The Distribution of Wealth and the MPC: Implications of New European Data

Keynote Address by Christopher Carroll Johns Hopkins University and NBER ccarroll@jhu.edu

> Based on joint work with Jiri Slacalek¹ Kiichi Tokuoka²

> > ¹European Central Bank jiri.slacalek@ecb.int

²MoF, Japan kiichi.tokuoka@mof.go.jp

ECB Conference on Household Finance and Consumption, October 2013

◆□>
◆□>
●

The MPC

Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008–2012 would ask:

- In U.S. 2008–10, big 'stimulus' tax cuts
- In EZ, 2010–12, 'austerity'
- In either case, κ should be central to analysis of effect
 - Keynesian multipliers should be big in a liquidity trap (even Christiano, Eichenbaum, and Rebelo (2011)!)

The MPC

Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008-2012 would ask:

- In U.S. 2008–10, big 'stimulus' tax cuts
- In EZ, 2010–12, 'austerity'
- In either case, κ should be central to analysis of effect
 - Keynesian multipliers should be big in a liquidity trap (even Christiano, Eichenbaum, and Rebelo (2011)!)

Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008–2012 would ask:

- In U.S. 2008–10, big 'stimulus' tax cuts
- In EZ, 2010–12, 'austerity'

In either case, κ should be central to analysis of effect

 Keynesian multipliers should be big in a liquidity trap (even Christiano, Eichenbaum, and Rebelo (2011)!)

(4 同) (4 回) (4 回)

Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008–2012 would ask:

- In U.S. 2008–10, big 'stimulus' tax cuts
- In EZ, 2010–12, 'austerity'

In either case, κ should be central to analysis of effect

• Keynesian multipliers should be big in a liquidity trap (even Christiano, Eichenbaum, and Rebelo (2011)!)

- 4 同 ト - 4 目 ト

Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008–2012 would ask:

- In U.S. 2008–10, big 'stimulus' tax cuts
- In EZ, 2010–12, 'austerity'

In either case, κ should be central to analysis of effect

• Keynesian multipliers should be big in a liquidity trap (even Christiano, Eichenbaum, and Rebelo (2011)!)

- 4 同 ト - 4 目 ト

Why Worry About the MPC ($\equiv \kappa$)?

Nobody who made a macro forecast in 2008–2012 would ask:

- In U.S. 2008–10, big 'stimulus' tax cuts
- In EZ, 2010–12, 'austerity'

In either case, κ should be central to analysis of effect

• Keynesian multipliers should be big in a liquidity trap (even Christiano, Eichenbaum, and Rebelo (2011)!)

The MPC

Crude Keynesianism

Multiplier is $1/(1-\kappa)-1$

- If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - (some micro estimates of is are this large)
- If $\kappa=$ 0.05 then multiplier is only pprox 0.05
 - (this is max k in Rep Agent models; as low as 0.02)
- IMF's mea culpa: Our multipliers were much too low
 - $* \Rightarrow$ serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))

The MPC

Crude Keynesianism

Multiplier is $1/(1-\kappa)-1$

- If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - (some micro estimates of κ are this large)
- If $\kappa=$ 0.05 then multiplier is only \approx 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF's mea culpa: Our multipliers were much too low
 - ⇒ serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))

The MPC

Crude Keynesianism

Multiplier is $1/(1-\kappa)-1$

- If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only pprox 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF's mea culpa: Our multipliers were much too low
 - ⇒ serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))

The MPC

Crude Keynesianism

Multiplier is $1/(1-\kappa)-1$

- If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only pprox 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF's mea culpa: Our multipliers were much too low
 - \Rightarrow serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))

The MPC

Crude Keynesianism

Multiplier is $1/(1-\kappa)-1$

- If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only pprox 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF's mea culpa: Our multipliers were much too low
 - \Rightarrow serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))

The MPC

Crude Keynesianism

Multiplier is $1/(1-\kappa)-1$

- If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only pprox 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF's mea culpa: Our multipliers were much too low
 - \Rightarrow serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))

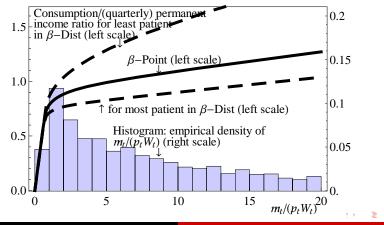
The MPC

Crude Keynesianism

Multiplier is $1/(1-\kappa)-1$

- If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only pprox 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF's mea culpa: Our multipliers were much too low
 - $\bullet \ \Rightarrow$ serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))

The MPC


Crude Keynesianism

Multiplier is $1/(1-\kappa)-1$

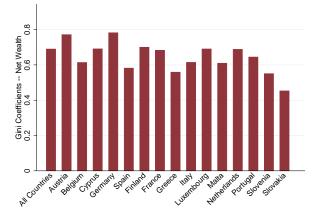
- If $\kappa = 0.75$ then multiplier is 4 1 = 3
 - (some micro estimates of κ are this large)
- If $\kappa = 0.05$ then multiplier is only pprox 0.05
 - (this is max κ in Rep Agent models; as low as 0.02)
- IMF's mea culpa: Our multipliers were much too low
 - $\bullet \, \Rightarrow$ serious underestimate of GDP effects of austerity
 - (Blanchard and Leigh (2013))

The MPC


Wealth Distribution (U.S. Data) and Consumption Concavity (Theory)

Carroll, Slacalek and Tokuoka The Distribution of Wealth and the MPC

The MPC


Lorenz Curves for Income, Net Wealth; US vs Euro Area

Cumulative share of households

The MPC

Substantial Differences in Inequality (Gini Coefficients)

The MPC

How Should Differences in Inequality Relate to the MPC?

