to care about affine-related constraints could & should be better exploited.
- Looking forward to reading future version.

Conclusion

- Nicely-written, interesting and stimulating paper.
- The SMP analysis is too short; bond-purchase factors show up at the very end of the paper.
- The study of the impact of ECB stance on yield curve could be improved.
- The fact that authors do not have to care about affine-related constraints could & should be better exploited.
- Looking forward to reading future version.

Thank you!