
Forecasting with Model Uncertainty: Representations
and Risk Reduction∗

Keisuke Hirano† Jonathan H. Wright‡

First version: October 14, 2013
This version: January 1, 2014

Preliminary and incomplete; please do not circulate

Abstract

We consider forecasting with weak predictors. The researcher wants to select a
model (a set of predictors), estimate the parameters, and use this for forecasting.
We investigate the local asymptotic mean square prediction error (MSPE) of different
forecasting schemes: including in-sample using the Akaike information criterion, out-of-
sample forecasting, and splitting the data into subsamples for model selection and
parameter estimation. We consider all these methods both with and without bootstrap
aggregation (bagging). We develop an asymptotic representation result that facilitates
comparison of the procedures. Numerically, we find that for many values of the local
parameter, the out-of-sample and split-sample schemes with bagging perform well. We
also show that an alternative form of bagging uniformly improves the accuracy of the
out-of-sample and split-sample methods.

∗We are grateful to Marine Carrasco, Russell Davidson, Gary Chamberlain, Sylvia Gonçalves and Serena
Ng for very helpful discussions. The usual disclaimer applies.
†Department of Economics, University of Arizona, 1130 E. Helen St., Tucson AZ 85721. Email:

hirano@u.arizona.edu
‡Department of Economics, Johns Hopkins University, 3400 North Charles St., Baltimore MD 21218.

Email: wrightj@jhu.edu



1 Introduction

In this paper, we reconsider the problem of forecasting when there is uncertainty about which

variables to include in the forecasting model. As is well known, a model that fits well in

sample may not be good for forecasting—a model may fit well in-sample, only to turn out to

be useless in prediction. Consequently, it is common practice to select the model based on

pseudo-out-of-sample fit from a sequence of recursive or rolling predictions. Parameters are

then estimated over the whole sample period. The idea of using an out-of-sample criterion

was advocated by Ashley, Granger, and Schmalensee (1980) and Clark (2004), and is very

intuitive: it is what a researcher could have done at the time. But alternatively, one might

select the model based on in-sample fit, but adjust for overfitting by using an information

criterion, such as the Akaike Information Criterion (AIC) (Akaike, 1974), as advocated by

Inoue and Kilian (2006).

We consider a setting with a fixed number k of potential predictors, each of which has a

coefficient that is local to zero. Selecting a forecasting model amounts to selecting a subset

of the k potential predictors—there are thus M = 2k possible models among which we

must choose. Having chosen the model, we then have to estimate the parameters and use

these for forecasting. Although some model will be best in terms of predictive accuracy, the

local-to-zero nesting means that we can never consistently select that model. We consider

various methods of model selection and forecasting: including using in-sample fit with the

AIC information criterion; selecting the model based on recursive pseudo-out-of-sample

forecast accuracy and then using the whole dataset for parameter estimation; and splitting

the sample into two, using one part for model selection and the other for parameter estimation.

We call this last method the split-sample approach. Unlike the first two methods, it is not

commonly used in practice. But it does ensure independence between parameter estimates

and model selection, unlike methods based on in-sample fit (Leeb and Pötscher, 2005; Hansen,

2009), and also unlike the standard out-of-sample approach. We also consider the addition

of a bootstrap aggregation (bagging) step (Breiman, 1996) in which the data are resampled,

the forecasting method is applied to the resampled data, and the resulting forecasts are then
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averaged over all the bootstrap samples.

We obtain asymptotic characterizations of these forecasting procedures under the local

parametrization. A key step is to obtain an asymptotic representation of a certain partial

sum process as the sum of a term that is directly informative about the local parameters,

and another term that is an independent Gaussian process. This allows us to provide

a limit-experiment type representation of the procedures, from which we can calculate

normalized local asymptotic mean square prediction errors up to O(T−1) terms. We show

that the recursive pseudo-out-of-sample and split-sample procedures are inefficient, in the

sense that their limit distributions depend on the ancillary Gaussian noise process.

Our characterizations also suggest ways to improve upon these procedures. Bagging has

a smoothing effect that alters the risk properties of estimators, but it can also reduce the

influence of the extraneous noise term in the out-of-sample and split-sample methods. Earlier

theoretical work on bagging, notably Bühlmann and Yu (2002), emphasized its smoothing

effect but not the noise reduction effect. We also develop an alternative version of bagging

that solely removes the impact of the ancillary noise term; doing this is shown to uniformly

improve the out-of-sample and split-sample methods asymptotically.

We then numerically compare the various procedures, both in terms of their local asymptotic

risk, and their finite-sample performance. Without bagging there is no unambiguous rank

ordering among these three methods, but we find that for many values of the localization

parameter, in-sample forecasting using the AIC gives the most accurate forecasts, out-of-sample

prediction does worse, and the split-sample method does worst of all. This is intuitive because

the out-of-sample and split-sample schemes are in some sense wasting data, and is essentially

the argument of Inoue and Kilian (2004) and Inoue and Kilian (2006) for the use of in-sample

rather than out-of-sample predictability tests. However, introducing the bagging step, or

our alternative to bagging, changes the rank ordering substantially. It generally reduces

the local asymptotic mean square prediction error of the in-sample forecasts, but makes a
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more dramatic difference to the out-of-sample and split-sample forecasts1. In our numerical

work, we find no case in which standard bagging fails to reduce the local asymptotic mean

square prediction error of out-of-sample and split-sample forecasts. Meanwhile, we show

theoretically that the alternative form of bagging improves the accuracy of out-of-sample

and split-sample forecasts uniformly in the localization parameter.

For many values of the localization parameter, the incorporation of the bagging step

entirely reverses the relative ordering of the in-sample, out-of-sample, and split-sample

prediction methods. When the true model includes only a single predictor and the number of

candidate predictors is large, we find that the use of the split-sample approach with a bagging

step provides the most accurate forecasts from among any of the methods considered here.

In the next section, we set up the local parametrization, introduce the various procedures

we will evaluate, and derive asymptotic characterizations via our representation theorem for

the partial sum process. Section 3 explores the asymptotic and finite-sample risk properties

of the procedures through a series of numerical experiments. Section 4 extends the results to

the multi-step forecasting case with serially correlated errors and to vector autoregressions.

Section 5 concludes.

2 Local Asymptotics

The setup is a standard regression model in which

yt = β′xt + ut (1)

where ut is iid with mean 0, finite variance σ2 and 2+δ finite moments for some δ > 0, xt

is a k × 1 stationary vector such that E(xtx
′
t) = Σxx where Σxx is finite and nonsingular

and k is fixed. We observe data on {xt, yt} for t = 1, . . . , T, along with xT+1. Our goal is

to forecast yT+1. We assume that the slope coefficient is local to zero as β = βT = T−1/2b,

1One other useful feature of the out-of-sample forecasting setup is that it can be constructed to use only
real-time data which precisely mimics the data available to a researcher in the presence of data revisions.
Unfortunately, adding a bootstrap aggregation step destroys this feature.
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where b ∈ Rk is the local parameter. This local parametrization was also used by Inoue and

Kilian (2004).

