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Abstract

Using a novel macro-finance model we infer jointly the equilibrium real interest rate r∗t ,

trend inflation, interest rate expectations, and bond risk premia for the United States. In the

model r∗t plays a dual macro-finance role: as the benchmark real interest rate that closes the

output gap and as the time-varying long-run real interest rate that determines the level of

the yield curve. Our estimated r∗t declines over the last decade, with estimation uncertainty

being relatively contained. We show that both macro and financial information is important

to infer r∗t . Accounting for the secular decline in interest rates renders term premia more

stable than those based on stationary yield curve models.

A previous version of this paper by the same authors entitled “Natural rate chimera and

bond pricing reality” has been published as ECB Working Paper No 2612.

Keywords: Equilibrium real rate, natural interest rate, arbitrage-free Nelson-Siegel term struc-

ture model, term premia, Bayesian estimation.
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Non-technical summary

We introduce a novel macro-finance model that addresses the “natural rate puzzle”, a dis-

connect in the literature whereby macroeconomic and finance perspectives yield inconsistent

estimates of the natural real rate of interest. From a macroeconomic standpoint, the natural

rate of interest r∗t is the real interest rate consistent with the economy operating at its potential

and thereby constitutes an indicator for monetary policy, while in asset pricing, r∗t serves as an

anchor for interest rate expectations in the long run. We propose an integrated approach where

r∗t fulfills both roles simultaneously.

To integrate the macroeconomic and the financial perspective, our model features two key

components: (1) a “macro module” that links r∗t to output growth trends and a non-growth

component, while modeling inflation expectations and the output gap dynamics through the IS

curve and Phillips curve; and (2) an arbitrage-free affine Nelson-Siegel (AFNS) term structure

model, where the equilibrium nominal short-term rate i∗t = r∗t +π∗t anchors the yield curve. The

model is estimated using U.S. data (1961–2019) using Bayesian methods.

Our findings can be summarized as follows:

We identify a trend in r∗t that is distinct from established approaches that suggests a steady

decline. The model identifies a rise and fall in r∗t over six decades, with lower levels in the 1960s,

1970s, and post-Global Financial Crisis. This behavior arises because the model endogenizes

the real rate, making the real rate gap stationary, in contrast to models treating the real rate

as exogenous.

Investing whether the interest rate gaps measured in terms of shorter or longer maturities

matter for macroeconomic fluctuations, we find that longer-maturity (e.g., 10-year) real rate gaps

explain output gaps better than traditional short-term measures, highlighting the relevance of

the yield curve in macroeconomic dynamics.

Our r∗t estimates are comparatively precise. The model provides more precise estimates of r∗t ,

with narrower uncertainty bands (90% uncertainty bands are smaller than 3 percentage points)

compared to the established semi-structural approach (8 percentage points).

Accounting for the stochastic trend in interest rates affects the estimated behavior of term

premia. We find term premia exhibit more cyclical behavior rather than the persistent decline

implied by stationary term structure models.

We demonstrate robustness of these results to model specification changes. For instance,
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an alternative model specification featuring a shadow-rate adjustment for the zero-lower-bound

period gives rise to the same r∗ estimates as the baseline model. Pseudo real-time estimation

of r∗ reveals robustness of estimates over time, with limited variation in the posterior median

point estimate of r∗ for shorter samples.

By integrating macroeconomic and financial perspectives, the paper resolves the inconsis-

tencies highlighted in prior studies and provides a unified framework for estimating r∗t . The

findings suggest that r∗t serves as a critical anchor for both yield curve dynamics and macroe-

conomic stabilization. Future extensions of this research could include inflation-linked bonds or

the impact from central bank asset purchase programs.
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1 Introduction

The natural real rate of interest, r∗t , plays a prominent role in macroeconomics and finance:

from a macro perspective, it is the real interest rate consistent with the economy operating at

its potential level; from a finance perspective, it is the expected short-term real rate in the far

future and thus, together with long-term inflation expectations, an anchor for the expectation

of nominal short-term rates (i∗t ) and the entire yield curve. The natural rate is, however,

unobserved and needs to be inferred from a model. The literature has typically addressed these

roles separately and the two approaches “can lead to very different estimates of the natural rates

and risk premia and the associated historical interpretations and narratives” as stressed recently

by Davis et al. (2024); a finding that they coin the “the natural rate puzzle”.

We address this puzzle in a macro-finance model where the natural real rate of interest

fulfills its dual role. The first component, the “macro module”, defines r∗t as the real rate

of interest that closes the output gap asymptotically. The natural rate is linked to the trend

in output growth and a non-growth component, similar as in Laubach and Williams (2003,

hereafter LW). However, unlike their paper, we explicitly model and estimate trend inflation

as well as model-consistent inflation expectations. The gap between the ex-ante real rate of

interest and the natural real rate drives the output gap in the IS equation and, thereby, inflation

through the Phillips-curve. The second component of our model is an arbitrage-free affine

Nelson-Siegel (AFNS) term structure model with a level factor that incorporates a stochastic

trend determined by the equilibrium nominal short-term rate i∗t (r∗t plus trend inflation, π∗t ).

The slope and curvature factors, by contrast, are mean-reverting as suggested by statistical tests.

The estimation of our integrated macro-finance model is based on quarterly data from 1961Q2

to 2019Q4 for the United States, using a Bayesian approach.

We report the following main results. First, our r∗t estimates exhibit a distinct rise and fall

over the past six decades, with a particularly steep decline following the Global Financial Crisis,

as opposed to the steady decline reported by Holston et al. (2017, hereafter HLW), and more in

line with Del Negro et al. (2017).1

1 The literature broadly agrees on a general downward trend in r∗t and its fall to levels around zero in the wake
of the financial crisis. The literature also explores underlying, fundamental drivers across a wide range of different
modeling approaches. While empirical approaches can accommodate a broad range of factors, especially when
exploiting cross-country heterogeneity in slow-moving drivers (as in Carvalho et al., 2025), they are not easily
amenable to structural interpretation. Conversely, structural models can capture the structural propagation of
specific drivers, like aging or inequality, but cannot cover factors in a more encompassing manner. The drivers
underlying r∗t explored in the literature include lower productivity and potential output growth, a rise in risk
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In particular, we estimate r∗t to have been lower in the 1960s and 1970s and after the Global

Financial Crisis than LW and HLW report. The associated real-rate gap exhibits more cyclical

behavior, as the inclusion of an interest rate equation renders the difference between the ex

ante real rate and the natural real rate stationary. In contrast, treating real interest rates as

exogenous allows for large and persistent real rate and output gaps.

Second, our macro-finance yield curve model is a natural laboratory to explore whether

longer-maturity real rate gaps in the IS curve would be statistically preferred over the one-

period real rate gap in our baseline specification. Comparing the marginal likelihood of models

with different maturities of that gap suggests that a long-term (around ten years) real rate gap

is preferred over the standard short-term measure.

Third, in addition to a new time series of point estimates, we obtain several insights on

inference about r∗t . Regarding the information content of yields, macroeconomic and survey

data for estimating r∗t , historical data decompositions suggest that all are relevant. As regards

estimation uncertainty, our natural rate path is surrounded by measurably narrower uncertainty

than usually implied by the semi-structural approach originating from LW. In that original ap-

proach, filtering uncertainty for r∗t estimates using US data can be as large as eight percentage

points (Fiorentini et al., 2018), while we find less than three percentage points for the width

of the 90% range of the posterior distributions. We also checked the robustness of our r∗t esti-

mates regarding the zero-lower-bound period: when switching to a “shadow-rate” specification

of our model, the resulting natural rate series is more volatile but shows the same low-frequency

variation as in our baseline model.

