

A high frequency assessment of the ECB Securities Markets Programme

Eric Ghysels, Julien Idier, Simone Manganelli, Olivier Vergote

ECB workshop on non-standard monetary policy measures

Frankfurt, 6-7 October, 2014

The opinions are those of the authors and do not necessarily reflect those of the Eurosystem

The Securities Market Programme

- The SMP was announced on 10 May 2010 together with other measures to address severe tensions in financial markets.
- The ECB could "conduct interventions in the euro area public and private debt securities markets to ensure depth and liquidity in those segments which are dysfunctional".
- The objective of the programme is "to address the malfunctioning of securities markets and restore an appropriate monetary policy transmission mechanism".

Eurosystem's SMP holdings as at 31 December 2012

	Outstanding amou	Average			
Spain Italy Portugal	Nominal amount (EUR billion)	Book value [] (EUR billion)	remaining maturity (in years)		
Ireland	14.2	13.6	4.6		
Greece	33.9	30.8	3.6		
Spain	44.3	43.7	4. I		
Italy	102.8	99.0	4.5		
Portugal	22.8	21.6	3.9		
Total	218.0	208.7	4.3		

Source: ECB website, http://www.ecb.europa.eu/press/pr/date/2013/html/pr130221_1.en.html

Challenges in assessing the impact of SMP

- Obvious impact on yields of announcement of SMP.
- Impact on following months more difficult to assess.
 - If Eurosystem interventions triggered by strong price deteriorations, estimates of daily impact of SMP purchases on yield changes will be biased upwards.
- Simple regressions of daily changes in yields on daily purchases often give insignificant or even positive coefficients.
- → It would be unwarranted to conclude from this evidence that SMP purchases have been ineffective.
- → Zero correlations at daily frequencies are perfectly compatible with negative correlations at intraday frequency.

9 August 2011: A day of an ECB investment manager

Descriptive statistics of changes in yields

			Non-interventio	Intervention	
		all	pre-crisis	crisis	
ES	mean	0	-0.4	0.3	2.3
	median	0.2	-0.2	0.7	2.2
GR	mean	9.1	0.4	18.8	5.9
	median	0.8	0.1	4	3.6
IE	mean	0.4	-0.2	1.1	2.7
	median	-0.1	-0.2	0.4	4.1
IT	mean	-0.1	-0.5	0.3	4.7
	median	0	-0.4	0.7	1.3
PT	mean	1.7	-0.3	4.4	2.5
	median	0.2	-0.4	3.2	4.8

Changes in yields for 5-year maturities measured in basis points

Pre-debt crisis: 1 Oct 08 to 31 Mar 10; Debt crisis: 1 Apr 10 - 20 Dec 11.

Source: Eser and Schwaab (2012)

Outline

- Endogeneity issues
- Econometric model
- Empirical results
- Conclusion

Endogeneity

$$\Delta y_t^i = c^i + s_t^i + \delta^i SMP_t^i + \varepsilon_t^i$$

News hitting the market

$$SMP_t^i = f(s_t^i)$$
 Purchases are correlated with negative news:
ECB buys in days of greater market pressure

$$\Delta y_t^i = \widetilde{c}^i + \widetilde{\delta}^i SMP_t^i + u_t^i \qquad \qquad u_t^i \equiv s_t^i + \varepsilon_t^i$$

→ If latent variable is omitted, there is an omitted variable bias (the error is correlated with the regressor)

Solution I: Estimate unobserved component

$$\Delta y_t^i = c^i + s_t^i + \delta^i SMP_t^i + \varepsilon_t^i$$

- Recognize that s_t is an 'unobserved component'
- Estimate it via the Kalman Filter
- Use both observed and unobserved factors
- Eser and Schwaab (2012)

Solution 2: Go high frequency

$$\Delta y_t^i = c^i + s_t^i + \delta^i SMP_t^i + \varepsilon_t^i$$

• As data is sampled at higher frequency, the impact of unobserved shocks becomes less severe.

Data

- Data on SMP purchases from Eurosystem.
- Data matched with intraday data on government bond yield from Thomson Reuters Tick Capture Engine.
- Benchmark bonds for 2, 5, and 10-year maturities at 15 minutes frequency between 8am and 6pm.
- Look at bid side of the market, to measure the impact of SMP on willingness of banks to buy government bonds.
- However, similar results when looking at mid-quotes.

Basic model

$$\Delta y_t^i = c^i + \gamma^i \Delta y_{t-1}^i + \sum_{k=0}^3 \delta_k^i SMP_{t-k}^i$$

Specifics of the model are more involved, as it accounts for:

- Lower frequency daily dynamics
- Intraday seasonality patterns
- Dynamics of volatility

First moments

$$\Delta y_{i,t} = \frac{1}{N} \eta_t + \phi_i + \mu_{i,t} + \sqrt{\sigma_t^2 \cdot d_i^2 \cdot g_{i,t}} \cdot \varepsilon_{i,t}$$

Daily component:

$$\Delta y_t = \omega_1 + \sum_{p=1}^{P_1} \beta_p \Delta y_{t-p} + \sum_{j=0}^{J_1} \left[\gamma_{1,j} \sum_{i=1}^N SM P_{i,t-j} \right] + u_t = \eta_t + u_t,$$