- Calibrate standard microeconomic consumption/saving model (with permanent/transitory income *a la* Carroll, Slacalek, and Tokuoka (2013b))
- Find best-fit preference parameters (e.g., impatience):
 Parameters st. model wealth distribution best matches d
- Back out implications of best-fit model for aggregate κ

The MPC

How Should Differences in Inequality Relate to the MPC?

- Calibrate standard microeconomic consumption/saving model (with permanent/transitory income *a la* Carroll, Slacalek, and Tokuoka (2013b))
- Find best-fit preference parameters (e.g., impatience):
 - Parameters s.t. model wealth distribution best matches data
- Back out implications of best-fit model for aggregate κ

The MPC

How Should Differences in Inequality Relate to the MPC?

- Calibrate standard microeconomic consumption/saving model (with permanent/transitory income a la Carroll, Slacalek, and Tokuoka (2013b))
- Find best-fit preference parameters (e.g., impatience):
 - Parameters s.t. model wealth distribution best matches data
- Back out implications of best-fit model for aggregate κ

The MPC

How Should Differences in Inequality Relate to the MPC?

- Calibrate standard microeconomic consumption/saving model (with permanent/transitory income *a la* Carroll, Slacalek, and Tokuoka (2013b))
- Find best-fit preference parameters (e.g., impatience):
 - Parameters s.t. model wealth distribution best matches data
- $\bullet\,$ Back out implications of best-fit model for aggregate $\kappa\,$

The MPC

Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- ex ante
 - » Newborn consumers differ (e.g., in impatience)
- ex post
 - Section Section And Section 2018 Section

Key conclusions:

- Ø Both kinds of heterogeneity are necessary to match the data
- ullet Models that match eq have much higher κ than Rep Agent
- Less \neq in Europe implies somewhat lower MPCs than U.S.

- 4 同 6 4 日 6 4 日 6

The MPC

Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- ex ante
 - Newborn consumers differ (e.g., in impatience)
- ex post
 - Even ex-ante identical consumers draw idiosyncratic shocks

Key conclusions:

- Ø Both kinds of heterogeneity are necessary to match the data
- ② Models that match eq have much higher κ than Rep Agent
- Less \neq in Europe implies somewhat lower MPCs than U.S.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The MPC

Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- ex ante
 - Newborn consumers differ (e.g., in impatience)
- ex post
 - Even ex-ante identical consumers draw idiosyncratic shocks

Key conclusions:

- Both kinds of heterogeneity are necessary to match the data
- $igodoldsymbol{eta}$ Models that match eq have much higher κ than Rep Agent
- ◎ Less \neq in Europe implies somewhat lower MPCs than U.S.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The MPC

Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- ex ante
 - Newborn consumers differ (e.g., in impatience)
- ex post
 - Even ex-ante identical consumers draw idiosyncratic shocks

Key conclusions:

- Both kinds of heterogeneity are necessary to match the data
- @ Models that match eq have much higher κ than Rep Agent
- ◎ Less \neq in Europe implies somewhat lower MPCs than U.S.

The MPC

Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- ex ante
 - Newborn consumers differ (e.g., in impatience)
- ex post
 - Even ex-ante identical consumers draw idiosyncratic shocks

Key conclusions:

- Both kinds of heterogeneity are necessary to match the data
- @ Models that match eq have much higher κ than Rep Agent
- ◎ Less \neq in Europe implies somewhat lower MPCs than U.S.

The MPC

Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- ex ante
 - Newborn consumers differ (e.g., in impatience)
- ex post
 - Even ex-ante identical consumers draw idiosyncratic shocks

Key conclusions:

- Both kinds of heterogeneity are necessary to match the data
- @ Models that match eq have much higher κ than Rep Agent
- ◎ Less \neq in Europe implies somewhat lower MPCs than U.S.

The MPC

Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- ex ante
 - Newborn consumers differ (e.g., in impatience)
- ex post
 - Even ex-ante identical consumers draw idiosyncratic shocks

Key conclusions:

- **9** Both kinds of heterogeneity are necessary to match the data
- ② Models that match eq have much higher κ than Rep Agent
- 3 Less \neq in Europe implies somewhat lower MPCs than U.S.

A (a) > (b)

The MPC

Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- ex ante
 - Newborn consumers differ (e.g., in impatience)
- ex post
 - Even ex-ante identical consumers draw idiosyncratic shocks

Key conclusions:

- **9** Both kinds of heterogeneity are necessary to match the data
- **②** Models that match \neq have much higher κ than Rep Agent

3 Less \neq in Europe implies somewhat lower MPCs than U.S.

A (1) > (1) = (1) (1)

The MPC

Bottom Line—Heterogeneity Is Crucial!

Kinds of heterogeneity:

- ex ante
 - Newborn consumers differ (e.g., in impatience)
- ex post
 - Even ex-ante identical consumers draw idiosyncratic shocks

Key conclusions:

- **9** Both kinds of heterogeneity are necessary to match the data
- $\textbf{0} \textbf{ Models that match} \neq \textbf{have much higher } \kappa \textbf{ than Rep Agent}$
- **③** Less \neq in Europe implies somewhat lower MPCs than U.S.