The researcher is unsure as to which elements of xt to include in the model, and considers

eleven possible strategies:

1. Big model. Let β̂ =
(∑T

t=1 xtx
′
t

)−1∑T
t=1 xtyt be the unrestricted OLS estimator.

Estimate the full model (with no restrictions on β) using OLS on the whole dataset and use

this estimate for forecasting.

2. The positive-part James-Stein estimator. Estimate the large model on the whole

dataset by OLS giving the estimator β̂ and let V̂ denote its estimated asymptotic variance-covariance

matrix. Then estimate the parameter vector as

β̂max(1− k − 2

T β̂′V̂ −1β̂
, 0)

if k > 2, and use this for forecasting (James and Stein, 1961; Baranchik, 1964).

3. Small model. Impose β = 0 and use this for forecasting.

4. In-sample. Fit the model to the data and use AIC to decide which combination of the

xts to use (including all and none). With k = 1, of course this amounts to just picking the

big or the small model, but in general, there are 2k possible models to choose among.

5. Out-of-sample. Estimate the model recursively starting a fraction π of the way through

the sample. Pick between among the possible models depending on which predicts best out

of sample. Then estimate the chosen model over the full sample and use for forecasting.2

6. Split-sample. Apply AIC to the first π of the sample and select the best model. Then

estimate the chosen model over the remainder of the sample and use for forecasting. Note

that there is no overlap between the model selection and estimation samples in this scheme.

7. Big model with bagging. This means resampling with replacement from the pairs

{xt, yt} with replacement, constructing the forecast using the resampled data as in (1), and

2As Clark (2004) notes, some researchers define “out-of-sample” forecasting to mean using the whole
dataset for model selection and then estimating parameters only on a subset of the data. We are following
the Ashley, Granger, and Schmalensee (1980) and Clark (2004) definition of out-of-sample forecasting.
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then averaging the resulting forecasts over L different bootstrap samples.

8. Positive-part James-Stein estimator with bagging. Applying bagging to the

positive-part James-Stein estimator.

9. In-sample with bagging. Apply bagging to the in-sample/AIC scheme.

10. Out-of-sample with bagging. Apply bagging to the out-of-sample scheme. Note

that this means applying bagging to the entire methodology of selecting a model based on

pseudo-out-of-sample forecast accuracy and then estimating the parameters of the selected

model. It’s not just an out-of-sample evaluation of bagging forecasts.

11. Split-sample with bagging. Apply bagging to the split-sample scheme.

Each forecast can be written in the form β̃′xT+1 (typically, some elements of the coefficient

vector are constrained to be zero). We consider the unconditional mean square prediction

error:

MSPE = E(yt+1 − β̃′xT+1)2 = E(uT+1 + (β − β̃)′xT+1)2

= σ2 + E[(β̃ − β)′Σxx(β̃ − β)] + o(T−1) (2)

The first term on the right hand side of (2) is the asymptotic forecast error neglecting

parameter uncertainty, which is the same for all forecasts. The second term is O(T−1) and

this differs across forecasts. Because it is only this second term that we can do anything

about, we define the normalized mean square prediction error as NMSPE = T (MSPE −

σ2) = E[T 1/2(β̃ − β)′ΣxxT
1/2(β̃ − β)], and consider this exclusively henceforth. This can be

viewed as the regret risk corresponding to normalized squared error loss for β̃. Alternatively,

we could consider forecast accuracy conditional on a particular value for xT+1, which would

lead to a different criterion, but we focus on the unconditional criterion for the remainder of

the paper.

The model in (1), for any fixed σ and fixed distribution for ut satisfying suitable regularity

conditions, is locally asymptotically normal (LAN). As a result, it has a limit experiment

representation (see for example van der Vaart, Chs. 7-9). In particular, consider any
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estimator sequence β̃ with limit distributions in the sense that

T 1/2β̃ →d,b Lb,

where →d,b denotes convergence in distribution3 under the local parameter b, and Lb is a

law that may depend on b. Then, the estimator β̃ has an asymptotic representation as a

randomized estimator in the shifted normal model: if Y is a single draw from the N(b, σ2Σ−1
xx )

distribution, and U is random variable independent of Y (with sufficiently rich support4),

there exists an estimator S(Y, U) with

S(Y, U) ∼ Lb

for all b. That is, the sequence T 1/2β̃ is asymptotically equivalent to the randomized

estimator S under all values of the local parameter.

While this general asymptotic representation is very powerful, it leaves open how to find

the representation S corresponding to any particular estimator. However, we can specialize

the result to obtain useful characterizations of the procedures we are considering. All of the

estimators we consider depend crucially on the partial sum process

T−1/2

[Tr]∑
t=1

xtyt = T−1/2

[Tr]∑
t=1

xt(x
′
tb/
√
T + ut).

This converges to a k-dimensional Brownian motion with drift, and by the properties of

Brownian motion, we can decompose the limit into two terms:

Theorem 1: As T → ∞, the partial sum process T−1/2
∑[Tr]

t=1 xtyt →d ΣxxY (r) where

Y (r)
d
= rY + UB(r), Y ∼ N(b, σ2Σ−1

xx ) and UB(r) is a k-dimensional Brownian bridge with

covariance matrix σ2Σ−1
xx that is independent of Y.

3In the sequel, we will use →d to denote convergence in distribution under b when the dependence on b
is clear from the context.

4Typically, a representation S(Y, U) exists for U distributed uniform on [0, 1], but for our results below,
it is useful to allow U to have a more general form.
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The proofs of the Theorems are given in the Appendix. With Theorem 1, we can obtain

explicit asymptotic representations of estimator sequences in terms of the asymptotically

sufficient component Y = Y (1) and (possibly) an independent stochastic component U = UB.

For g ⊂ {1, . . . , k}, let β̂(g) denote the vector of OLS coefficient estimates corresponding to

the predictors indexed by g, with zeros in all other locations. Let Y (r, g) denote the k × 1

vector with the elements of Y (r) in the locations indexed by g and zeros elsewhere. Define

n(g) as the number of elements in g. Let Σxx(g) denote the kxk matrix that consists of the

elements of Σxx in the rows and columns indexed by g and zeros in all other locations, and let

H(g) = Σxx(g)+Σxx, where Σxx(g)+ denotes the Moore-Penrose inverse of Σxx(g). It follows

immediately from Theorem 1 that T 1/2β̂ →d Y (1) and T 1/2β̂(g)→d H(g)Y (1, g). Theorem

2 provides the asymptotic distribution of the various estimates incorporating model selection

without bagging.