Fourth, similar to Bauer and Rudebusch (2020), we find that by accounting for trends in

equilibrium rates, term premia exhibit more cyclical behavior, rather than a distinct trend

decline as implied by stationary term structure models.

Finally, our main results are robust against a host of modifications such as pseudo real-time

estimation, generalizations of the yield curve model or allowing for stochastic volatility.

aversion, declining growth rates in the working-age population, rising savings in anticipation of longer retirement
periods (at global level), safe-asset scarcity, and possibly increasing inequality and firm profits. See, e.g. Caballero
et al. (2017); Gourinchas and Rey (2019); Papetti (2019); Rachel and Summers (2019); Mian et al. (2020) among
a wide range of studies. As our model estimates determinants of r∗t as latent factors, it allows only indirect and
heuristic insights into the role of low-frequency drivers of r∗t . The demographic transition, for example, would be
captured through indirect effects on potential output growth through lower working-age population growth and
non-growth factors, such as higher savings in anticipation of longer retirement periods.
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Related literature

The papers most closely related to ours are Davis et al. (2024) and Feunou and Fontaine

(2021). Both papers also present joint arbitrage-free macro-finance models, incorporating r∗t and

term premia by building on Cieslak and Povala (2015), where yields are driven by the trend real

rate, trend inflation and a risk premium factor. In Davis et al. (2024), the macro side features r∗t

as the sum of trend growth and a non-growth component like in our case, building on LW. But,

while they treat the latter as stationary, we consider it to contain a trend as in LW to capture

persistent imbalances between savings and investment. More importantly, and in contrast to

Davis et al. (2024), we incorporate explicitly the business-cycle stabilizing role of r∗t (i.e. r∗t

represents the real rate that closes the output gap). Feunou and Fontaine (2021) do incorporate

this feature (by imposing HLW-style IS curve restrictions on their VAR) but eschew an explicit

link of r∗t to potential growth and other factors. On the finance side, Davis et al. (2024) infer r∗t

from the whole yield curve with their central measurement equation linking the average – across

maturities – nominal bond yield at time t to (observed) trend inflation and trend growth, as

well as an (unobserved) headwind factor and a cyclical risk premium component. In contrast,

the relevance of bond yield information for estimating r∗t is less explicit in Feunou and Fontaine

(2021).2 Regarding the estimation approach more generally, Davis et al. (2024) also use Bayesian

techniques, while Feunou and Fontaine (2021) deploy a multi-step frequentist approach.

Our paper also relates to the macro-finance literature that estimates the full natural yield

curve yet emphasizing to a lesser extent the (implicit) estimate of the natural short-term rate.

While Imakubo et al. (2018) and Dufrénot et al. (2022) focus on Japan, Kopp and Williams

(2018) and Brzoza-Brzezina and Kot lowski (2014) use US data like our paper.3 Only Kopp and

Williams (2018) discusses term premium implications, but they do not impose the no-arbitrage

constraint as in our paper.

Finally, our paper also contributes to a growing literature that extracts long-run trends in

interest rates mainly from macroeconomic information or from the yield curve. Approaches

that are mainly macro-based include Laubach and Williams (2016); Del Negro et al. (2017);

2From the description of the paper and its annex, it looks like i∗t and π∗
t paths (which then add up to r∗t via

an identity) are mainly inferred from long-horizon survey information, and bond yield equation parameters are
estimated subsequently.

3All four papers use a Nelson-Siegel set-up but differ from each other by the degree of time variation of the
natural yield curve and by how real rates affect the output gap. Like in our paper, in Kopp and Williams (2018)
only the level factor contains a stochastic trend, while the natural slope and curvature are constant. The other
papers, instead, also allow for stochastic trends in factors other than the level factor.
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Johannsen and Mertens (2021); Zaman (2024); González-Astudillo and Laforte (2025). Some

of them include selected bond yields in their information set but without cross-maturity no-

arbitrage restrictions. Approaches featuring the yield curve, building on the ‘shifting-endpoint’

paper by Kozicki and Tinsley (2001), include Dewachter et al. (2014); Cieslak and Povala (2015);

Christensen and Rudebusch (2019); Ajevskis (2020); Bauer and Rudebusch (2020); Abbritti et al.

(2023) and Christensen and Mouabbi (2024), but their models are largely silent regarding the

macro relevance of their r∗t measures.

The paper is organized as follows: Section 2 describes the model, Section 3 data and esti-

mation. Section 4 presents the results. Section 5 and the Appendix discuss model extensions,

derivations, robustness and additional results.

2 The Model

Our macro-finance model integrates the semi-structural macroeconomic approach of estimat-

ing r∗t by LW into an affine term structure model in the spirit of Christensen et al. (2011). Time

is discrete with one period corresponding to one quarter. We focus here on the key equations,

leaving the presentation of the full state space model to the Appendix A.1.

2.1 A semi-structural macro model

The IS curve, following LW, links the output gap x̃t, defined as x̃t = xt− x∗t , with xt and x∗t

denoting log actual and log potential output, respectively, to the real interest rate gap r̃t,

x̃t = a1x̃t−1 + a2x̃t−2 + a3

(
r̃t−1 + r̃t−2

)
+ εx̃t . (1)

The real rate gap r̃t = rt − r∗t is the difference between the ex-ante short-term real rate, rt, and

its natural counterpart r∗t . Potential output x∗t evolves according to

x∗t = x∗t−1 + gt−1 + εx
∗
t , (2)

where gt is the expected quarterly growth rate of potential output and εx
∗
t captures the unex-

pected part of potential output. The real natural rate r∗t is the sum of the annualized expected
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growth rate of potential output and a “catch-all”, non-growth component, zt, i.e.

r∗t = 4gt + zt. (3)

The zt component indirectly captures effects such as saving-investment imbalances arising from

longer retirement periods, as well as an increased demand for safe assets, (Del Negro et al.,

2017), or other financial frictions. Both gt and zt follow a random walk with variances σ2
g and

σ2
z , respectively.

While (3) explicitly links r∗t to potential output growth and to non-growth factors, these are,

in turn, unobservable, allowing only indirect inference about their role as drivers of r∗t . Specifi-

cally, the non-growth factor zt will help closing the gap between the low-frequency components

in real interest rates and growth, and r∗t will be strongly affected by cross-equation relation-

ships, like its business-cycle stabilization properties in (J.34) and the term-structure equations

presented in Section 2.2 below.

For measuring ex ante real rates, the observed nominal short-term interest rate needs to

be deflated by a measure of expected inflation. LW proxy inflation expectations by forecasts

from an AR(3), whereas HLW use a trailing four-quarter average of inflation to approximate

inflation expectations. In contrast, we define the ex ante real rate in a model-consistent manner

as rt = yt(1)−Etπt+1, where yt(1) denotes the nominal yield of a one-quarter zero coupon bond

and Etπt+1 is the conditional expectation of the one-period ahead inflation based on model

dynamics.4

Our second main equation, the Phillips curve, is given by

π̃t = b1π̃t−1 + b2x̃t−1 + επt , (4)

where π̃t = πt−π∗t , represents the inflation gap, i.e. the difference of inflation πt from its trend π∗t

(also a random walk with innovation variance σ2
π∗).5 As a result, the real rate gap r̃t affects the

cyclical component of inflation through its impact on the output gap. This specification differs

from LW and HLW who also impose a unit root on inflation but eschew an explicit expression for

4A comparison of our model-implied CPI inflation expectations with the core PCE inflation expectations of
HLW in the Appendix A.3 shows large consistency between both measures although inflation expectations based
on core inflation are more stable over the second half of the sample. This result rules out that large and persistent
differences in r∗t estimates come from different measures of inflation expectations.