The Model: Carroll, Slacalek, and Tokuoka (2013b)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} \beta_{\text{least impatient}} pprox 0.04$

The Model: Carroll, Slacalek, and Tokuoka (2013b)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} \beta_{\text{least impatient}} pprox 0.04$

The Model: Carroll, Slacalek, and Tokuoka (2013b)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} \beta_{\text{least impatient}} pprox 0.04$

The Model: Carroll, Slacalek, and Tokuoka (2013b)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{most patient} \beta_{least impatient} pprox 0.04$

The Model: Carroll, Slacalek, and Tokuoka (2013b)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} \beta_{\text{least impatient}} \approx 0.04$

The Model: Carroll, Slacalek, and Tokuoka (2013b)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} \beta_{\text{least impatient}} \approx 0.04$

伺下 イヨト イヨト

The Model: Carroll, Slacalek, and Tokuoka (2013b)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} \beta_{\text{least impatient}} \approx 0.04$

伺下 イヨト イヨト

The Model: Carroll, Slacalek, and Tokuoka (2013b)

Key Ingredients

- Uninsurable idiosyncratic income uncertainty
- Permanent and transitory income shocks
 - Permanent shocks boost wealth heterogeneity
 - Transitory shocks increase concavity of C function
- Blanchard (1985) finite lifetimes model
- Modest heterogeneity in impatience
 - Lets the model match wealth distribution
 - In U.S.: $\beta_{\text{most patient}} \beta_{\text{least impatient}} \approx 0.04$

Household Problem

$$\begin{aligned} \mathbf{v}(m_t) &= \max_{\{c_t\}} \mathbf{u}(c_t) + \beta \mathcal{D}\mathbb{E}_t \left[\psi_{t+1}^{1-\rho} \mathbf{v}(m_{t+1}) \right] \\ \text{s.t.} \\ \mathbf{a}_t &= m_t - c_t \\ \mathbf{a}_t &\geq 0 \\ k_{t+1} &= \mathbf{a}_t / (\mathcal{D}\psi_{t+1}) \\ m_{t+1} &= (\mathbf{T} + r)k_{t+1} + \xi_{t+1} \\ r &= \alpha \mathbf{a}(\mathbf{K}/\bar{\ell}\mathbf{L})^{\alpha - 1} \end{aligned}$$

Variables normalized by permanent labor income $(p_t W)$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Both Ex Post and (A Bit of) Ex Ante Heterogeneity

Model of Heterogenous Impatience

- Assume uniformly distributed β across households
- Estimate the band [β − ∇, β + ∇] by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\dot{\beta},\nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth-output ratio matches the steady-state value from the perfect foresight model

Country-by-country estimation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Both Ex Post and (A Bit of) Ex Ante Heterogeneity

Model of Heterogenous Impatience

- \bullet Assume uniformly distributed β across households
- Estimate the band [β − ∇, β + ∇] by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\dot{\beta},\nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth-output ratio matches the steady-state value from the perfect foresight model

Country-by-country estimation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Both Ex Post and (A Bit of) Ex Ante Heterogeneity

Model of Heterogenous Impatience

- \bullet Assume uniformly distributed β across households
- Estimate the band [β − ∇, β + ∇] by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\dot{\beta},\nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth-output ratio matches the steady-state value from the perfect foresight model

Country-by-country estimation

イロト イポト イヨト イヨト

Both Ex Post and (A Bit of) Ex Ante Heterogeneity

Model of Heterogenous Impatience

- \bullet Assume uniformly distributed β across households
- Estimate the band [β̂ ∇, β̂ + ∇] by minimizing distance between model (w) and data (ω) net worth held by the top 20, 40, 60, 80%

$$\min_{\{\dot{\beta},\nabla\}} \sum_{i=20,40,60,80} (w_i - \omega_i)^2,$$

s.t. aggregate net worth-output ratio matches the steady-state value from the perfect foresight model

Country-by-country estimation

イロト イポト イヨト イヨト

Income Dynamics: 'Standard' Process with **Permanent** and Transitory Component

'Friedman/Buffer Stock' Income Process

Large literature on US data estimating process:

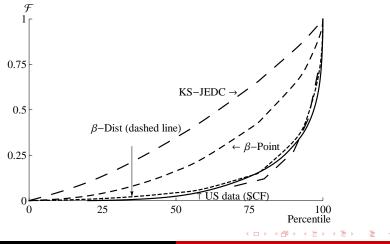
$$y_{t+1} = p_{t+1}\xi_{t+1}$$

 $p_{t+1} = p_t\psi_{t+1}$

 p_t = permanent income ξ_t = transitory income ψ_{t+1} = permanent shock

Income Parameters: US Estimates

• $\sigma_{\psi}^2 \approx 0.01+$, $\sigma_{\varepsilon}^2 \approx 0.01+$


Authors	Permanent σ_{ψ}^2	Transitory σ_{ξ}^2
Individual data		
MaCurdy (1982) [‡]	0.013	0.031
Topel (1991)	0.013	0.017
Topel and Ward (1992)	0.017	0.013
Meghir and Pistaferri (2004)°	0.031	0.032
Nielsen and Vissing-Jorgensen (2006)	0.005	0.015
Krebs, Krishna, and Maloney (2007)*	~ 0.01	~ 0.1
Jensen and Shore (2008)°	0.054	0.171
Guvenen (2009)	0.015	0.061
Heathcote, Perri, and Violante (2010)*	0.01 - 0.03	0.05-0.1
Hryshko (2010)°	0.038	0.118
Low, Meghir, and Pistaferri (2010)	0.011	-
Sabelhaus and Song (2010) [△]	0.03	0.08
Guvenen, Ozkan, and Song (2012)°	~ 0.05	~ 0.125
Karahan and Ozkan (2012)*	~ 0.013	~ 0.09
Blundell, Graber, and Mogstad (2013)*	~ 0.015	~ 0.025
Household data		
Carroll (1992)	0.016	0.027
Carroll and Samwick (1997)	0.022	0.044
Storesletten, Telmer, and Yaron (2004a)	0.017	0.063
Storesletten, Telmer, and Yaron (2004b)	0.008 - 0.026	0.316
Blundell, Pistaferri, and Preston (2008)°	0.010 - 0.030	0.029 - 0.055
Review of Economic Dynamics (2010) ^a	0.02 - 0.05	0.02 - 0.1
Blundell, Low, and Preston (2013) ⁶	~ 0.005	
DeBacker, Heim, Panousi, Ramnath, and Vidangos (2013) [§]	0.007 - 0.010	0.15 - 0.20