Theorem 2: In large samples, the distribution of the parameter estimates (without bagging)

is as follows:

(i) Using the big model:

T 1/2β̃ →d Y (1) (3)

(ii) Using the positive-part James-Stein estimator:

T 1/2β̃ →d Y (1) max(1− k − 2

Y (1)′Y (1)
, 0) (4)

(iii) Selecting the model using the AIC:

T 1/2β̃ →d

∑
g∗

H(g∗)Y (1, g∗)1{g∗ = arg min
g

[Y (1, g)′H(g)ΣxxH(g)Y (1, g)

−2Y (1, g)′H(g)ΣxxY (1) + 2n(g)σ2]} (5)

(iv) Selecting the model minimizing recursive out-of-sample error starting a fraction π of the

7



way through the sample:

T 1/2β̃ →d

∑
g∗

H(g∗)Y (1, g∗)1{g∗ = arg min
g

[

∫ 1

π

Y (r, g)′

r
H(g)ΣxxH(g)

Y (r, g)

r
dr

−2

∫ 1

π

Y (r, g)′

r
H(g)ΣxxdY (r)]} (6)

(v) Using the split-sample method, using the first fraction π of the sample for model selection

and the rest for parameter estimation:

T 1/2β̃ →d

∑
g∗

H(g∗)
Y (1, g∗)− Y (π, g∗)

1− π
1{g∗ = arg min

g
[
1

π
Y (π, g)′H(g)ΣxxH(g)Y (π, g)

− 2

π
Y (π, g)′H(g)ΣxxY (π) + 2n(g)σ2]} (7)

where
∑

g∗ denotes the summation over the M = 2k possible models. Using the small model,

we just have β̃ = 0.

The asymptotic NMSPEs are given by the expected sum of squared deviations of the

asymptotic distributions in Theorem 2 from b.

Inoue and Kilian (2004) considered the local power of some in-sample and out-of-sample

tests of the hypothesis that β = 0. They derived equation (3) and a result very similar to

equation (6).

Of course, there are other criteria besides AIC that we could use for in-sample model

selection. Some of these are asymptotically equivalent to AIC, such as Mallows’ Cp criterion

(Mallows, 1973) or leave-one-out cross-validation. Using any of these information criteria for

in-sample model selection will give the asymptotic NMSPE in equation (5). Alternatively,

one could use the Bayes information criterion (BIC). In the present setting, because the

penalty term goes to zero at a rate slower than T−1, the BIC will always pick the small

model (β = 0).

The limiting distributions in equations (3)-(5) are all functions of Y alone (note that

Y (1) = Y because UB(1) = 0). They are also easy to interpret via the limit of experiments
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framework: OLS corresponds to the estimator S = Y in the limit experiment Y ∼ N(b, σ2Σ−1
xx ).

The positive-part James-Stein estimator is asymptotically equivalent to a shrinkage estimator

in the normal shift model, and the limiting distribution of the AIC procedure is equivalent

to applying AIC model selection to the normal shift model. The estimators other than

the out-of-sample and split-sample estimators can all be thought of as generalized shrinkage

estimators (Stock and Watson, 2012) as their limiting distributions are of the form: T 1/2β̃ →d

Y g(Y ) for some nonlinear function g(Y ). In contrast, the limiting distributions in equations

(6) and (7) are functions of both Y and an independent Brownian bridge, UB(r). Thus the

out-of-sample and split sample schemes are based on Y but also on an additional random

noise component. This means that they are not just shrinkage estimators, asymptotically.

Moreover, based on this representation, it seems plausible that these procedures can be

improved upon, a point to which we will return below.

Equations (5), (6) and (7) simplify considerably in the case of orthonormal predictors

(Σxx = Ik). In this case, the estimators using the AIC, out-of-sample, and split sample

strategies are

T 1/2β̃ →d

∑
g∗

Y (1, g∗)1{g∗ = arg min
g

[Y (1, ḡ)′Y (1, ḡ) + 2n(g)σ2]}

T 1/2β̃ →d

∑
g∗

Y (1, g∗)1{g∗ = arg min
g

[

∫ 1

π

Y (r, g)′

r

Y (r, g)

r
dr − 2

∫ 1

π

Y (r, g)′

r
dY (r)]}

and

T 1/2β̃ →d

∑
g∗

Y (1, g∗)− Y (π, g∗)

1− π
1{g∗ = arg min

g
[
1

π
Y (π, ḡ)′Y (π, ḡ) + 2n(g)σ2]}

respectively, where ḡ = {1, 2, . . . , k} \ g.

Next we consider the asymptotic distributions of the bagged versions of the forecast

procedures. The ith bagging step resamples from the pairs {(xt, yt), t = 1, . . . , T} with

replacement to form a pseudo-sample {x∗t (i), y∗t (i), t = 1, . . . , T}. The forecast on the ith

bootstrap sample can be written as β̃′ixT . This is repeated L times, and the L forecasts are
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averaged to obtain the bagged forecast. The next theorem provides a key result for obtaining

the limiting distribution of a single bootstrap sample.

Theorem 3: Let {x∗t (i), y∗t (i), t = 1, . . . , T} be the ith bootstrap sample. In large samples

T−1/2Σ
[Tr]
t=1x

∗
t (i)y

∗
t (i) →d Σxx(rY + Vi(r)) ≡ ΣxxY

∗
i (r) where Y is as in Theorem 1 and

{Vi(r)}Li=1 are k × 1 Brownian motions with covariance matrix σ2Σ−1
xx that are independent

of Y and of each other.

Thus the limiting distribution of a single bootstrap draw for the partial sums process mimics

the result in Theorem 1, except that the Brownian Bridge UB is replaced with a Brownian

motion Vi. Using this result, we obtain asymptotic representations for a single bootstrap

draw of the forecast procedures.

Theorem 4: In the ith bootstrap sample (i = 1, . . . , L), in large samples, the distributions

of the alternative parameter estimates including a bagging step are as follows:

(i) Using the big model:

T 1/2β̃i →d Y
∗
i (1) (8)

(ii) Using the positive-part James-Stein estimator:

T 1/2β̃i →d Y
∗
i (1) max(1− k − 2

Y ∗i (1)′Y ∗i (1)
, 0) (9)

(iii) Selecting the model using the AIC:

T 1/2β̃i →d

∑
g∗

H(g∗)Y ∗i (1, g∗)1{g∗ = arg min
g

[Y ∗i (1, g)′H(g)ΣxxH(g)Y ∗i (1, g)

−2Y ∗i (1, g)′H(g)ΣxxY
∗
i (1) + 2n(g)σ2]} (10)
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(iv) Selecting the model minimizing out-of-sample error:

T 1/2β̃i →d

∑
g∗

H(g∗)Y ∗i (1, g∗)1{g∗ = arg min
g

[

∫ 1

π

Y ∗i (r, g)′

r
H(g)ΣxxH(g)

Y ∗i (r, g)

r
dr

−2

∫ 1

π

Y ∗i (r, g)′

r
H(g)ΣxxdY

∗
i (r)]} (11)

(v) Using the split-sample method:

T 1/2β̃i →d

∑
g∗

H(g∗)
Y ∗i (1, g∗)− Y ∗i (π, g∗)

1− π
1{g∗ = arg min

g
[
1

π
Y ∗i (π, g)′H(g)ΣxxH(g)Y ∗i (π, g)

− 2

π
Y ∗i (π, g)′H(g)ΣxxY

∗
i (π) + 2n(g)σ2]} (12)

where
∑

g∗ denotes the summation over the M possible models and Y ∗i (r, g) is a k×1 vector

with the elements of Y ∗i (r) in the locations indexed by g and zeros elsewhere.

