

PROFESSOR MARC FRANCKE - PROFESSOR OF REAL ESTATE VALUATION AT THE UNIVERSITY OF AMSTERDAM CPPI HANDBOOK 2ND DRAFT CHAPTER **5**

PREPARATION OF AN INTERNATIONAL
HANDBOOK ON
COMMERCIAL PROPERTY PRICE
INDICATORS

Frankfurt, 29-30 September 2014

CONTENT

- Introduction
- Threshold considerations
- Data collection & manipulation
- Computation or estimation
 - Hedonic
 - Repeat sales
- Index construction
- Index evaluation

INTRODUCTION

- Transaction price based indices preferred method for constructing CPPIs
 - both stocks and flows are to be recorded "at current value on the market (that is the amount agreed upon by two parties) or at its closest equivalent."
- Steps of CPPI production
 - Data collection & manipulation prior to index computation
 - Computation or estimation of a basic price or value model on which the index will be based
 - 3. Construction of final reported index product based on the model
- Threshold considerations relating steps 1 and 2
- Choices on specific methodologies in all steps

THRESHOLD CONSIDERATIONS (1)

1. Coverage of index

- Included commercial property
- Geographical area
- Depends on data source at hand

Stratification / segmentation

- Non-overlapping market segments (strata) spanning total population
- Goal: individual property pricing dynamics within strata are more homogeneous than between strata
- Property prices are partly determined by demand and supply on space market
- Demand an supply and so stratification depends on
 - Location / Use / Physical quality & size class

3. Frequency

- Depend on data
- Setting number of strata and frequency is a joint decision

THRESHOLD CONSIDERATIONS (2)

- 4. Equal and value weighted indices at elementary level
- For lowest level (stratum/market segment) price returns
- Value weighted price returns
 - Arithmetic repeat sales model
- Equal weighted log price returns
 - Hedonic price model where log price is dependent variable
 - 'Standard' repeat sales model
- Choice between value/equal weights depends on perspective user
 - Value: compare performance of a particular portfolio
 - Equal: each property in index is an equally valid representative

THRESHOLD CONSIDERATIONS (3)

- 5. Constant and varying liquidity indices
- How informative are transaction prices alone?
- For real estate asset market: transaction prices are not a sufficient statistic for the state of the market
- Changes in liquidity tend to be highly correlated with changes in transaction prices and strongly pro-cyclical
- Volume of sales provides important additional information
 - Additional statistic: volume of sale
 - Liquidity adjusted price indices
 Price movements that would have the same liquidity (ease of selling)
 (Fisher et al, 2003; Goetzmann and Peng, 2006)

MANIPULATION

- Transaction prices/date (legal transfer / sales contract)
- Filtering
 - 'Arms-length' (open market) transactions (violated by transaction between related parties)
 - Repeat sales: identification of identical properties (violated by partial sales and construction projects)
 - Required information missing: filter on annualized returns and time between sales
 - Hedonic: minimum set of characteristics at time of sale
 - Set depends on property type (industrial, hotel, retail, office, etc.)
 - Absolute and relative number of transactions is small
 - Characteristics can be replaced by an appraisal value

STEP 2: COMPUTATION OR ESTIMATION (1)

- Methods are identical to ones for computation of RPPI
- Main differences between CRE and RRE
 - More heterogeneous: extensive set of characteristics
 - Less transactions
- Consequences
 - Hedonic price model based on property characteristics difficult to apply in practice
 - Alternatives
 - SPAR
 - Hedonic price model with appraisal value as regressor
 - Smoothing of 'noisy' price indices

STEP 2: COMPUTATION OR ESTIMATION (2)

- Simple averaging & Mix-adjustment
 - Only applicable for homogeneous properties and large number of transactions

- Regression based
 - Hedonic price model
 - Chained (imputed) and pooled (time dummy)
 - Repeat sales model

SPAR method

STEP 2: HEDONIC METHODS (1)