5The assumption of a random walk for trend inflation is shared with, e.g., Cogley and Sargent (2005); Stock
and Watson (2007); Aruoba and Schorfheide (2011); Del Negro et al. (2017) to name but a view.
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its stochastic trend. Specifically, their Phillips curve is formulated for inflation in levels (rather

than inflation gaps) and coefficients of lagged inflation terms are constrained to sum to unity.

Relative to a canonical New Keynesian model, our Phillips curve is purely backward-looking.

Adding a forward-looking element would substantially increase the computational burden in

combination with the various non-stationary variables and the term structure component and

also constitute a fundamental change in slower-moving macroeconomic stabilization properties

of the model.6

2.2 Yield curve dynamics

We close the model by specifying the dynamics of the nominal risk-free yield curve. At each

point in time, the cross section of yields of all maturities is assumed to be explained by three

factors (“level”, Lt, “slope”, St, and “curvature”, Ct) with factor loadings across maturities

following the functional form of Nelson and Siegel (1987):

yt(τ) = A(τ) + Lt + θs(τ)St + θc(τ)Ct, (5)

where yt(τ) denotes the τ -quarter nominal bond yield, and factor loadings are given by

θs(τ) =
1− exp(−λτ)

λτ
and θc(τ) =

1− exp(−λτ)

λτ
− exp(−λτ). (6)

An increase in the level factor induces a parallel upward shift of the whole yield curve,

an increase in the slope factor increases the short end by more than the long end (hence,

strictly speaking, “negative slope factor”), and an increase in the curvature factor accentuates

the curvature at short- to medium-term maturities. The parameter λ governs how strongly a

change in the slope factor St affects the slope of the yield curve and at which maturity the

curvature factor has its maximum impact on the yield curve. The intercept term A(τ) does not

appear in the original Nelson-Siegel specification but is added to rule out arbitrage as described

by Christensen et al. (2011) and detailed further in Appendix B.

We treat the level factor as non-stationary, while imposing stationarity on the slope and

curvature factors, as suggested by unit root tests (Appendix C).7 We thus decompose the level

6See Brand et al. (2018) for a detailed discussion of how modeling assumptions affect the stabilization properties
of r∗t .

7Del Negro et al. (2017) and Bauer and Rudebusch (2020) assume that also the slope is non-stationary, thus
rendering term premia non-stationary. From an econometric perspective, such an assumption may fit the data
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factor Lt into

Lt = L∗t + L̃t (7)

where L∗t is a non-stationary trend such that limh→∞EtLt+h = L∗t and L̃t is a zero-mean

stationary (or “cyclical” ) component. Using (5), the one-quarter short-term interest rate,

it = yt(1), is given by

it = A(1) + Lt + θs(1)St + θc(1)Ct, (8)

with the limit

lim
h→∞

Etit+h ≡ i∗t = A(1) + L∗t + θs(1)S̄ + θc(1)C̄, (9)

where S̄ and C̄ denote the constant long-run means of the stationary slope and curvature factor,

respectively. In combination with Equation (9), the long-run Fisher equation i∗t = π∗t + r∗t pins

down the trend component of the level factor as L∗t = π∗t +r∗t −θs(1)S̄−θc(1)C̄−A(1). As L∗t is

a latent process and A(1) is a free parameter (see Appendix B), we set A(1) = −θs(1)S̄−θc(1)C̄

so that the long-run level factor is equal to the nominal short-term natural rate8

L∗t = i∗t ≡ r∗t + π∗t . (10)

For the stationary, zero-mean, component of the level factor we specify an AR(1) process

L̃t = aLL̃t−1 + εL̃t , (11)

with |aL| < 1. Finally, slope St and curvature Ct are assumed to follow a bivariate, stationary

VAR that also includes the inflation and output gap as potential drivers:

St = a10 + a11St−1 + a12Ct−1 + a13π̃t−1 + a14x̃t−1 + εSt , (12)

Ct = a20 + a21St−1 + a22Ct−1 + a23π̃t−1 + a24x̃t−1 + εCt . (13)

The inclusion of the gap measures highlights the cyclical nature of slope and curvature.9 Alter-

equally well, and Bauer and Rudebusch (2020) assert that “. . . the estimated term premium with a shifting
endpoint exhibits more pronounced cyclical variation, in line with the notion that risk premia are countercyclical
[...]”, underlining that the stationarity vs. non-stationarity of term premium and slope is probably a borderline
case.

8Other choices, e.g. A(1) = 0 would have induced a constant wedge between L∗
t and i∗t but would not affect

the model property that shifts in i∗t translate one-for-one to shifts in the natural level L∗
t .

9Note that the assumption of yield curve factors following a first order VAR is standard in the literature, with
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natively specifying a more general trivariate VAR for the stationary yield curve factors does not

change the results.10

The resulting model implies a “natural yield curve” at each point in time, i.e., maturity-

specific attractors for all yields. To see this, take the limit of Equation (5) to find

lim
h→∞

Etyt+h(τ) ≡ yt(τ)∗ = A(τ) + L∗t + θs(τ)S̄ + θc(τ)C̄, ∀ τ ∈ N+. (14)

The “natural slope” for any maturity τ , y∗t (τ) − y∗t (1) = A(τ) + θs(τ)S̄ + θc(τ)C̄, is time

invariant, because the short-term natural real rate and trend inflation equally affect the short

and long end of the natural yield curve. Hence, the location of the natural yield curve varies

over time, while the long-run shape of the natural yield curve is time-invariant.

Although we cannot use the difference between the nominal natural and observed yield curves

as a measure of the monetary policy stance stricto sensu (since this would require an estimate of

the real natural yield curve11), extending the concept of the natural rate to the entire yield curve

provides a useful benchmark for whether, at each point in time, the actual nominal natural yield

curve is close to its estimated long-run level or whether one would expect adjustments towards

it over time. Appendix G presents estimates of the natural yield curve at different points in

time and their interpretation.

We compute the term premium of maturity τ , denoted TPt(τ), as the difference between

the model-implied τ -period bond yield, ŷt(τ) and its expectations component, i.e. the expected

average of future short rates over the respective maturity:

TPt(τ) = ŷt(τ)− 1

τ

τ−1∑
h=0

Et(it+h). (15)

As the short rate is a function of yield curve factors (8), their dynamics pin down model-

consistent expectations Et(it+h) for all relevant horizons h. Forward term premia are computed

several papers adding unspanned macro factors to further inform the dynamics of yield curve factors. In contrast
to Bauer and Rudebusch (2020), however, we do not allow the level factor (and thus i∗t ) to load on either slope
or curvature, as this would render them non-stationary, contradicting the evidence presented in Section C of the
Appendix.

10In this case, also the cyclical level factor is a function of lagged gap measures. Appendix J.5 shows that
results are virtually unchanged but come at the cost of additional parameters.

11In Section 5.1 we show that it is intricate to compute model-consistent long-term real rates: first, computing
the term structure of inflation expectations requires solving a fixed-point problem with some small modifications
to the model; second, even when deflating nominal yields with thus-computed inflation expectations, the resulting
real rates would still include inflation risk premia.
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analogously.

Expectations
∑τ−1

h=0Et(it+h) are linked to r∗t and inflation expectations and thereby non-

stationary. As both expected and observed yields embody the same trend i∗t , their difference,

the term premium, is stationary and converges to a constant mean. That is, the term structure

of term premia has a time-invariant attractor limh→∞Et
[
TPt+h(τ)

]
= TP ∗(τ).