The distribution of the parameter estimates from bagging are then given by averaging the

expressions in equations (8)–(12) over L different draws of Vi(r). Finally, the asymptotic

NMSPEs are given by the expected sum of squared elements of these asymptotic distributions.

For all of the bagged procedures characterized in Theorem 4, averaging over the L

draws for Vi(r) implies that their limiting distributions depend on Y alone. In the case

of the big model (the full OLS estimator), integrating over Vi(r) leads to the same limit

as the original OLS estimator without bagging, and the inclusion of the bagging step

is asymptotically irrelevant. However, for the other procedures, bagging changes their

asymptotic distributions. In the case of the out-of-sample and split-sample procedures,

bagging results in limiting distributions that do not depend on random elements other than

Y . This suggests that bagging may be particularly effective in improving the risk properties

of these procedures.
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2.1 Shrinkage Representations in the case k = 1

In the case k = 1, some of the expressions in Theorems 2 and 4 can be simplified. Without

bagging, for the AIC estimator we have:

T 1/2β̃ →d Y 1(|Y | >
√

2σ̃)

where σ̃ = σΣ
−1/2
xx . For the split sample estimator, we have:

T 1/2β̃ →d z11(|z2| > σ̃
√

2/π)

where z1 = Y + UB(1)−UB(π)
1−π and z2 = Y + UB(π)

π
. By direct calculations, z1 is N(b, σ̃2

1−π ), z2

is N(b, σ̃
2

π
) and z1 and z2 are mutually independent.

As observed earlier, without bagging, the estimators other than the out-of-sample and

split-sample estimators have shrinkage representations of the form: T 1/2β̃ →d Y g(Y ) for

some nonlinear function g(Y ). When we add in the bagging step, all of the estimators,

including the out-of-sample and split-sample estimators, have shrinkage representations of

this form. For the AIC estimator, with bagging, we have:

T 1/2β̃ →d Y − Y Φ(

√
2σ − Y
σ̃

) + σ̃φ(

√
2σ − Y
σ̃

) + Y Φ(
−
√

2σ − Y
σ̃

)− σ̃φ(
−
√

2σ − Y
σ̃

)

shown in proposition 2.2 of Bühlmann and Yu (2002) for the case Σxx = 1.5

Meanwhile, for the split-sample estimator in the ith bootstrap sample, we have:

T 1/2β̃i →d z1(i)1(|z2(i)| > σ
√

2/π)

where z1(i) = Y + Vi(1)−Vi(π)
1−π and z2(i) = Y + Vi(π)

π
. By direct calculations, z1(i)|Y is N(Y, σ̃2

1−π ),

5Indeed, given the orthonormal setting, even if k > 1, if we sort the coefficient estimates by their absolute
magnitude and apply AIC sequentially to these models, dropping variables one at a time as long as called for
by the information criterion, then the above two expressions will apply to each element of β̃− β (Bühlmann
and Yu, 2002; Stock and Watson, 2012). But the use of the AIC that we are considering in this paper is to
select among all 2k possible models and so no such simplification is available in this case.
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z2(i)|Y is N(Y, σ̃
2

π
) and the two are independent, conditional on Y. Thus for the overall

split-sample with bagging estimator:

T 1/2β̃ →d Y − Y Φ(

√
2σ −

√
πY

σ̃
) + Y Φ(

−
√

2σ −
√
πY

σ̃
)

We have no such simplified expression for the out-of-sample with bagging estimator, but

we still know from equation (11) that the limit is a function of Y alone.

2.2 Alternative Bagging Scheme

The asymptotic distribution for the out-of-sample and split-sample estimators in Theorem 2

suggests a way to improve them. Both estimators have asymptotic representations that are

nontrivial functions of both Y = Y (1) ∼ N(b, σ2Σ−1
xx ), and U = UB where UB is a Brownian

bridge independent of Y . In the statistical experiment corresponding to observing the pair

(Y, U), the variable Y is sufficient. Thus, for an estimator S(Y, U), consider the estimator

S̃(Y ) = E[S(Y, U)|Y ].

By the Rao-Blackwell theorem, the risk of S̃(Y ) is less than or equal to that of S(Y, U),

for any convex loss function. In particular, the conditional estimator will have weakly lower

NMSPE than the original estimator, for all values of b. Our numerical calculations below

indicate that the risk is strictly lower, for at least some values of b. Hence, the out-of-sample

and split-sample procedures are asymptotically inadmissible.

To implement the conditional estimators, we can employ a variant of the bagging scheme.

Recall that T 1/2β̂(g) →d H(g)Y (1, g). We could take independent artificially generated

Brownian bridges {U i
B(r)}Li=1 with covariance matrix σ̂Σ̂−1

xx , where σ̂2 and Σ̂xx are consistent
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estimators of σ2 and Σxx, respectively. Then, for each i, consider the estimators:

∑
g∗

β̂(g∗)1{g∗ = arg min
g

[

∫ 1

π

[T 1/2β̂(g) + Ĥ(g)
U i
B(r, g)

r
]′Σ̂xx[T

1/2β̂(g) + Ĥ(g)
U i
B(r, g)

r
]dr

−2

∫ 1

π

[T 1/2β̂(g) + Ĥ(g)
U i
B(r, g)

r
]′Σ̂xxT

1/2β̂dr

−2

∫ 1

π

[T 1/2β̂(g) + Ĥ(g)
U i
B(r, g)

r
]′Σ̂xxdU

i
B(r)}

where Ĥ(g) = Σ̂xx(g)+Σ̂xx and

∑
g∗

[β̂(1, g∗)− T−1/2U
i
b(π, g

∗)

1− π
]

1{g∗ = arg min
g

[
1

π
[T 1/2πβ̂(g) + Ĥ(g)U i

B(π, g)]′Σ̂xx[T
1/2πβ̂(g) + Ĥ(g)U i

B(π, g)]

− 2

π
[T 1/2πβ̂(g) + Ĥ(g)U i

B(π, g)]′Ĥ(g)Σ̂xx[T
1/2πβ̂ + U i

B(π)] + 2n(g)]}

where U i
B(r, g) is the vector with the elements of U i

B(r) in the locations indexed by g and

zeros everywhere else. Let Ỹi(r) = rY + U i
B(r) and Ỹi(r, g) be a k × 1 vector with the

elements of Ỹi(r) in the locations indexed by g and zeros elsewhere. For each i, the above

two estimators have the distributions:

T 1/2β̃i →d

∑
g∗

H(g∗)Ỹi(1, g
∗)1{g∗ = arg min

g
[

∫ 1

π

Ỹi(r, g)′

r
H(g)ΣxxH(g)

Ỹi(r, g)

r
dr

−2

∫ 1

π

Ỹi(r, g)′

r
H(g)ΣxxdỸi(r)]} (13)

and

T 1/2β̃i →d

∑
g∗

H(g∗)
Ỹi(1, g

∗)− Ỹi(π, g∗)
1− π

1{g∗ = arg min
g

[
1

π
Ỹi(π, g)′H(g)ΣxxH(g)Ỹi(π, g)

− 2

π
Ỹi(π, g)′H(g)ΣxxỸi(π) + 2n(g)σ2]} (14)

respectively, which are the same distributions as in equations (6) and (7). Then average these
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estimators over i. After this step of averaging over different realizations of the Brownian

bridge, the asymptotic distributions depend on Y alone. Thus, use of these estimators

represents a form of bagging of the out-of-sample and split-sample estimators where the

bootstrap aggregation is done by taking draws from the part of the asymptotic distribution

that is independent of Y.