- Models price change of the average transacted property in the market
- Price changes result from changes in
 - Property characteristics
 - Property characteristics parameters (only for imputed model)
 - Time varying constants (otherwise not captured in model)
 - General market conditions
 - Omitted variables
- Imputed hedonic model is unlikely to be applied in practice due to insufficient number of transactions
- Hedonic models can produce 'constant age' price indices

STEP 2: HEDONIC METHODS (2)

Advantages

- Sound basis in economic and index theory
- Use all transactions for which characteristics are available
- Enables sorting of data into specialized indices

Issues

- Data intensive
- Dependence on functional form and model specification
- Omitted variable bias; insufficient quality adjustment
- Pooled model:
 - assumption of time invariant coefficients is unrealistic
 - revision of index
- Chained model:
 - Coefficients may become very volatile over time due to lack of sufficient data
- In between methods are much more complex to estimate

STEP 2: REPEAT SALES METHODS (1)

- Models average price change
- Assumption
 - Property characteristics (coefficients) are constant over time
 - Aging violates this assumption
- Matching methods generalize exact matching of repeat sales
 - However, requires property characteristics
 - Less prone to misspecification and to effects of extreme observations
 - Hedonic approach may lead to better estimates in case of poor matching
- Advantages
 - No need property characteristics which are hard to obtain
 - No omitted variable bias
 - Simple estimation method
 - Tracking price changes experienced by investors

STEP 2: REPEAT SALES METHODS (2)

Issues

- Single sales are omitted
 - Difficult to estimate for smaller market segments
- Potential sample selection bias
 - Overrepresentation of short-held properties
 - Loss aversion: propensity to sell 'winners'
 - Heckman procedure requires property characteristics for total population
- Price index includes aging effect: downward bias
- Price index includes renovations: upward bias
- Not always easy to define 'identical' property
- Revision effects

STEP 3: INDEX CONSTRUCTION (1)

- Definition of representative property (imputed method)
 - Standardized property with fixed characteristics
 - Rolling window average
 - Laspeyres / Paasche / Fisher

Geometric/arithmetic bias correction

- Geometric means of log price returns have a natural interpretation in time series as growth rates
- In cross-sections geometric means do not have a natural interpretation
- Approximations of arithmetic means can be calculated from geometric means

STEP 3: INDEX CONSTRUCTION (2)

Frequency conversion and noise reduction

- In standard models estimates of price levels do not depend on information in preceding and subsequent periods
- Estimates sensitive to noise / outliers, in specific when number of observations per period is low
- Result: saw-toothed price index (high vol., neg. 1st order AC)
- Solutions (both in hedonic and repeat sales model):
 - Post-estimation smoothing: introducing temporal lag bias
 - Replace time dummy variables by a stochastic time series model (random walk with varying drift): less easy to estimate
 - Combine several lower frequency indices to compute a high frequency index (for example 4 Yearly to create a Quarterly index): easy to compute from standard output from regression
 - Yearly indices starting from 1st, 2nd,3rd and 4th quarter

STEP 3: INDEX CONSTRUCTION (3)

- Computation of composite indices
- Composite return is a weighted average of the market segment returns
- Weights: value weighted
 - Stock
 - Transactions
- Weights may be adjusted periodically (yearly), however at a lower frequency than the index (monthly)

INDEX EVALUATION

Standard errors of estimated returns and levels

- Index with lowest average standard error of the estimated returns is to be preferred
 - Number of observations
 - Misspecification and omitting variable problem

Volatility and first order autocorrelation

Noise introduces excess volatility and decreases first order autocorrelation

Revision effects

- Revision effects in repeat sales and pooled hedonic models can be evaluated
- Noise reduction techniques tend to lower revision effects

Temporal bias: lead and lag relations

- Stock market indices tend to lead transaction based indices
- Transaction based indices tend to lead investment return indices

Thank you!

Comments to: Prof. Marc Francke - m.kfrancke@uva.nl

Project WorkSpace: HENDYPLAN – www.hendyplan.com