2.3 Adding survey information

To help identify latent variables, we add survey information as observables.12 Specifically,

we include the Federal Reserve’s series for perceived target inflation (PTR), as in e.g. Bauer

and Rudebusch (2020), to measure expectations of average inflation over long horizons Est πt+∞.

We match it with trend inflation π∗t plus a measurement error:

Est πt+∞ = π∗t + us,πt , us,πt ∼ N (0, σ2
s,π). (16)

To help measure near-term interest rate expectations, we also match Consensus survey expecta-

tions of short-term rates four quarters ahead, Est yt+4(1), with the corresponding model-implied

expectation plus a measurement error:

Est yt+4(1) = A(1) + EtLt+4 + θS(1)EtSt+4 + θC(1)EtCt+4 + us,srt , us,srt ∼ N (0, σ2
s,sr). (17)

3 Methodology and Estimation

3.1 Data

The model is estimated over the sample period 1961Q2–2019Q4 using quarterly US data

on log real GDP, year-on-year changes in the log consumer price index, nominal risk-free zero

coupon yields for K = 13 maturities (1-4 quarters and 2-10 years), and surveys on inflation and

interest rate expectations. Inflation (CPIAUCSL) and real GDP (GDPC1) data are both seasonally

adjusted and taken from the FRED database of the Federal Reserve Bank of St. Louis. Nominal

yields are end-of-quarter and based on the daily factors from Gürkaynak et al. (2007). The

Federal Reserve’s series for perceived target inflation (PTR), from the Federal Reserve’s FRB/US

12The inclusion of survey data is common in both the literature that extracts low-frequency dynamics from
macroeconomic time series (see, among others, Del Negro et al., 2015, 2017; Mertens, 2016; Mertens and Nason,
2020) and the literature on term structure modeling (see, e.g., Kim and Wright, 2005; Geiger and Schupp, 2018).
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database, starts in 1968Q1. The Consensus Economics forecast of the 3-month T-Bill, 1-year

ahead, starts in 1990Q1.

3.2 Methodology

As common in Bayesian estimation of unobserved components models, we use the Gibbs

sampler and the Durbin and Koopman (2002) simulation smoother to jointly estimate potential

output growth, output gap, trend inflation and real equilibrium interest rates. Our approach al-

lows simultaneous estimation of all model parameters and latent states and eschews the multistep

maximum likelihood approach adopted by HLW. The latter approach, drawing on the median

unbiased estimation method proposed in Stock and Watson (1998), would be impractical for a

model of this size.13

Specifically, the Gibbs sampler generates draws from the joint posterior distribution of states

ξt, the DNS parameter λ and all other parameters θ, given the observables ζ, denoted p(ξ, θ, λ|ζ).

As the measurement equations depend on λ in a nonlinear fashion, we cannot sample from its

distribution directly. Instead, we specify a random walk Metropolis Hastings step for λ to

approximate its conditional posterior. The Markov Chain Monte Carlo (MCMC) algorithm is

explained in detail in Appendix D.

Finally, including survey data creates missing observations in the measurement equation

because the surveys start only later in the sample. We therefore adapt the Durbin and Koopman

simulation smoother to allow for missing values.14

3.3 Priors and posterior estimates

We use conjugate priors for all model parameters and variances, i.e. prior distributions are

either Normal-Inverse-Gamma or Normal-Inverse-Wishart. For the parameters of the IS and

Phillips curve, we position the sensitivity to real rate gap (a3) and output gap (b2) farther away

from zero but otherwise center our prior means (for a1, a2 and b1) around the estimates from

LW. The AR(1) coefficient of the cyclical level factor is centered around 0.5 with a standard

deviation of 0.25. For slope and curvature, our prior assumes that both follow a persistent AR(1)

process with intercept, whose coefficients are based on OLS regressions of factors extracted from

13Buncic (2024) has recently criticized the multistep estimation approach by HLW for inconsistently implement-
ing the mean unbiased estimation procedure by Stock and Watson (1998) and thereby generating a spuriously
strong downward trend in the non-growth component of r∗t .

14See Durbin and Koopman (2012), pp. 110-112, for details.
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a standard DNS model. This prior allows for some shrinkage of all parameters in the VAR other

than the own lag towards zero. Yet with a variance of
√

0.5, it is very loose.

The priors for the variances of the random walks are largely flat with scale and shape

parameters equal to 4 and 2, respectively, which corresponds to a mean disturbance variance of

0.66 and a standard deviation of 0.47. The only exception is the variance of shocks to expected

potential output growth σ2
g . In principle, our prior choice prevents “pile-up” (convergence of σ2

z

to zero).15 Specifically, we choose shape and scale parameters of the Inverse-Gamma distribution

such that its mean equals 0.0015, implying a priori variance of the change in (quarterly) potential

output growth over one century of 0.6%. This prior ensures a fairly smooth estimate of trend

growth, but leaves our r∗t estimates unaffected.16 A less informative prior instead causes trend

growth gt to exhibit stronger – and arguably implausible – cyclical dynamics, rendering the

resulting output gap less persistent.17

For the DNS parameter λ, we assume a Normal prior with mean 0.1821 (the calibrated value

in Diebold and Li (2006) adjusted for quarterly data) and a standard deviation of 0.1. The scale

parameter of the random walk Metropolis Hastings algorithm is set to ensure an acceptance ratio

between 20-40%. The Inverse-Wishart prior for the measurement errors of yields is centered

around 0.5 and uninformative. Finally, we set the scale and shape parameters of the Inverse-

Gamma priors for the inflation and short-term rate surveys to have a mean disturbance variance

of 0.66 and a standard deviation of 0.47.

Table 3.1 summarizes the priors and posterior of the main structural parameters. In general,

posterior distributions as additionally illustrated in the Appendix E suggest that all parame-

ters are well identified from the data. The table also compares our posterior to the published

estimates by HLW where applicable. Despite differences in the two studies across several im-

portant dimensions – including Bayesian vs. multi-step maximum likelihood estimation, closing

the model with nominal yield dynamics or not, the specification of inflation dynamics, using

survey information or not – the parameter estimates are broadly similar. However, the posterior

median estimates of the loading coefficient of the real rate gap, a3, in the IS equation and of

the slope of the Phillips curve, b2, are −0.2 and 0.14, respectively, and thus higher than those

15See the discussion in Kim and Kim (2013) on ARMA specifications for GDP (in their case with the likelihood
surface of the MA-coefficient piling up at one).