Intraday seasonality:

$$\phi_i = \frac{1}{T} \sum_{t=1}^{T} \left[\Delta y_{i,t} - \frac{1}{N} \eta_t \right]$$

Intraday component:

$$x_{i,t} = \omega_2 + \sum_{p=1}^{P_2} \alpha_p x_{i-p,t} + \sum_{j=0}^{J_2} \left[\gamma_{2,j} SM P_{i,t-j} \right] + \nu_{i,t} = \mu_{i,t} + \nu_{i,t},$$

Second moments

$$\Delta y_{i,t} = \frac{1}{N} \eta_t + \phi_i + \mu_{i,t} + \sqrt{\sigma_t^2 \cdot d_i^2 \cdot g_{i,t}} \cdot \varepsilon_{i,t}$$

Daily component:

$$\sigma_t^2 = w_1 + a_1 u_{t-1}^2 + b_1 \sigma_{t-1}^2 + \sum_{j=1}^{J_1} \left[\gamma_{3,j} u_{t-j}^2 I(SMP_{t-j} > 0) \right]$$

Intraday seasonality:

$$d_i^2 = 1/T \sum_{t=1}^T \frac{\nu_{i,t}^2}{\sigma_t^2}.$$

Intraday component:

$$g_{i,t} = (1 - a_2 - b_2) + a_2 \left[\frac{\nu_{i,t-1}}{d_i \sigma_t} \right]^2 + b_2 g_{i-1,t} + \sum_{j=1}^{J_2} \left[\gamma_{4,j} \left[\frac{\nu_{i,t-j}}{d_i \sigma_t} \right]^2 I(SMP_{i,t-j} > 0) \right]$$

Daily estimates – Full sample

	SMP1			SMP2			
	PT	IE	GR	PT	IE	ES	IT
2-year Bonds							
Impact on 1st moment	-0.20	1.96*	0.42	-2.75	-90.3***	0.26	0.24*
	-0.25	1.67	0.54	-0.21	-5.60	0.98	1.78
Impact on 2nd moment	-223.59***	-38.11*	-450.14***	306.13	95.47	23.62	46.58*
	-5.27	-1.71	-4.65	1.65	0.83	1.61	1.73
5-year Bonds							
Impact on 1st moment	-0.62	0.50	0.62	-14.9	-32.7***	0.2	0.15
	-0.97	0.58	1.36	-1.35	-4.63	0.84	1.53
Impact on 2nd moment	-40.99**	4.30	-57.81	370.97*	211.59*	11.30	43.76*
	-12.09	0.91	-1.36	1.77	1.75	1.46	1.83
10-year Bonds							
Impact on 1st moment	-0.29	0.12	0.17	-4.31	-16.8***	0.10	0.055
	-0.59	0.19	0.54	-0.95	-6.06	0.50	0.64
Impact on 2nd moment	-8.47*	0.45	-57.06	-3.14	-25.59	17.39	29.26
	-1.69	0.10	-1.33	-0.15	-0.35	1.17	1.53

Intradaily estimates – Full sample

	SMP1			SMP2			
	PT	IE	GR	PT	IE	ES	IT
2-year Bonds							
Impact on 1st moment	-2.76***	-1.33***	-1.22	-8.08*	-29.60***	-0.19	-0.13
	-3.36	-2.40	-1.20	-1.90	-2.98	-1.05	-1.53
Impact on 2nd moment	-0.47***	0.03***	-0.01***	-0.17***	-0.10***	0.03***	-0.01
	-38.3	7.24	-15.48	-10.2	-5.83	2.34	-0.906179
5-year Bonds							
Impact on 1st moment	-2.24***	-1.67***	-0.32	-11.70*	-27.90***	-0.29***	-0.079
	-4.05	-2.10	-0.59	-1.88	-3.47	-2.25	-1.28
Impact on 2nd moment	-0.12***	-0.049***	0.20***	0.12***	-0.17***	0.11***	-0.01***
	-44.26	-27.89	35.72	11.4	-7.22	8.12	-2.36
10-year Bonds							
Impact on 1st moment	-1.49***	-1.34***	-0.168	-5.20**	-8.2***	-0.30***	-0.08*
	-4.28	-2.46	-0.41	-2.07	-6.33	-3.20	-1.77
Impact on 2nd moment	-0.47***	-0.094***	-0.15***	-0.11***	-0.17**	0.07***	-0.03***
	-23.81	-20.86	-31.8	-15.72	-2.07	7.94	-15.1

Long term impact of EUR 100 ml – 2 year

Long term impact of EUR 100 ml – 5 year

Long term impact of EUR 100 ml -10 year

Counterfactual

Time-varying elasticities – Italy

Time-varying elasticities - Spain

Conclusion

- Assessing the impact on SMP government bond purchases requires careful treatment of endogeneity problems
- More refined analysis shows that SMP was moderately successful at avoiding abrupt market movements and containing volatility, relative to a situation of no intervention
 - Consistent with the stated objective of improving market functioning
- Exploiting high frequency data, it is possible to develop econometric tools to monitor in real time the market impact of purchases