Note that this alternative form of bagging does not apply to the in-sample estimator

because there is no ancillary noise process to eliminate in this case.

The approach of averaging over different realizations of a Brownian bridge does not have

the form of a standard bootstrap. But the conditional estimators can also be implemented

via a scheme where we resample the data. Let β̂ be the OLS estimate, using the full sample

and all predictors and let et = yt − x
′
tβ̂. Suppose that there are L bootstrap draws and let

{θt(i)} be ±1, each with equal probability and independent across t and i, for t = 1, ...T and

i = 1, ...L. Let zt = xtyt = xtx
′
tβ̂ + xtet and define the ith bootstrap draws of zt as:

z∗t (i) = xtx
′

tβ̂ + θt(i)xtet − T−1ΣT
s=1θs(i)xses (15)

All the estimators considered are functions of {zt}Tt=1 alone. Our propose resampling scheme

replaces zt by z∗t (i), computes the estimator, and then averages the resulting estimator over

i. Note that this scheme does not resample {yt} or {xt} separately, but rather draws from

the scores {zt} directly.

In each bootstrap sample, the partial sum process is:

T−1/2Σ
[Tr]
t=1z

∗
t (i) = T−1/2Σ

[Tr]
t=1xtx

′

tβ̂ + T−1/2Σ
[Tr]
t=1θtxtet − T−1/2rΣT

s=1θsxses

= T−1/2Σ
[Tr]
t=1xtx

′

tβ̂ + T−1/2Σ
[Tr]
t=1θtxtεt − T−1Σ

[Tr]
t=1θtx

′

txtT
1/2(β̂ − β)

− rT−1/2ΣT
s=1θsxsεs + rT−1ΣT

s=1θsx
′

sT
1/2(β̂ − β)

= T−1/2Σ
[Tr]
t=1xtx

′

tβ̂ + T−1/2Σ
[Tr]
t=1θtxtεt − rT−1/2ΣT

s=1θsxsεs + op(1)

→d ΣxxỸi(r).
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Thus, the out-of-sample and split sample estimators applied to the bootstrapped data will

have the limiting distributions in equations (13) and (14). Averaging over i then gives the

required conditional estimators.

Breiman (1996) gave a heuristic argument for why bagging weakly reduces mean square

error, but in fact the standard form of bagging can increase mean square error. The

calculations of Bühlmann and Yu (2002) showed this for the case of estimation with AIC

model selection. See also Andreas and Stuetzle (2000) and Friedman and Hall (2007).

However the alternate form of bagging, based on Rao-Blackwellization, does indeed weakly

reduce risk, asymptotically.

2.3 Unmodelled Structural Change

A variant of our basic model specifies that yt = β′txt + ut where β0 = 0, βt = T−1Σt
s=1ηs and

the ηts are iid with mean zero, variance σ2
η and 2+δ finite moments and are independent of

ut. Theorem 5 gives the asymptotic distribution of the partial sum process T−1/2Σ
[Tr]
t=1xtyt

in this case:

Theorem 5: As T →∞, the partial sum process

T−1/2

[Tr]∑
t=1

xtyt →d ΣzzZ(r)

where Z(r)
d
= ση

∫ r
0
W (s)ds+rξ+UB(r) , ξ ∼ N(0, σ2Σ−1

xx ), W (r) is a standard k-dimensional

Brownian motion, UB(r) is a k-dimensional Brownian bridge with covariance matrix σ2Σ−1
xx ,

and ξ, W (r) and UB(r) are all mutually independent.

Suppose that the researcher ignores the possibility of structural change, and simply uses the

available estimators for forecasting. The limiting distributions of the estimators will be

as in Theorems 2 and 4 with Y (r) replaced by Z(r) and Y ∗i (r) replaced by rZ(1) + σVi(r)

everywhere.
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2.4 Model Combination

It may also be appealing to combine forecasts made from multiple models, instead of selecting

a single model (Bates and Granger (1969) and Timmermann (2006)). Recalling that β̂(1, g)

denotes the parameter estimate from the model containing the variables indexed by g (with

zeros in other locations), then we could estimate the parameter vector as Σgw(g)β̂(1, g),

where Σg denotes the sum over all 2k possible models and the weights sum to 1. As

examples of weighting schemes, we could set w(g) = exp(−AIC(g)/2)
Σg∗ exp(−AIC(g∗)/2)

(Buckland, Burnham,

and Augustin, 1997) or wi = exp(−σ̂2(g))
Σg∗ exp(−σ̂2(g∗))

where AIC(g) and σ̂2(g) denote the Akaike

Information Criterion and out-of-sample mean of squared residuals in the model indexed by g.

Alternatively, to do a combination version of the split-sample scheme, we could estimate the

parameter vector as Σgw(g)β̂∗(π, g) where w(g) = exp(−AIC(π,g)/2)
Σg exp(−AIC(π,g)/2)

and AIC(π, g) denotes

the Akaike Information Criterion for the model indexed by g computed only over the first

fraction π of the sample.

Theorem 6: If the parameter vector is estimated by Σgw(g)β̂(1, g) then in large samples,

the distributions of the alternative parameter estimates will be:

σ2E{ΣgY (1, g)w(g))}

where

w(g) ∝ exp(−[Y (1, g)′H(g)ΣxxH(g)Y (1, g)− 2Y (1, g)′H(g)ΣxxY (1) + 2n(g)σ2]/2)

or

w(g) ∝ exp(−[

∫ 1

π

Y (r, g)′

r
H(g)ΣxxH(g)

Y (r, g)

r
dr − 2

∫ 1

π

Y (r, g)′

r
H(g)ΣxxdY (r)])

for exponential AIC and mean square prediction error weights, respectively. Meanwhile, if

the parameter vector is instead estimated by Σgw(g)β̂∗(π, g) with exponential AIC weights,
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then in large samples, the distributions of the alternative parameter estimates will be:

σ2E{Σg∗
Y (1, g)− Y (π, g)

1− π
w(g)}

where

w(g) ∝ exp(−[
1

π
Y (π, g)′H(g)ΣxxH(g)Y (π, g)− 2

π
Y (π, g)′H(g)ΣxxY (π) + 2n(g)σ2]/2)

The standard bagging step can be added to any of these methods for forecast combination

and the resulting asymptotic NMSPEs in the ith of L bootstrap samples are also given by

Theorem 6, except with Y (.) and Y (., g) replaced by Y ∗i (.) and Y ∗i (., g) everywhere. Or the

alternate bagging step can be added, and Theorem 6 would still apply, except with Y (.) and

Y (., g) replaced by Ỹi(.) and Ỹi(., g).