16Section 5.3 discusses the sensitivity of results to a less tight prior.
17Davis et al. (2024) also impose a restriction on the joint dynamics of g and z, postulating that r∗t and g are

cointegrated, and imposing constraints on the “residual” z component. The key difference to us is the choice of
z as being stationary.
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Table 3.1: Prior and posterior densities of parameter estimates

Prior Posterior
Parameter Distr. Mean SD Mean Median 5% 95% HLW

a1 N 1.50 0.25 1.40 1.42 1.13 1.61 1.53
a2 N -0.6 0.25 -0.65 -0.65 -0.87 -0.42 -0.59
a3 N -0.2 0.05 -0.2 -0.2 -0.27 -0.14 -0.07
b1 N 0.65 0.2 0.62 0.63 0.38 0.81 0.67
b2 N 0.15 0.05 0.14 0.14 0.07 0.21 0.08
aL N 0.5 0.25 0.51 0.51 0.21 0.83
a10

MVN



−0.24
0.85

0
0
0
−0.3

0
0.78

0
0


√

0.5 · I10

-0.54 -0.54 -0.93 -0.22
a11 0.69 0.69 0.57 0.79
a12 0.13 0.13 0.07 0.19
a13 0.00 -0.01 -0.12 0.11
a14 0.15 0.15 0.07 0.25
a20 -0.12 -0.10 -0.65 0.37
a21 0.33 0.33 0.18 0.49
a22 0.62 0.62 0.53 0.71
a23 -0.04 -0.04 -0.19 0.13
a24 -0.13 -0.13 -0.28 0.00
σLc Γ−1(4,2) 0.66 0.47 0.74 0.68 0.43 1.25
σS W−1(2, I2) 2 I2

1.11 1.09 0.94 1.36
σC 1.76 1.76 1.61 1.93
σπ∗ Γ−1(4,2) 0.66 0.47 0.20 0.20 0.18 0.22
σx∗ Γ−1(4,2) 0.66 0.47 0.54 0.54 0.45 0.64 0.57
σg Γ−1 0.0015 2× 10−7 0.04 0.04 0.03 0.05 0.03
σz Γ−1(4,2) 0.66 0.47 0.32 0.32 0.27 0.37 0.16
σπ̃ Γ−1(4,2) 0.66 0.47 0.78 0.71 0.45 1.36 0.79
σx̃ Γ−1(4,2) 0.66 0.47 0.76 0.70 0.43 1.30 0.35
σy(2)

W−1(15, I12) 0.5 ∞

0.24 0.24 0.22 0.26
σy(3) 0.11 0.11 0.10 0.13
σy(4) 0.10 0.10 0.09 0.11
σy(8) 0.09 0.09 0.09 0.11
σy(12) 0.08 0.08 0.07 0.08
σy(16) 0.08 0.08 0.07 0.09
σy(20) 0.08 0.08 0.07 0.09
σy(24) 0.08 0.08 0.07 0.08
σy(28) 0.07 0.07 0.07 0.08
σy(32) 0.07 0.07 0.07 0.08
σy(36) 0.08 0.08 0.07 0.09
σy(40) 0.09 0.09 0.08 0.10
σs,π Γ−1(4,2) 0.66 0.47 0.15 0.15 0.13 0.16
σs,y(4) Γ−1(4,2) 0.66 0.47 0.13 0.13 0.12 0.15
λ N 0.18 0.1 0.17 0.17 0.16 0.18

Note: The table shows prior and posterior moments of the structural model parameters. The third and fourth
column report the prior mean and standard deviation, with the corresponding shape and scale parameters for
either inverse gamma or inverse Wishart distributions being reported in the second column. HLW refers to the
published estimates from HLW from the New York Fed.

reported in HLW. They are above 0.1 in absolute terms – the critical threshold beneath which

filtering uncertainty rises dramatically, as reported in Fiorentini et al. (2018).

We also estimate the variance of shocks to the non-growth component, σ2
z , to be substan-

tially higher. Closing the model with nominal yield curve dynamics, renders the real rate gap

stationary and makes r∗t track the real rate of interest more closely than in HLW as we will

discuss below. Accordingly, the non-growth component needs to be able to capture a larger

wedge between expected potential output growth and the trend in the natural real rate, thereby
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requiring a larger innovation variance.

The coefficients of the VAR for slope and curvature support the stationarity assumption. The

own lag coefficients, a11 and a22, are at around 0.6 and the largest eigenvalue of the (sub-)VAR

at the posterior median is around 0.86, substantially smaller than unity.

Finally, the estimated variance of measurement errors for yields, σy(τ), are almost all below

10 basis points, implying a fit of yields similar to benchmark term structure models (see, e.g.,

Diebold and Li, 2006), with the exception of maturities below one year. Also, the standard

deviation of the measurement error corresponding to the inflation surveys, σ2
s,π, is fairly tight

hence keeping model-based long-run inflation expectations relatively close to their survey-based

counterpart. A similar order of magnitude prevails for the measurement errors of the 1-year

ahead short-term interest rate survey, with a standard deviation of 13 basis points. The latter

is particularly helpful in informing the model about the high persistence of short-term rate at

the effective lower bound (ELB), even if not modeled explicitly.

4 Quantitative results

This section presents the r∗t estimates in Section 4.1, discusses which observables are impor-

tant in the inference of r∗t in Section 4.2, and reports the term premium estimates compared

with results from stationary yield curve models in Section 4.3.

4.1 Estimates of the natural rate of interest, r∗t

Figure 4.1 plots our posterior median estimate of the natural real interest rate together with

its 90% credible set and compares it to estimates from Laubach and Williams (2016), denoted

“LW”, HLW, denoted “HLW”, and Bauer and Rudebusch (2020), denoted “BR”.18 Hence, the

figure provides an r∗t comparison based on a macro (LW and HLW), a finance (BR) and a macro-

finance (BGL) approach. Our r∗t estimates appear closer to those by BR than those by HLW or

LW.19 We note the following results:

First, our estimates are lower than LW and HLW during the 1960s and 1970s and following

the Global Financial Crisis. Rather than showing a continued decline over that period, our

18The BR estimate is based on the estimated-shifting-endpoint (ESE) approach and constructed by subtracting
the authors’ measure for long-run inflation expectations from their estimated i∗t as shown in Figure 4 of their
paper.

19The correlation of quarterly changes between our estimate and BR amounts to 0.39 versus 0.22 and 0.06
between our estimates and LW or HLW, respectively.
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Figure 4.1: Comparison of r∗t estimates

Note: The figure shows our (BGL) median r∗t estimates together with its 90% credible set and compares it to
estimates from LW, HLW and Bauer and Rudebusch (2020). The latter is calculated by subtracting the authors’
measure of long-run inflation expectations from their i∗t estimate. LW and HLW estimates are taken from the
New York Fed website. NBER recessions are marked in grey.

estimates – as well as those of Bauer and Rudebusch (2020) when they become available in the

early 1970s – exhibit a protracted rise and fall over the last six decades. Our estimates track real

rates, as proxied here by the ex ante model-implied real rates, more closely. In our model, the

actual real rate and its natural counterpart are co-integrated and their difference is stationary.

Accordingly, the model-implied real rate gap

r̃t = it − Etπt+1 − r∗t = θS(1)(St − S̄) + θC(1)(Ct − C̄) + L̃t − Etπ̃t+1, (18)

is stationary and has mean zero. This stationarity is a key difference to HLW who treat the

short-term real rate as an exogenous variable, not tying ex ante and natural real rate together,

with the consequence that the real rate gap can be large and persistent, generating highly

persistent output gaps. Compared to our model-implied ex ante real rate, the real rate gap

of HLW persistently exceeds a magnitude of 300 basis points for almost the entire first two

decades of our sample, as shown in Figure 4.2. Interpreting this gap as a measure of a monetary
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policy stance implies a timing, extent, and duration of monetary easing that seems not perfectly

plausible in light of inflation outcomes, notwithstanding the Great Inflation period which was

also characterized by unprecedented commodity price shocks and a lose fiscal stance (Blinder,

1982). More to the point, the significantly stronger degree of policy accommodation measured

by HLW during the post Global Financial Crisis decade seems difficult to reconcile with tepid

inflation prints relative to target at the time.

Figure 4.2: Real rate gap r̃t

Note: The figure shows our (BGL) median r̃t estimate together with its 90% credible set and compares it to the
real rate gap from HLW, calculated by subtracting their r∗t estimate from their real rate measure. Both HLW
series are downloaded from the New York Fed. NBER recessions are marked in grey.