Carroll, Slacalek and Tokuoka

The Distribution of Wealth and the MPC

3) (3

Model Fits U.S. Wealth Distribution Data Remarkably Well

Carroll, Slacalek and Tokuoka The Distribution of Wealth and the MPC

Income Parameters: (Limited) Evidence from Europe

• Estimates comparable with US

Country/Authors	Variance of In Permanent σ_ψ^2	come Shocks Transitory σ_{ξ}^2	Dataset
France Le Blanc and Georgarakos (2013)	0.010	0.031	ECHP
	0.010	0.031	LCHF
Germany			
Fuchs-Schuendeln, Krueger, and Sommer (2010)	0.01-0.096	0.04-0.19	GSOEP
Le Blanc and Georgarakos (2013)	0.006	0.030	ECHP
Rostam-Afschar and Yao (2013)	0.030	0.054	GSOEP
Yao (2011) [§]	0.008-0.015	0.07-0.09	GSOEP
Italy			
Jappelli and Pistaferri (2010)	0.02	0.075	SHIW
Le Blanc and Georgarakos (2013)	0.007	0.105	ECHP
 Spain			
Pijoan-Mas and Sanchez-Marcos (2010)	0.01-0.15	~ 0.03	ECPF
Albarran, Carrasco, and Martinez-Granado (2009)	0.015-0.157	0.032-0.162	ECPF/ECHP
Le Blanc and Georgarakos (2013)	0.001	0.113	ECHP
Le Dialie and Georganakos (2013)	0.001	0.115	LCIII
United States			
Carroll, Slacalek, and Tokuoka (2013a)	0.010	0.010	Calibrated
Carroll, Slacalek and Tokuoka	The Distributio	n of Wealth and th	ne MPC

Other Calibration

Matches the 2010 JEDC volume

Carroll, Slacalek and Tokuoka The Distribution of Wealth and the MPC

э

伺 と く ヨ と く ヨ と

Empirical Wealth Distribution Across Countries

Eurosystem Household Finance and Consumption Survey

- Detailed wealth data from 15 euro area countries
- Ex ante harmonized, country-representative
- 62,000 households
- Reference year: mostly 2010
- Released in April 2013

・ 同 ト ・ ヨ ト ・ ヨ

Empirical Wealth Distribution Across Countries

Eurosystem Household Finance and Consumption Survey

- Detailed wealth data from 15 euro area countries
- Ex ante harmonized, country-representative
- 62,000 households
- Reference year: mostly 2010
- Released in April 2013

伺下 イラト イラト

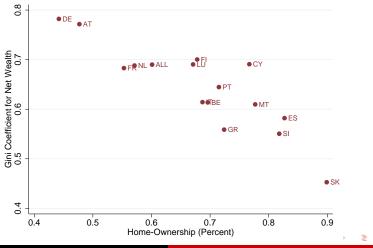
Empirical Wealth Distribution Across Countries

Eurosystem Household Finance and Consumption Survey

- Detailed wealth data from 15 euro area countries
- Ex ante harmonized, country-representative
- 62,000 households
- Reference year: mostly 2010
- Released in April 2013

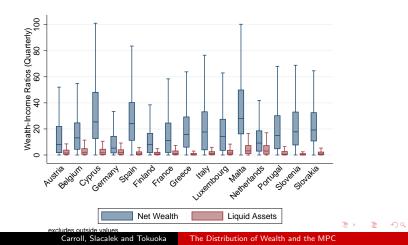
Empirical Wealth Distribution Across Countries

Eurosystem Household Finance and Consumption Survey


- Detailed wealth data from 15 euro area countries
- Ex ante harmonized, country-representative
- 62,000 households
- Reference year: mostly 2010
- Released in April 2013

Empirical Wealth Distribution Across Countries

Eurosystem Household Finance and Consumption Survey


- Detailed wealth data from 15 euro area countries
- Ex ante harmonized, country-representative
- 62,000 households
- Reference year: mostly 2010
- Released in April 2013

Memo: Inequality in Net Wealth Driven by Homeownership

Carroll, Slacalek and Tokuoka The Distribution of Wealth and the MPC

Stylized Facts Liquid Assets More Concentrated Near Zero—where C Function Steep

Model-Implied κ Matching Distribution of **Net Wealth**

• Aggregate MPC: 0.1–0.2

 Almost every country estimated to have less heterogeneity in impatience than in U.S. (∇ small)