An alternative and more standard way to obtain combination weights for the out-of-sample

forecasting scheme would be to weight the forecasts by the inverse mean square error (Bates

and Granger (1969) and Timmermann (2006)). Under our local asymptotics, this will give

each model equal weight in large samples.

2.5 Numerical Work

Given the expressions in Theorems 2 and 4, we can simulate the asymptotic NMSPE for

different choices of the localization parameter b and the number of potential predictors k.

None of the methods gives the lowest asymptotic NMSPE uniformly in b. Always using the

big model is minmax, but is not necessarily the best choice with other loss functions. In

all cases, bagging is implemented using 100 bootstrap replications, the out-of-sample and

split-sample methods both set π = 0.5, and we set Σxx = Ik. The asymptotic NMSPEs are

all symmetric in b and are consequently shown only for non-negative b.

Figure 1 plots the root of the asymptotic NMSPE of the in-sample, out-of-sample and

split-sample methods, both with and without bagging for the case k = 1 against b. For the
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out-of-sample and split-sample procedures, results are also shown using the alternative form

of bagging described in subsection 2.2: the asymptotic distributions consist of equations (13)

and (14), averaged over i.

Among the methods without bagging, selecting the model in-sample by AIC does better

than the out-of-sample scheme for most values of b, which in turn dominates the split-sample

method. But bootstrap aggregation changes things. Bagging helps with the in-sample

method for some but not all values of b—this was also found by Bühlmann and Yu (2002).

It makes a more dramatic difference for the out-of-sample and split-sample methods. For

these, either form of bagging reduces the asymptotic NMSPE for all values of b, and makes

the out-of-sample and split-sample methods much more competitive. The fact that bagging

improves these methods uniformly in b is just a numerical result for the standard form of

bagging, but it is also a theoretical result for the alternative form of bagging. Neither the

standard nor alternative form of bagging dominates the other in terms of local asymptotic

NMSPE.

Among all the prediction methods represented in Figure 1, which one the researcher would

ultimately would want to use depends on b, which is in turn not consistently estimable. But

the split-sample and out-of-sample methods do best for many values of the localization

parameter, as long as the bagging step is included. Indeed, for all b, the best forecast is

some method using bagging.

We next consider the case where the number of potential predictors k is larger, but only

one parameter actually takes on a nonzero value (of course the researcher does not know

this). Without loss of generality, we let the nonzero element of b be the first element and so

specify that b = (b1, 0, ...0)′. Figure 2 plots the root asymptotic NMSPE for k = 3 against

b1 for in-sample, out-of-sample and split sample methods both without and with bagging.

The positive-part James-Stein estimator is also included. The split-sample method with

either the standard or alternative form of bagging compares very favorably with the other

alternatives.

We finally consider the case where b has k elements and we do a grid search over k̄ of
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these elements, setting the remaining elements to zero. As this is done by grid search, it

is only feasible for k̄ = 1, 2. In Table 1, we list the cases in which one method dominates

another one uniformly over the nonzero elements of b in terms of local asymptotic NMSPE for

various pairs of possible forecasting methods. We find that in all cases, the, out-of-sample

forecasts with bagging (either standard or alternate form) dominate those without. For

the standard form of bagging, this is a numerical result, but for the alternate form it is a

theoretical one, as discussed above. In this sense, one should never use the conventional

out-of-sample forecasting methodology without bagging. Also, the split-sample forecasts

with bagging (either standard or alternate form) dominate both the out-of-sample forecasts

without bagging and the split sample forecasts without bagging.

In Table 1, if k ≥ 5 and k̄ = 1 then the split-sample scheme with either form of

bagging dominates in-sample forecasting (with or without bagging), the maximum-likelihood

estimator and the James-Stein estimator. Thus it seems that the split-sample forecasting

scheme with bagging does best if the model is sparse—there are multiple coefficients, most

of which are equal to zero. The out-of-sample scheme with the alternate form of bagging

dominates in-sample forecasting (with ot without bagging) and the maximum-likelihood

estimator if k ≥ 4 and k̄ = 1.

Figure 3 plots the root asymptotic NMSPE for k = 1 against b for the in-sample,

out-of-sample and split sample forecast combination methods, without bagging, with the

standard form of bagging, and with the alternate form of bagging. These are based on

simulating the distributions in Theorem 6. The combination forecasts are generally better

than forecasts based on selecting an individual model. Nonetheless, with combined forecasts

as with individual forecasts, in the absence of a bagging step, using in-sample AIC weights

does best for most values of b. Adding in a bagging step allows better predictions to be

made. The alternate form of bagging reduces the asymptotic NMSPEs of the combination

forecasts with out-of-sample or split-sample weights uniformly in b. Once a bagging step

is added in, there is no clear winner among the in-sample, out-of-sample and split sample

forecast combination methods.
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3 Monte Carlo Simulations

The results in the previous section are based on a local asymptotic sequence. The motivation

for this is to provide a good approximation to the finite sample properties of different

forecasting methods while retaining some assurance that they are not an artifact of a specific

simulation design. As some check that the local asymptotics are indeed relevant to small

samples, we did a small simulation consisting of equation (1) with standard normal errors,

independent standard normal regressors, a sample size T = 100, and different values of k.

In each simulation we drew T + 1 observations on yt and xt, used the first T for model

selection and parameter estimation according to one of the methods discussed above. Then

given xT+1, we worked out the prediction for yT+1, and computed the mean square prediction

error (MSPE).

Figure 4 plots the simulated root normalized mean square prediction errors (
√
T ∗ (MSPE − 1))

against β for k = 1. Figure 5 repeats this for k = 3 where β = (β1, 0, 0)′ against β1. In our

simulations, we include the alternative form of the out-of-sample and split sample bagging

forecasts in equations (13) and (14). The Monte-Carlo simulation also included results from

out-of-sample and split sample bagging forecasts using the resampling scheme in equation

(15), but this turned out to give very similar results, and so these latter results are not

reported. Our simulation also included results using leave-one-out cross-validation, but

these were not surprisingly very close to the in-sample fit with the AIC, and so are again

omitted.

Figures 4 and 5 give very similar conclusions to the local asymptotic calculations reported

in Figures 1 and 2. Without bootstrap aggregation, the in-sample scheme generally gives

the best forecasts, followed by out-of-sample, with the partitioned sample doing the worst.

Bootstrap aggregation switches this around.
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4 Incorporating Serial Correlation

4.1 Multi-step Forecasting

We can extend the results in section 2 to an h-period-ahead forecasting model with possibly

serially correlated errors in which

yt+h = β′xt + ut

where ut is h-dependent with mean 0, finite variance σ2 and 2+δ finite moments for some

δ > 0, xt is a k×1 stationary vector such that E(xtx
′
t) = Σxx, and h and k are fixed. Let ω2

2π

be the zero-frequency spectral density of ut. We observe data on {xt, yt+h} for t = 1, ..T −h.

The slope coefficient is again local to zero as β = T−1/2b. The goal is to predict yT+h given

xT . In large samples, the distribution of the parameter estimates without bagging is exactly

as in Theorem 2, except with Y (r) replaced by rYω + ω
σ
UB(r) where Yw ∼ N(b, ω2Σ−1

xx ) and

UB(r) is, as before, a Brownian bridge with covariance matrix σ2Σ−1
xx and is independent of

Yω.