Second, statistical uncertainty surrounding our estimates appears to be confined, with the

average 95th-5th interpercentile range (IPR) equal to 2.3 percentage points (ppt) and notably

less following the availability of short-term interest rate surveys as of 1990Q1 (2.9 ppt before

1990Q1, and 1.7 ppt thereafter, on average). This range compares rather favourably to the 8

ppt range identified for HLW estimates by Fiorentini et al. (2018).

Third, notwithstanding their different gauges of natural rate levels, all estimates agree on a

decrease of r∗t since the early 2000s, the extent of that decline ranging between two and three

percentage points. Moreover, all models (excluding the very smooth estimates from Laubach

and Williams, 2016) appear to decline during recessions and display a particularly strong drop

in r∗t following the GFC. We can even confirm the trend decline from a statistical perspective,

taking the uncertainty about r∗t estimates into account: the posterior density of the change in r∗t

between 2000 and end-2019 excludes zero from the associated 99% credible set. The same holds
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true for the change since 2007Q2. For the time before 2000, only LW and HLW show a clear

downward trend. To gauge the drivers of that decline, the left-hand side panel of Figure 4.3

provides the breakdown of r∗t into its expected trend growth gt and the catch-all, non-growth

component zt as outlined in Equation (3). While expected potential real growth has fluctuated

around 3% per annum prior to the GFC, it fell to around 2% in the wake of the GFC, thereby

partially contributing to the decline in r∗t . However, the decline in the z-component is much

larger. The non-growth component declined by about 2 percentage points in the wake of the

GFC, possibly reflecting an increased demand for safe assets as reported by e.g. Del Negro et al.

(2017).

Figure 4.3: Natural rate of interest and its components

Note: The figure shows the decomposition of r∗t into annualized expected trend growth 4gt and the non-growth
component zt.

4.2 What data inform the inference on r∗t ?

Our model uses macro, yield curve and survey data to estimate r∗t . To get an impression on

the relevance of the different measurement data for the estimation of r∗t , we apply the historical

data decomposition of Koopman and Harvey (2003) to estimate the share of contributions from

observed variables to latent factors. For the smoothed estimates of r∗t and its components gt

and zt Figure 4.4 shows the contribution from specific groups of observables on the respective

estimate.20

20Recall that surveys on short-rate expectations over short horizons (“i surveys” in Figure 4.4) only enter our
data set as of 1989Q2; however, these survey data points also matter for the smoothed estimates of r∗t and other
state variables before 1989Q2.
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All three sources inform r∗t : macro, yield curve and survey data. Unsurprisingly, the expected

potential growth rate gt (left panel) is primarily informed by log real GDP. Yet, for the non-

growth component, zt (middle panel) and hence r∗t (right panel), yield curve and survey data play

important roles in the inference as well. Specifically, the inference about r∗t depends positively

on interest rate data on net, and negatively on inflation and long-term inflation expectations in

line with the calculation of an ex ante real rate.

One key feature is that neither the short- nor long-term rate alone is informative about r∗t

but the entire yield curve. This holds particularly for the ZLB period.

An alternative way to gauge the contribution of different observables to the estimation of r∗t is

to recover the latent states using only subsets of the data, taking as given the posterior estimated

parameters (see Appendix F for details). The analysis confirms that all three data sources are

relevant for inferring the level of r∗t . Moreover, the version without financial data gives rise

to mostly higher and significantly smoother r∗t estimates throughout the first three decades of

the sample. This result supports our conjecture that closing the model with an endogenous

interest rate equation generates more cyclical r∗t estimates and thereby less persistent real rate

gap measures, especially in the first part of the sample.

Finally, exploiting the information of the entire yield curve also supports the identification

of both the cyclical and stochastic trend components of real rates as discussed in more detail in

Section 5.3, where we estimate the model using only the short-term rate.

Figure 4.4: Historical data decomposition of r∗t

Note: The Figure shows the decomposition of selected latent states into the contributions of observables as
inferred by the Kalman smoother, based on posterior median estimates. See Koopman and Harvey (2003) for
details on how to compute the weights.
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4.3 Term premia

Our term premia estimates from Equation (15) are affected by accounting for trends in r∗t

and π∗t . On the left, Figure 4.5 shows our decomposition of the 5-year forward rate 5-years ahead

into the expectations component (i.e. the average expected short-term interest rate over that

5-year horizon, 5-years ahead) and the forward term premium. A comparison with estimates

commonly reported in the literature on the right of Figure 4.5 shows a high consistency in the

dynamics.

Yet, while term-premia estimates from the literature display a distinct stochastic trend,

especially for the long forward horizon, our term premia rather show cyclical dynamics.21 Less

trending and more cyclical term premia reflect the underlying model mechanics: while the

standard modeling approach is based on stationary factor dynamics and a time-invariant long-

run mean for the short rate, our model features a time-varying and non-stationary attractor

for the short-term interest rate. Accordingly, the expectations component is able to absorb a

relatively larger part of the trend in long-term bond yields in our model, and the term premium

does not have to incorporate a trend as criticized by e.g. Cochrane (2007).22

Figure 4.5: 5-year-in-5-year forward term premium estimates

Note: The left figure shows the decomposition of the 5-year-in-5-year forward rate (blue) into the model-implied
expectation component (red) and the term premium (yellow). The right figure compares our term premium
estimate for the 5-year-in-5-year forward rate with a min-max-range (grey area) from several estimates in the
literature: Kim and Wright (2005) (taken from FRED), Adrian et al. (2013) and a DNS model following
Diebold and Li (2006), both based on authors’ calculations.

A recent important exception to the dominance of stationary models is Bauer and Rudebusch

21Unless noted differently, we use the term “cyclical” in the sense of the time series not showing a distinct trend
but rather “looking stationary”, and not in the narrow sense of correlating with the business cycle.

22Abbritti et al. (2023) obtain similar term premium dynamics, in particular not exhibiting a clear trend, based
on a fractional cointegration approach.
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(2020) who also incorporate a trend for long-horizon short-rate expectations. Their term premia

estimates (Figure 4.6) for long-horizon forwards are less trending than those from constant-mean

models, but still somewhat less cyclical than our term premia. This “in-between” pattern could

arise from our model specification enforcing stationary term premia by construction, as opposed

to their approach.

Figure 4.6: Forward term premia: comparison with Bauer and Rudebusch (2020)

Note: The figure compares our (BGL) term premium estimate of the 5-year-in-5-year forward rate (in yellow)
with those presented in Bauer and Rudebusch (2020). OSE (in blue) denotes the model with observed shifting
endpoint, while ESE (in red) denotes the model with estimated shifting endpoint.

5 Model extensions

In this section, we discuss model extensions and robustness checks. We allow long-term

(rather than short-term) real interest rates to enter the IS curve in Section 5.1 and specify

a shadow rate term structure model to address the ELB in Section 5.2. Finally, we discuss

additional robustness exercises in Section 5.3.

5.1 Different maturities of real rates

By adding yield curve dynamics to the baseline Laubach and Williams model, we can test

their modeling assumption that only the short-term – rather than the longer-term – real rate gap

drives the output gap in Equation (J.34). Doing so brings the model closer to structural New

Keynesian models in which the expected path of future short-term real interest rates determines

households’ consumption decisions and ultimately output.
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Specifically, we assume that the IS curve takes the form:

x̃t = a1x̃t−1 + a2x̃t−2

+a3Et−1

2∑
l=1

yt−l(τ)− 1

τ

τ∑
j=1

πt−l+j −

y∗t−l(τ)− 1

τ

τ∑
j=1

π∗t−l+j

+ εx̃t . (19)

The term in square brackets represents the average (lagged) long-term real rate gap for

maturity τ . We measure long-term real rates by subtracting average expected inflation over the

next τ years from the corresponding nominal bond yield y(τ). The second pair of terms (in

parentheses) is the natural counterpart to this real rate. As in our baseline specification with

one-period real rate gaps, in turn following HLW, we take the average of the t − 1 and t − 2

long-term real rate gap.