	All	AT	BE	CY	DE	E S	FI	FR	GR	IT	LU	ΜT	N L	PT	SI	SK
Overall Average	0.13	0.16	0.1	0.13	0.19	0.14	0.13	0.13	0.1	0.14	0.12	0.1	0.11	0.11	0.1	0.1
By wealth/permanent income ratio																
Top 1 %	0.06	0.06	0.06	0.06	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Top 10%	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Top 20%	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Top 40%	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.06
Top 50%	0.07	0.06	0.06	0.07	0.07	0.08	0.07	0.07	0.07	0.05	0.07	0.06	0.06	0.07	0.07	0.07
Top 60%	0.07	0.07	0.07	0.07	0.08	0.07	0.07	0.07	0.06	0.07	0.07	0.07	0.07	0.07	0.06	0.07
Bottom 50%	0.19	0.25	0.14	0.19	0.3	0.2	0.19	0.19	0.13	0.22	0.17	0.14	0.16	0.15	0.13	0.13
By income																
Top 1 %	0.09	0.13	0.07	0.09	0.13	0.08	0.09	0.09	0.07	0.08	0.09	0.07	0.08	0.08	0.07	0.07
Top 10%	0.1	0.13	0.07	0.1	0.14	0.09	0.1	0.1	0.07	0.1	0.09	0.07	0.08	0.08	0.07	0.07
Top 20%	0.11	0.14	0.08	0.11	0.15	0.09	0.11	0.1	0.08	0.1	0.1	0.08	0.09	0.09	0.08	0.08
Top 40%	0.12	0.15	0.1	0.12	0.16	0.11	0.12	0.12	0.09	0.11	0.11	0.1	0.11	0.1	0.09	0.09
Top 50%	0.13	0.15	0.1	0.13	0.16	0.12	0.13	0.12	0.1	0.11	0.12	0.1	0.11	0.11	0.1	0.1
Top 60%	0.13	0.16	0.11	0.13	0.17	0.12	0.13	0.13	0.1	0.13	0.12	0.11	0.12	0.11	0.1	0.1
Bottom 50%	0.13	0.17	0.1	0.13	0.22	0.16	0.13	0.14	0.1	0.17	0.12	0.1	0.11	0.11	0.1	0.1
By employment status																
Employed	0.12	0.15	0.1	0.12	0.18	0.13	0.12	0.12	0.09	0.14	0.11	0.1	0.1	0.1	0.09	0.09
Unemployed	0.25	0.33	0.2	0.25	0.36	0.21	0.25	0.24	0.19	0.23	0.23	0.2	0.22	0.21	0.19	0.18
Time preference parameters [‡]																
β	0.989	0.988	0.99	0.989	0.988	0.989	0.989	0.989	0.99	0.989	0.989	0.99	0.99	0.99	0.99	0.99
ν Σ	0.003	0.005	0.002	0.003	0.005	0.002	0.003	0.003	0.001	0.003	0.003	0.002	0.002	0.002	0.001	0.

うくい

伺下 イヨト イヨト

Model-Implied κ Matching Distribution of **Net Wealth**

- Aggregate MPC: 0.1–0.2
- Almost every country estimated to have less heterogeneity in impatience than in U.S. (∇ small)

	All	AT	BE	CY	DE	E S	FI	\mathbf{FR}	\mathbf{GR}	IL	LU	ΜT	N L	PT	SI	SK
Overall Average	0.13	0.16	0.1	0.13	0.19	0.14	0.13	0.13	0.1	0.14	0.12	0.1	0.11	0.11	0.1	0.1
By wealth/permanent income ratio																
Top 1%	0.06	0.06	0.06	0.06	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Top 10%	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Top 20%	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Top 40%	0.06	0.06	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.07	0.06	0.06	0.06	0.06	0.06	0.06
Top 50%	0.07	0.06	0.06	0.07	0.07	0.08	0.07	0.07	0.07	0.05	0.07	0.06	0.06	0.07	0.07	0.07
Top 60%	0.07	0.07	0.07	0.07	0.08	0.07	0.07	0.07	0.06	0.07	0.07	0.07	0.07	0.07	0.06	0.07
Bottom 50%	0.19	0.25	0.14	0.19	0.3	0.2	0.19	0.19	0.13	0.22	0.17	0.14	0.16	0.15	0.13	0.13
By income																
Top 1%	0.09	0.13	0.07	0.09	0.13	0.08	0.09	0.09	0.07	0.08	0.09	0.07	0.08	0.08	0.07	0.07
Top 10%	0.1	0.13	0.07	0.1	0.14	0.09	0.1	0.1	0.07	0.1	0.09	0.07	0.08	0.08	0.07	0.07
Top 20%	0.11	0.14	0.08	0.11	0.15	0.09	0.11	0.1	0.08	0.1	0.1	0.08	0.09	0.09	0.08	0.08
Top 40%	0.12	0.15	0.1	0.12	0.16	0.11	0.12	0.12	0.09	0.11	0.11	0.1	0.11	0.1	0.09	0.09
Top 50%	0.13	0.15	0.1	0.13	0.16	0.12	0.13	0.12	0.1	0.11	0.12	0.1	0.11	0.11	0.1	0.1
Top 60%	0.13	0.16	0.11	0.13	0.17	0.12	0.13	0.13	0.1	0.13	0.12	0.11	0.12	0.11	0.1	0.1
Bottom 50%	0.13	0.17	0.1	0.13	0.22	0.16	0.13	0.14	0.1	0.17	0.12	0.1	0.11	0.11	0.1	0.1
By employment status																
Employed	0.12	0.15	0.1	0.12	0.18	0.13	0.12	0.12	0.09	0.14	0.11	0.1	0.1	0.1	0.09	0.09
Unemployed	0.25	0.33	0.2	0.25	0.36	0.21	0.25	0.24	0.19	0.23	0.23	0.2	0.22	0.21	0.19	0.18
Time preference parameters [‡]																
 β	0.989	0,988	0.99	0.989	0,988	0.989	0.989	0,989	0.99	0.989	0.989	0.99	0.99	0.99	0.99	0.99
v V	0.003	0.005	0.002	0.003	0.005	0.002	0.003	0.003	0.001	0.003	0.003	0.002	0.002	0.002	0.001	0.

Carroll, Slacalek and Tokuoka The Distribution

The Distribution of Wealth and the MPC

医下子 医下

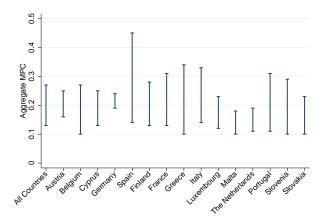
Model-Implied κ Matching Distribution of Liquid Assets

• Aggregate MPC: 0.2–0.4

• Greater impatience (than for net worth); still less than in U.S.