Consider bootstrap samples in which we resample from the pairs {xt, yt+h} without

replacement. Let {x∗t (i), y∗t+h(i)} be the ith bootstrap sample, t = 1, ...T − h. Then,

T−1/2Σ
[Tr]−h
t=1 x∗t (i)y

∗
t+h(i)→d Σxx{rYω + Vi(r)} ≡ ΣxxY

∗
i,ω(r)

where Vi(r) is, as before, a Brownian motion with covariance matrix σ2Σ−1
xx . Thus, in the

multi-step case, Theorem 4 will also go through, except with Y ∗i (r) replaced by Y ∗i,ω(r)

everywhere.

4.2 Vector Autoregressions

The results in section 2 can also be extended to cover a vector autoregression (VAR). The

VAR is of course a widely-used tool for forecasting with multivariate series that may have
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persistence. Consider a stationary VAR in which yt is a px1 vector such that:

yt = µ+ A1yt−1...+ Akyt−k + ut

where ut is iid with mean zero and variance-covariance matrix Σ. The VAR can be written

in the form:

yt = Bxt + ut

where xt is a (pk + 1)x1 vector and B is a px(pk + 1) matrix of parameters. Suppose that

we have a set of candidate models, each of which consists of zero restrictions on B. We can

estimate the unrestricted model (by OLS or by the positive-part James-Stein estimator).

Alternatively, we can select among the possible models by the AIC, OOS or SS methods,

and then use the chosen model for estimation. Suppose that B = CT−1/2.

All estimators will depend on T−1Σ
[Tr]
t=1xtx

′
t which converges in probability to rΩxx where

Ωxx = E(xtx
′
t) = [0px1 Ik ⊗ Σ] + op(1) and on

T−1/2Σ
[Tr]
t=1ytx

′
t →d [rC +B(r)]Ωxx ≡ Y (r)Ωxx

where vec(B(r)) is a p(pk+1)-dimensional Brownian motion with variance-covariance matrix

Ω−1
xx ⊗ Σ. We can rewrite Y (r) as

rC + rB(1) +B(r)− rB(1) = rY + UB(r)

where vec(Y ) ∼ N(vec(C),Ω−1
xx ⊗ Σ) and vec(UB(r)) is an independent Brownian bridge

with variance-covariance matrix Ω−1
xx ⊗ Σ. Thus all of these estimators, except for OOS or

SS, are asymptotically functions of Y alone. But OOS and SS are functions of both Y and

UB(r).

Concretely, let Y (r, g) denote the px(pk + 1) matrix with the elements of Y (r) in the

locations indexed by g and zeros elsewhere. Define n(g) as the number of elements in g.

Let Ωxx(g) denote the matrix that consists of the elements of Ωxx in the rows and columns
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indexed by g and zeros in all other locations, and let H(g) = Ωxx(g)+Ωxx. If B̃ is the

estimator of B after AIC model selection then:

T 1/2B̃ →d

∑
g∗

Y (1, g∗)H(g∗)1{g∗ = arg min
g

[Y (1, g)H(g)ΩxxH(g)Y (1, g)′

−2Y (1, g)H(g)ΩxxY (1)′ + 2n(g) log |Σ|]}. (16)

If B̃ is the estimator of B minimizing recursive the determinant of the out-of-sample error

variance covariance matrix starting a fraction π of the way through the sample, then:

T 1/2B̃ →d

∑
g∗

Y (1, g∗)H(g∗)1{g∗ = arg min
g

[

∫ 1

π

Y (r, g)

r
H(g)ΩxxH(g)

Y (r, g)′

r
dr

−2

∫ 1

π

Y (r, g)

r
H(g)ΩxxdY (r)′]}. (17)

And if B̃ is the estimator of B using the split-sample method, then:

T 1/2B̃ →d

∑
g∗

Y (1, g∗)− Y (π, g∗)

1− π
H(g∗)1{g∗ = arg min

g
[
1

π
Y (π, g)H(g)ΩxxH(g)Y (π, g)′

− 2

π
Y (π, g)H(g)ΩxxY (π)′ + 2n(g) log |Σ|]}. (18)

Bagging provides another alternative. In this context, bagging consists of resampling

{xt, yt} with replacement, yielding a series {x∗t (i), y∗t (i)} in the ith bootstrap replication.

Each estimator can then be applied, with the resulting estimates averaged across bootstrap

replications. In this case, we have:

T−1/2Σ
[Tr]
t=1y

∗
t (i)x

∗
t (i)

′ →d [rY + Vi(r)]Ωxx ≡ Y ∗i (r)Ωxx

where Vi(r) is a Brownian motion with variance-covariance matrix Ω−1
xx⊗Σ that is independent

of Y , while T−1/2Σ
[Tr]
t=1x

∗
t (i)x

∗
t (i)

′ →p rΩxx. In the ith bootstrap sample (i = 1, . . . , L), in

large samples, the asymptotic distributions of the AIC, OOS and SS parameter estimates
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including a bagging step are given by equations (16), (17) and (18), except replacing Y (r)

by Y ∗i (r) everywhere. So the estimates averaged across bootstrap draws will depend on Y

alone.

5 Conclusion

When forecasting using k potential predictors, each of which has a coefficient that is local

to zero, there are several competing methods, none of which is most accurate uniformly

in the localization parameter. Optimizing the in-sample fit, as measured by the Akaike

information criterion, generally does better than out-of-sample or split-sample methods.

However, adding in a bootstrap aggregation step changes this. For important ranges of

the localization parameter, the approach of splitting the sample into model selection and

parameter estimation pieces, coupled with a bootstrap aggregation step, also performs well.

Our representation results highlight a noise-reduction aspect of bagging, and also leads

to alternative procedures that are similar to bagging and dominate the out-of-sample and

split-sample methods.

25



Appendix: Proof of Theorems

Proof of Theorem 1: We have

T−1/2

[Tr]∑
t=1

xtyt = T−1/2

[Tr]∑
t=1

xtx
′
tβ + T−1/2

[Tr]∑
t=1

xtut

= T−1

[Tr]∑
t=1

xtx
′
tb+ T−1/2

[Tr]∑
t=1

xtut

→d Σxx(rb+B(r)),

where B(r) denotes a Brownian motion with covariance matrix σ2Σ−1
xx . Let Y (r) = rb+B(r),

and let Y = Y (1) which is N(b, σ2Σ−1
xx ). Define UB = B(r)− rB(1). Then

Y (r) = rb+B(r)

= rb+ rB(1) +B(r)− rB(1) = rY + UB(r). �

Proof of Theorem 2: Let β̂(g) denote the vector of OLS coefficient estimates corresponding

to the predictors indexed by g with zeros in all other locations. Equations (3) and (4)

immediately follow because T 1/2β̂ →d Y . The in-sample AIC is:

ln(T−1
∑T

t=1(yt − β̂(g)′xt)
2) + 2n(g)