In doing so, we make two assumptions. First, while we subtract inflation expectations to

deflate nominal interest rates into real rates, we ignore the cyclical component of inflation risk

premia, because our nominal pricing model is mute on the separation of nominal term premia

into inflation risk and real rate risk compensation.23 Second, we use the t − 1 information set

for the conditional expectations for both lags as lagged expectations themselves become a state

variable, thereby substantially increasing the state space and the computational challenges for

solving the model.

Even under these slightly simplifying assumptions, the IS equation (19) with a long-term

real rate gap of maturity τ requires the computation of model-consistent inflation expectations

over τ horizons. Expected inflation in period t+τ , however, is a function of the expected output

gap and inflation in periods t+ τ − 1. The former, in turn, depends on t+ τ − 1 real rate gaps

and hence inflation expectations. Appendix H documents the required solution to this dynamic

programming problem.

Table 5.1 presents the results of a model comparison exercise with respect to the maturity of

the real rate gap. The data prefer model specifications that include longer-term real rate gaps,

with the highest marginal likelihood being reached at the 10-year horizon.24

23Aruoba (2020), Brzoza-Brzezina and Kot lowski (2014), Imakubo et al. (2018) and Dufrénot et al. (2022)
also construct real yield data by subtracting proxies of inflation expectations from the nominal yield curve, i.e.
without factoring in inflation risk premia. Also economically, it may not be too far fetched to assume that firms
and consumers observe nominal rates and just subtract inflation expectations to arrive at a real measure that
informs their consumption and production/investment decisions. Finally, Appendix H contains a comparison with
real rates of inflation-linked bonds, which display a distinct co-movement with our measure.

24Going beyond 10-year rates in this exercise would require extending the cross section of yield data. However,
we stick to the 10-year rate as maximum, noting it is a prominent maturity in related exercises, see, e.g. Kiley
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Table 5.1: Marginal data densities for models with different real rate gaps

Maturity τ (in quarter) 1 4 8 20 28 32 40
Marginal likelihood -1859.6 -1892.5 -1986.0 -1847.0 -1776.5 -1764.2 -1742.0

Note: The first row contain the maturity of the long-term real rate used in the IS equation, see (19). The
marginal likelihood is based on the harmonic mean estimator proposed by Gelfand and Dey (1994) and based on
a single chain with 100,000 iterations, of which the first 90,000 were burn-in and afterwards every 10th draw was
retained.

Yet differences in maturities of the real rate gap do not impact latent variable estimates.

In particular, the left-hand panel of Figure 5.1 shows that the posterior median estimates of r∗t

estimates are little, if at all, affected. An explanation for this result could be that the level factor

is the most prominent source of variation in yields across maturities. Thus, for any maturity τ ,

the cyclical level factor is a key driver of the corresponding real rate gap. Having learned about

the cyclical level factor L̃ from any real-rate gap specification with maturity τ in a similar way,

having inferred the overall level factor Lt from yield curve dynamics, and noting that π∗ closely

follows survey information, it follows that the different specifications imply similar levels of r∗t

given that r∗t = Lt − π∗t − L̃t,

Real rate gaps based on longer-term yields generate overall narrower uncertainty bands, in

particular since 1990Q1 (right panel of Figure 5.1). This result supports the findings in Table 5.1

that the use of long-term real rate gaps in the IS curve is preferred by the data.

Figure 5.1: The effect of different real rate horizons on r∗t (see Table 5.1) and its uncertainty

Note: Left-hand side panel shows posterior median estimates of r∗t of the different model specifications.
Right-hand side panel shows the 95th-5th interpercentile range of r∗t .

While our semi-structural macro-finance model highlights the relevance of longer-term rates

(2014), Fuhrer and Rudebusch (2004), or Brayton et al. (2014).
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in the IS Curve, it does not allow for a deeper economic interpretation of why long maturities

are preferred. Future research may explore this in a structural framework.

5.2 Accounting for the effective lower bound (ELB)

During the last decade of our sample, the short-term interest rate was constrained by the

ELB. Ignoring this constraint may affect our estimates of r∗t . We therefore extend our macro-

finance model to a shadow-rate model by imposing a lower bound on interest rates. Following

Feunou et al. (2022), we approximate the ELB constraint using the following smooth nonlinear

function:

it = θω
(st
θ

)
, (20)

where it ≡ yt(1), ω(x) = xΦ(x) + φ(x) and Φ and φ denote the cumulative distribution and

probability density function of a standard normal distribution, respectively.25 The function

ensures that i > 0 for all levels of the shadow rate s, but the mapping varies with θ. The

function resembles a “hockey stick” exhibiting a more distinct kink for θ closer to zero. For

sufficiently positive shadow rates (large enough x > 0), we have ω(x) ≈ x and the set-up

converges to a linear model.

This approach provides for a tractable and “almost arbitrage-free” pricing of bonds26 but the

resulting state space model becomes nonlinear. We use the extended Kalman filter for estimation

and leave details on the model and estimation to the Appendix I.

The shadow-rate specification passes the consistency check that bond yields behave very

similarly to those in our linear baseline model when the state vector implies that the short rate

is sufficiently positive. The resulting estimate of the shadow rate is shown in the left panel of

Figure 5.2 over the period 2008-2019. The shadow rate falls below zero in 2009Q1, reaches its

lowest point -2% in 2014Q2, and remains in negative territory until 2015Q4, just before the

completion of active asset purchases. Our estimated shadow rate displays similar dynamics to

that of Wu and Xia (2016), yet the through is less negative than their estimate and uncertainty

is sizeable.

The right-hand panel of Figure 5.2 compares the r∗t estimate of the baseline and the ELB

versions of the model. The estimates of r∗t from the shadow-rate model are somewhat more

25Opschoor and van der Wel (2025) also deploy this specification for the mapping from shadow rate to short
rate (among other functional forms).

26See Feunou et al. (2022) for the exact notion.
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Figure 5.2: Model-implied shadow rate (left) and r∗t comparison (right)

Note: The left panel shows the observed one-quarter rate together with the model-implied shadow rate and the
shadow rate from Wu and Xia (2016) from 2008Q3 until 2017Q2. The shaded area represents the 90% credible
set. The right panel compares the r∗t estimates of the baseline model without ELB (blue) to the shadow rate
model (red).

volatile, which probably owes to the nonlinear estimation approach. Taking estimation uncer-

tainty into account, the figure does not suggest an economically meaningful difference between

the two estimates.

5.3 Other robustness exercises

In this section, we briefly discuss the robustness of our main results with respect to the sample

length and some modeling choices. Further details are relegated to our Appendix, Section J.

First, latent factor estimates are robust to different subsample choices, as highlighted by a

pseudo-real-time analysis. The analysis also indicates that even for shorter samples estimation

uncertainty surrounding r∗t is confined in our setup.

Second, as discussed in Section 4.1, the model by LW and HLW is not “closed” as it treats

the actual short-term real rate as exogenous. While in the main part of the paper, short-term

interest rate dynamics are specified as part of the full yield curve evolution, we check robustness

with respect to the simplest alternative which decomposes the short-term nominal interest rate

into a stochastic trend and a stationary cyclical component. As we show in the Appendix,

despite a tighter prior of the lagged inflation gap in the Phillips curve, the resulting posterior

estimates of r∗t are more volatile. Also, estimation uncertainty is substantially higher in the first

half of the sample.