	All	AT	BE	CY	DE	ES	FI	\mathbf{FR}	GR	IT	LU	MT	N L	PT	SI	SK
Overall Average	0.27	0.25	0.27	0.25	0.24	0.45	0.28	0.31	0.34	0.33	0.23	0.18	0.19	0.31	0.29	0.23
By wealth/permanent income ratio																
Top 1 %	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.13	0.13	0.12	0.12	0.12
Top 10%	0.12	0.13	0.12	0.13	0.13	0.12	0.12	0.12	0.12	0.13	0.13	0.13	0.13	0.12	0.12	0.13
Top 20%	0.13	0.13	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Top 40%	0.13	0.13	0.13	0.13	0.13	0.19	0.14	0.14	0.14	0.15	0.13	0.13	0.13	0.14	0.14	0.13
Top 50%	0.15	0.14	0.15	0.14	0.13	0.23	0.14	0.16	0.16	0.16	0.14	0.13	0.14	0.16	0.14	0.14
Top 60%	0.15	0.15	0.15	0.15	0.15	0.25	0.16	0.17	0.19	0.18	0.14	0.13	0.14	0.17	0.16	0.14
Bottom 50%	0.38	0.35	0.38	0.35	0.34	0.62	0.4	0.44	0.49	0.47	0.31	0.23	0.24	0.44	0.42	0.31
By income																
Top 1%	0.23	0.21	0.22	0.21	0.19	0.31	0.24	0.25	0.29	0.23	0.19	0.15	0.15	0.26	0.25	0.19
Top 10%	0.23	0.21	0.23	0.21	0.19	0.32	0.24	0.25	0.29	0.24	0.19	0.15	0.15	0.26	0.25	0.19
Top 20%	0.24	0.22	0.24	0.22	0.2	0.32	0.25	0.26	0.3	0.24	0.2	0.16	0.17	0.27	0.26	0.2
Top 40%	0.25	0.24	0.25	0.24	0.21	0.36	0.27	0.27	0.31	0.27	0.22	0.18	0.18	0.29	0.27	0.22
Top 50%	0.26	0.2.4	0.26	0.24	0.21	0.38	0.26	0.28	0.32	0.28	0.23	0.18	0.19	0.3	0.27	0.23
Top 60%	0.26	0.25	0.26	0.25	0.23	0.39	0.28	0.29	0.32	0.29	0.23	0.19	0.19	0.3	0.28	0.23
Bottom 50%	0.28	0.26	0.28	0.26	0.27	0.51	0.3	0.34	0.36	0.38	0.23	0.18	0.19	0.32	0.31	0.23
By employment status																
Employed	0.25	0.23	0.25	0.23	0.23	0.43	0.26	0.29	0.32	0.32	0.21	0.17	0.18	0.29	0.27	0.21
U nemploye d	0.47	0.44	0.47	0.44	0.4	0.63	0.5	0.52	0.61	0.49	0.39	0.29	0.3	0.55	0.52	0.38
Time preference parameters [‡]																
à	0.969	0.969	0.969	0.969	0.97	0.959	0.969	0.967	0.967	0.966	0.97	0.971	0.971	0.968	0.968	0.97
~ \[\]	0.006	0.006	0.006	0.006	0.005	0.019	0.007	0.008	0.0.09	0.01	0.005	0.002	0.002	0.008	0.007	0.005
β																

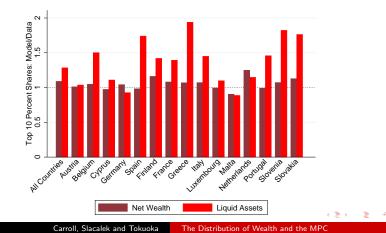
・ 同 ト ・ ヨ ト ・ ヨ ト


Model-Implied κ Matching Distribution of Liquid Assets

- Aggregate MPC: 0.2–0.4
- Greater impatience (than for net worth); still less than in U.S.

	All	AT	BE	CY	DE	ES	FI	FR	GR	IT	LU	MT	NL	PT	SI	SK
Overall Average	0.27	0.25	0.27	0.25	0.24	0.45	0.28	0.31	0.34	0.33	0.23	0.18	0.19	0.31	0.29	0.23
By wealth/permanent income ratio																
Top 1 %	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.13	0.13	0.12	0.12	0.12
Top 10%	0.12	0.13	0.12	0.13	0.13	0.12	0.12	0.12	0.12	0.13	0.13	0.13	0.13	0.12	0.12	0.13
Top 20%	0.13	0.13	0.13	0.13	0.13	0.14	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Top 40%	0.13	0.13	0.13	0.13	0.13	0.19	0.14	0.14	0.14	0.15	0.13	0.13	0.13	0.14	0.14	0.13
Top 50%	0.15	0.14	0.15	0.14	0.13	0.23	0.14	0.16	0.16	0.16	0.14	0.13	0.14	0.16	0.14	0.14
Top 60%	0.15	0.15	0.15	0.15	0.15	0.25	0.16	0.17	0.19	0.18	0.14	0.13	0.14	0.17	0.16	0.14
Bottom 50%	0.38	0.35	0.38	0.35	0.34	0.62	0.4	0.44	0.49	0.47	0.31	0.23	0.24	0.44	0.42	0.31
By income																
Top 1%	0.23	0.21	0.22	0.21	0.19	0.31	0.24	0.25	0.29	0.23	0.19	0.15	0.15	0.26	0.25	0.19
Top 10%	0.23	0.21	0.23	0.21	0.19	0.32	0.24	0.25	0.29	0.24	0.19	0.15	0.15	0.26	0.25	0.19
Top 20%	0.24	0.22	0.24	0.22	0.2	0.32	0.25	0.26	0.3	0.24	0.2	0.16	0.17	0.27	0.26	0.2
Top 40%	0.25	0.2.4	0.25	0.24	0.21	0.36	0.27	0.27	0.31	0.27	0.22	0.18	0.18	0.29	0.27	0.22
Top 50%	0.26	0.24	0.26	0.24	0.21	0.38	0.26	0.28	0.32	0.28	0.23	0.18	0.19	0.3	0.27	0.23
Top 60%	0.26	0.25	0.26	0.25	0.23	0.39	0.28	0.29	0.32	0.29	0.23	0.19	0.19	0.3	0.28	0.23
Bottom 50%	0.28	0.26	0.28	0.26	0.27	0.51	0.3	0.34	0.36	0.38	0.23	0.18	0.19	0.32	0.31	0.23
By employment status																
Employed	0.25	0.23	0.25	0.23	0.23	0.43	0.26	0.29	0.32	0.32	0.21	0.17	0.18	0.29	0.27	0.21
U nemplove d	0.47	0.44	0.47	0.44	0.4	0.63	0.5	0.52	0.61	0.49	0.39	0.29	0.3	0.55	0.52	0.38
Time preference parameters [‡]																
à	0.969	0.969	0.969	0.969	0.97	0.959	0.969	0.967	0.967	0.966	0.97	0.971	0.971	0.968	0.968	0.97
~ \[\]	0.006	0.006	0.006	0.006	0.005	0.019	0.007	0.008	0.0.09	0.01	0.005	0.002	0.002	0.008	0.007	0.005
	2.500		500	500	2.500		2.501	2.500	505	51	500		2.502	2.500	2.501	500