T

= ln(T−1
∑T

t=1 y
2
t )+ ln(1+ 1

T−1
∑T
t=1 y

2
t

[β̂(g)′T−1
∑T

t=1 xtx
′
tβ̂(g)−2β̂(g)′T−1

∑T
t=1 xtyt])+ 2n(g)

T

= ln(T−1
∑T

t=1 y
2
t ) + 1

T−1
∑T
t=1 y

2
t

[β̂(g)′T−1
∑T

t=1 xtx
′
tβ̂(g)− 2β̂(g)′T−1

∑T
t=1 xtyt]

+2n(g)
T

+ op(T
−1) = ln(T−1

∑T
t=1 y

2
t ) + 1

Tσ2{Y (1, g)′H(g)ΣxxH(g)Y (1, g)−

2Y (1, g)′H(g)ΣxxY (1) + 2n(g)σ2}+ op(T
−1)

which is asymptotically the same, up to the same affine transformation across all models, as

Y (1, g)′H(g)ΣxxH(g)Y (1, g)− 2Y (1, g)′H(g)ΣxxY (1) + 2n(g)σ2
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proving (5).

Let β̂(r, g) denote the vector of OLS coefficient estimates corresponding to the predictors

indexed by g with zeros in all other locations, when the estimation is conducted only on

the first fraction r of the sample. Then T 1/2β̂(r, g) →d
1
r
H(g)Y (r, g). The recursive

pseudo-out-of-sample recursive mean square prediction error, starting a fraction π of the

way through the sample is:

1
T (1−π)

∑T
t=[Tπ]+1(yt − β̂(t/T, g)′xt)

2 =

1
T (1−π)

∑T
t=[Tπ]+1 y

2
t + 1

T (1−π)

∑T
t=[Tπ]+1 β̂(t/T, g)′xtx

′
tβ̂(t/T, g)− 2

T (1−π)

∑T
t=[Tπ]+1 β̂(t/T, g)′xtyt

= 1
T (1−π)

[
∫ 1

π
Y (r,g)′

r
H(g)ΣxxH(g)Y (r,g)

r
dr − 2

∫ 1

π
Y (r,g)′

r
H(g)ΣxxdY (r)] + op(T

−1)

neglecting a term that is constant across models, which proves (6).

Let β̂∗(π, g) denote the vector of OLS coefficient estimates corresponding to the predictors

indexed by g with zeros in all other locations, when estimation is conducted only on the

sample excluding the first fraction π. Then T 1/2β̂∗(π, g) →d H(g)Y (1,g)−Y (π,g)
1−π . The AIC

estimated over the first fraction π of the sample is

ln( 1
πT

∑[πT ]
t=1 (yt − β̂(π, g)′xt)

2) + 2n(g)
πT

= ln( 1
πT

∑[πT ]
t=1 y

2
t ) + ln(1 + 1

1
πT

∑[πT ]
t=1 y

2
t

[ 1
πT
β̂(π, g)′

∑[πT ]
t=1 xtx

′
tβ̂(π, g)− 2β̂(π, g)′ 1

πT

∑[πT ]
t=1 xtyt])

+2n(g)
πT

= ln( 1
πT

∑[πT ]
t=1 y

2
t ) + 1

1
πT

∑[πT ]
t=1 y

2
t

[ 1
πT
β̂(π, g)′

∑[πT ]
t=1 xtx

′
tβ̂(π, g)− 2β̂(π, g)′ 1

πT

∑[πT ]
t=1 xtyt])

+2n(g)
πT

+ op(T
−1)

= ln( 1
πT

∑[πT ]
t=1 y

2
t ) + 1

πTσ2{π Y (π,g)
π

′
H(g)ΣxxH(g)Y (π,g)

π
− 2Y (π,g)

π

′
H(g)ΣxxY (π) + 2n(g)σ2}+

op(T
−1)

which is asymptotically the same, up to the same affine transformation across all models, as

1
π
Y (π, g)′H(g)ΣxxH(g)Y (π, g)− 2

π
Y (π, g)′H(g)ΣxxY (π) + 2n(g)σ2
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proving (7). �

Proof of Theorem 3: Let {x∗t (i), y∗t (i)} be the ith bootstrap sample and let u∗t (i) =

y∗t (i) − β′x∗t (i), t = 1, ...T . From Theorem 2.2 of Park (2002), T−1/2
∑[Tr]

t=1 (x∗t (i)u
∗
t (i) −

T−1
∑T

t=1 xtut)→d ΣxxVi(r). Consequently T−1/2Σ
[Tr]
t=1x

∗
t (i)y

∗
t (i)→d Σxx(rY + Vi(r)). �

The proofs of Theorem 4 and 6 involve exactly the same calculations as in Theorem 2 and

are hence omitted.

Proof of Theorem 5: We have

T−1/2

[Tr]∑
t=1

xtyt = T−1/2

[Tr]∑
t=1

xtx
′
tβt + T−1/2

[Tr]∑
t=1

xtut

= T−3/2

[Tr]∑
t=1

xtx
′
tΣ

t
s=1ηs + T−1/2

[Tr]∑
t=1

xtut

→d Σxx{ση
∫ r

0

V (s)ds+ σB(r)} = Σxx{ση
∫ r

0

V (s)ds+ rξ + σUB(r)}.

where B(r) is a Brownian motion with covariance matrix Σ−1
xx . �
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Fig. 1: Local Asymptotic Root Normalized Mean Square Prediction Errors (k = 1)
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Notes: These are the simulated root normalized mean square prediction errors given by the square
root of the expressions in equations (5)- (12), plotted against b.
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Fig. 2: Local Asymptotic Root Normalized Mean Square Prediction Errors (k = 3)
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Notes: These are the simulated root normalized mean square prediction errors given by the square
root of the expressions in equations (5)- (12), plotted against b.

33



Fig. 3: Local Asymptotic Root Normalized Mean Square Prediction Errors: Combination
Forecasts (k = 1)
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Notes: These are the simulated root normalized mean square prediction errors given by the square
root of the expressions in Theorem 6, plotted against b. The forecast combination methods using
exponential AIC, exponential out-of-sample, or exponential split-sample weighting schemes, as described
in subsection 2.4.
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Fig. 4: Root Normalized Mean Square Prediction Errors (k = 1)
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Notes: These are the simulated root normalized mean square prediction errors from the Monte-Carlo
simulation described in the text. The sample size is T = 100, there is one predictor, and the root of the
normalized mean square prediction errors is plotted against β.
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Fig. 5: Root Normalized Mean Square Prediction Errors (k = 3)

0 0.1 0.2 0.3 0.4 0.5 0.6

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2



R
oo

t o
f N

or
m

al
iz

ed
 M

S
P

E

 

 

AIC
OOS
Split Sample
AIC+Bagging
OOS+Bagging
Split Sample+Bagging
OOS+Alt Bagging
Split Sample+Alt Bagging

Notes: These are the simulated root normalized mean square prediction errors from the Monte-Carlo
simulation described in the text. The sample size is T = 100, there are three possible predictors, and
the root of the normalized mean square prediction errors is plotted against β1 (the other coefficents are
equal to zero.
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