うくい


伺 と く ヨ と く ヨ と

Notes: Figure shows range of aggregate MPCs implied by the distribution of net wealth (lower bound) and of liquid assets (upper bound).

Model Fits Upper Tail Surprisingly Well

 \bullet Share of top 10%: $\frac{model}{data}$ mostly \sim 1, especially for net wealth

Empirical Evidence: MPC \sim 0.2–0.6 (\gg 0.02–0.04)

Mostly From US

	Consu	mption Me	asure		
Authors	Nondurables	Durables	Total PCE	$\operatorname{Horizon}^{\star}$	Event/Sample
Blundell, Pistaferri, and Preston (2008) [‡]	0.05				Estimation Sample: 1980–92
Browning and Collado (2001)			~ 0		Spanish ECPF Data, 1985–95
Coronado, Lupton, and Sheiner (2005)			0.36	1 Year	2003 Tax Cut
Hausman (2012)			0.6 - 0.75	1 Year	1936 Veterans' Bonus
Hsieh (2003) [‡]	~ 0				CEX, 1980-2001
Jappelli and Pistaferri (2013)	0.48				Italy, 2010
Johnson, Parker, and Souleles (2009)	~ 0.25			3 Months	2003 Child Tax Credit
Lusardi (1996) [‡]	0.2 - 0.5				Estimation Sample: 1980–87
Parker (1999)	0.2			3 Months	Estimation Sample: 1980–93
Parker, Souleles, Johnson, and McClelland (2011)	0.12 - 0.30		0.50 - 0.90	3 Months	2008 Economic Stimulus
Sahm, Shapiro, and Slemrod (2010)			$\sim 1/3$	1 Year	2008 Economic Stimulus
Shapiro and Slemrod (1995)			substantial		1992 Bush Proposal
Shapiro and Slemrod (2009)			$\sim 1/3$	1 Year	2008 Economic Stimulus
Souleles (2002)	0.6 - 0.9			1 Year	The Reagan Tax Cuts
					of the Early 1980s

イロト イポト イヨト イヨト

Quick Summary So Far

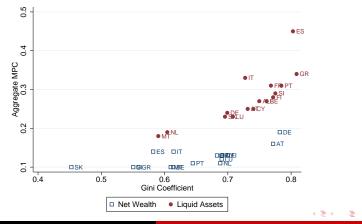
• Modest heterogeneity in impatience captures wealth distribution

- Essential to include low-wealth/high-MPC households in analysis (Rep Agent models can't do it)
- Models that match wealth distribution boost aggregate MPC: $\sim 0.04 \nearrow \sim 0.1-0.4$ in European countries (cf. up to 0.6 in U.S.)
- Heterogeneity matters!

Quick Summary So Far

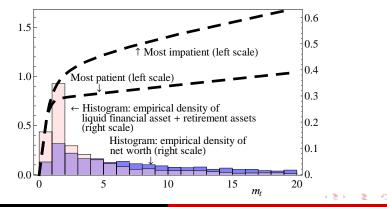
- Modest heterogeneity in impatience captures wealth distribution
- Essential to include low-wealth/high-MPC households in analysis (Rep Agent models can't do it)
- Models that match wealth distribution boost aggregate MPC:
 ∼ 0.04 ≯ ~ 0.1−0.4 in European countries (cf. up to 0.6 in U.S.)
- Heterogeneity matters!

Quick Summary So Far


- Modest heterogeneity in impatience captures wealth distribution
- Essential to include low-wealth/high-MPC households in analysis (Rep Agent models can't do it)
- Models that match wealth distribution boost aggregate MPC:
 ∼ 0.04 ↗ ~ 0.1−0.4 in European countries (cf. up to 0.6 in U.S.)
- Heterogeneity matters!

Quick Summary So Far

- Modest heterogeneity in impatience captures wealth distribution
- Essential to include low-wealth/high-MPC households in analysis (Rep Agent models can't do it)
- Models that match wealth distribution boost aggregate MPC:
 ∼ 0.04 ↗ ~ 0.1−0.4 in European countries (cf. up to 0.6 in U.S.)
- Heterogeneity matters!


Wealth Inequality and the MPC

• Inequality implies higher MPC, especially for liquid assets

Carroll, Slacalek and Tokuoka The Distribution of Wealth and the MPC

Empirical Distribution of Liquid Financial Assets vs Theoretical Consumption Functions (for U.S.)

Carroll, Slacalek and Tokuoka The Distribution of Wealth and the MPC

Larger transitory shocks \Rightarrow Bigger κ

	Baseline σ_ψ^2 , $\sigma_\theta^2=0.01$	$\begin{array}{l} \text{High } \sigma_{\theta}^2 \\ \sigma_{\theta}^2 = 0.05 \end{array}$	Very High $\sigma_{ heta}^2 = 0.10$
Overall Average	0.13	0.14	0.17
By wealth/permanent income ratio			
Top 1%	0.06	0.06	0.06
Top 10%	0.06	0.06	0.06
Top 20%	0.06	0.06	0.06
Top 40%	0.06	0.06	0.07
Top 50%	0.07	0.05	0.07
Top 60%	0.07	0.07	0.08
Bottom 50%	0.19	0.22	0.26
By income			
Top 1%	0.09	0.1	0.11
Top 10%	0.1	0.1	0.12
Top 20%	0.11	0.11	0.12
Top 40%	0.12	0.12	0.14
Top 50%	0.13	0.12	0.14
Top 60%	0.13	0.13	0.15
Bottom 50%	0.13	0.16	0.2
By employment status			
Employed	0.12	0.14	0.16
Unemployed	0.25	0.25	0.27
Time preference parameters [‡]			
β	0.989	0.989	-0.988 -
∇	0.003	0.004	0.005

Take-aways

- Aggregate MPC for Net Wealth : 0.1–0.2
- Aggregate MPC for Liquid Assets : 0.2–0.4
- MPC Higher for countries with more wealth inequality
 MPC in Europe lower than in US (because less ≠)
- MPC much bigger for low-wealth/low-income/unemployed

Take-aways

- Aggregate MPC for Net Wealth : 0.1–0.2
- Aggregate MPC for Liquid Assets : 0.2–0.4
- MPC Higher for countries with more wealth inequality
 MPC in Europe lower than in US (because less ≠)
- MPC much bigger for low-wealth/low-income/unemployed

AP ► < E ►

Take-aways

- Aggregate MPC for Net Wealth : 0.1–0.2
- Aggregate MPC for Liquid Assets : 0.2–0.4
- MPC Higher for countries with more wealth inequality
 - MPC in Europe lower than in US (because less \neq)
- MPC much bigger for low-wealth/low-income/unemployed

Take-aways

- Aggregate MPC for Net Wealth : 0.1–0.2
- Aggregate MPC for Liquid Assets : 0.2–0.4
- MPC Higher for countries with more wealth inequality
 - MPC in Europe lower than in US (because less \neq)
- MPC much bigger for low-wealth/low-income/unemployed

Take-aways

- Aggregate MPC for Net Wealth : 0.1–0.2
- Aggregate MPC for Liquid Assets : 0.2–0.4
- MPC Higher for countries with more wealth inequality
 - MPC in Europe lower than in US (because less \neq)
- MPC much bigger for low-wealth/low-income/unemployed

References I

- ALBARRAN, PEDRO, RAQUEL CARRASCO, AND MAITE MARTINEZ-GRANADO (2009): "Inequality for Wage Earners and Self-Employed: Evidence from Panel Data," Oxford Bulletin of Economics and Statistics, 71(4), 491–518.
- BLANCHARD, OLIVIER, AND DANIEL LEIGH (2013): "Growth Forecast Errors and Fiscal Multipliers," working paper 1, International Monetary Fund.
- BLANCHARD, OLIVIER J. (1985): "Debt, Deficits, and Finite Horizons," Journal of Political Economy, 93(2), 223–247.
- CARROLL, CHRISTOPHER D., JIRI SLACALEK, AND KIICHI TOKUOKA (2013a): "Buffer-Stock Saving in a Krusell–Smith World," mimeo, Johns Hopkins University.
- (2013b): "The Distribution of Wealth and the Marginal Propensity to Consume," mimeo, Johns Hopkins University.
- CASTANEDA, ANA, JAVIER DIAZ-GIMENEZ, AND JOSE-VICTOR RIOS-RULL (2003): "Accounting for the U.S. Earnings and Wealth Inequality," *Journal of Political Economy*, 111(4), 818–857.
- CHRISTIANO, LAWRENCE, MARTIN EICHENBAUM, AND SERGIO REBELO (2011): "When Is the Government Spending Multiplier Large?," Journal of Political Economy, 119(1), 78–121.
- DEN HAAN, WOUTER J. (2010): "Assessing the Accuracy of the Aggregate Law of Motion in Models with Heterogeneous Agents," Journal of Economic Dynamics and Control, 34(1), 79–99.
- FUCHS-SCHUENDELN, NICOLA, DIRK KRUEGER, AND MATHIAS SOMMER (2010): "Inequality Trends for Germany in the Last Two Decades: A Tale of Two Countries," *Review of Economic Dynamics*, 13(1), 103–132.
- JAPPELLI, TULLIO, AND LUIGI PISTAFERRI (2010): "Does Consumption Inequality Track Income Inequality in Italy?," Review of Economic Dynamics, 13(1), 133–153.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References II

- LE BLANC, JULIA, AND DIMITRIS GEORGARAKOS (2013): "How Risky Is Their Income? Labor Income Processes in Europe," mimeo, Goethe University Frankfurt.
- PIJOAN-MAS, JOSEP, AND VIRGINIA SANCHEZ-MARCOS (2010): "Spain Is Different: Falling Trends of Inequality," Review of Economic Dynamics, 13(1), 154–178.
- ROSTAM-AFSCHAR, DAVUD, AND JIAXIONG YAO (2013): "Taxation and Precautionary Savings over the Life Cycle," mimeo.
- YAO, YAO (2011): "Labor Income Risks in Germany," mimeo, University of Mannheim.

イロト イポト イヨト イヨト