Third, we generalize the arbitrage-free term structure module by not imposing the specific
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Dynamic Nelson Siegel parameterization which is a constrained version of the canonical form

of Joslin et al. (2011a).27 The more flexible specification improves the model fit somewhat but

leaves the estimated latent states and other results unaffected.

Fourth, we extend the model to allow for stochastic volatility in the IS and Phillips curve. The

cyclical dynamics pinned down by both structural equations (J.34) and (4) are key determinants

of r∗t whose identification might be comprised by instability of the disturbance variances over

time. The implementation follows Jacquier et al. (1994) and adds a sequential independence

Metropolis Hastings step to our Gibbs sampler. While both posterior median volatility series

show sizable time variation, the effect on the posterior estimates of latent states and parameters

is negligible.

Fifth, our baseline model postulates a very parsimonious structure for the cyclical level

factor dynamics. Generalizing the model by assuming that the stationary yield curve factors

(L̃t, St, Ct) jointly follow a trivariate VAR – with the output and inflation gap as exogenous

variables – does not affect the results.

Sixth, our baseline model assumes a relatively tight prior on the variance of trend growth

to ensure smooth dynamics in the growth of potential output. We show that a less tight prior

causes our estimate for trend growth gt to soak up some of the cyclical dynamics in output,

thus rendering the resulting output gap less persistent. The non-growth component, however,

adjusts accordingly leaving our estimates for r∗t virtually unaffected.

Seventh, in light of the weak empirical relationship between real rates and growth docu-

mented in Lunsford and West (2019), we relax the assumption that the expected annualized

trend growth rate, gt, loads one-to-one into r∗t , i.e. with a fixed coefficient of 4 in (3). Instead,

we estimated the loading coefficient using a flat prior centered around 4. While the posterior

median turns out to be lower than the value imposed by Laubach and Williams (2003, 2016), we

find a significantly positive effect of expected real potential growth on trend real interest rates

with a posterior median estimate of the coefficient at 2.74, and the 90% credible set ranging

from 1.4 to 4.4. This finding is in line with standard theory that links real rates to per-capita

consumption growth.

Finally, we relax the assumption of the original Laubach and Williams model that both lags

of the real rate gap in the IS curve (J.34) affect the output gap in the same way by estimating

a model version with separate coefficients for each lag. However, the posterior distributions for

27See the supplement of Joslin et al. (2011a).
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both parameters largely overlap and the difference is not statistically significant. Relaxing this

constraint therefore only adds estimation uncertainty while leaving the r∗t estimates unaffected.

6 Conclusion

In this paper, we propose a novel macro-finance model with the natural real rate of interest

fulfilling a dual role. For the yield curve, r∗t , together with trend inflation π∗, constitutes a

time-varying anchor. For the real economy, r∗t indicates the real rate of interest consistent with

the economy operating at its potential level. Our r∗t estimates balance both roles. Nominal term

premia implied by the model are consistent with the time variation in r∗t . We therefore address

the “natural rate puzzle” as recently claimed by Davis et al. (2024), who criticize the existing

literature that tends to use macro and finance information rather separately and inconsistently

to obtain estimates of r∗t and bond risk premia.

Despite using the same semi-structural macroeconomic relations as in LW and HLW, our r∗t

estimates imply a real rate gap (actual real rate minus r∗t ) that is distinctly cyclical, contrasting

with the highly persistent estimates of their paper. This difference arises because our stipulated

yield curve model endogenizes the real rate and renders the real rate gap stationary, while the

real rate in HLW is exogeneous and the real rate gap can vary arbitrarily.

Our macro-finance model is estimated by Bayesian methods (rather than by multi-step ad-

hoc approaches as frequently encountered in the literature) which allows for consistent inference

about the uncertainty surrounding parameters and latent states. The set-up also allows for

specification analysis regarding the question of whether longer-maturity rate gaps are more

adequate drivers of the output gap than the standard short-term real rate gaps. We find evidence

favoring the inclusion of longer-term yields.

Future research may expand the model by including explicitly a term structure of both

nominal and inflation-linked bonds, or by enriching the specification to account for central bank

asset purchases in the spirit of Li and Wei (2013).
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Appendix

A Baseline model

A.1 The state space representation

State equation: To write the model in state-space representation, let the N × 1 state vector

ξt comprise the term structure factors (cyclical level component, slope and curvature), trend

inflation, potential output, expected potential output growth, the non-growth component of the

natural rate, the cyclical component of inflation, the output gap and some lagged variables (to

cater for the dynamic structure of our model):

ξt =
(
L̃t St Ct π∗t x∗t gt zt π̃t x̃t L̃t−1 St−1 Ct−1 π̃t−1 x̃t−1

)′
.

Before we summarize all model equations in state space form, we need to solve the model-

consistent inflation expectations that enter the IS curve (1) through the real interest rate gap.

To do so, start by calculating the real rate, rt = yt(1)−Etπt+1. Taking conditional expectations

of inflation gives

Etπt+1 = Et
[
π∗t+1 + π̃t+1

]
= π∗t + b1π̃t + b2x̃t,

where the latter equality uses the Phillips curve, equation (4) in the main text. Substitution

yields

rt = yt(1)− π∗t − b1π̃t − b2x̃t.

Using equation (5) of the main text and A(1) = −θs(1)S̄−θc(1)C̄, the real rate gap, r̃t = rt−r∗t ,

is given by

r̃t =yt(1)− π∗t − b1π̃t − b2x̃t − r∗t

=L̃t + θs(1)(St − S̄) + θc(1)(Ct − C̄)− b1π̃t − b2x̃t,

where S̄ and C̄ denote the unconditional mean of slope and curvature, respectively. Using the

fact that both the inflation gap π̃t and output gap ỹt are mean-zero by construction, both are

given by S̄
C̄

 =

I2 −

a11 a12

a21 a22

−1a10

a20

 .
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Finally, substituting the equation for the real rate gap into the IS curve, yields the final state

transition equation for the output gap:

x̃t =a1x̃t−1 + a2x̃t−2 + a3

(
r̃t−1 + r̃t−2

)
+ εx̃t

=a1x̃t−1 + a2x̃t−2 + a3

(
L̃t−1 + θs(1)(St−1 − S̄) + θc(1)(Ct−1 − C̄)− b1π̃t−1 − b2x̃t−1

)
+ a3

(
L̃t−2 + θs(1)(St−2 − S̄) + θc(1)(Ct−2 − C̄)− b1π̃t−2 − b2x̃t−2

)
+ εx̃t

=
(
a1 − a3b2

)
x̃t−1 +

(
a2 − a3b2

)
x̃t−2

+ a3

(
L̃t−1 + θs(1)(St−1 − S̄) + θc(1)(Ct−1 − C̄)− b1π̃t−1

)
+ a3

(
L̃t−2 + θs(1)(St−2 − S̄) + θc(1)(Ct−2 − C̄)− b1π̃t−2

)
+ εx̃t

Combining this equation and the laws of motions for the other latent variables (2)–(4) and

(11)–(13) in the main text, we can write the state equation compactly as:

ξt = µ+ Fξt−1 + Get, et ∼ N (0, I). (A.1)

The vector of constant terms, µ and the matrix F are given by:

µ =
(

0 a10 a20 0 0 0 0 0 −a3[θs(1)S̄ + θc(1)C̄] 0 0 0 0 0
)′
,

and

F =



aL 0 0 0 0 0 0 0 0

0 a11 a12 0 0 0 0 a13 a14 03×5

0 a21 a22 0 0 0 0 a23 a24

1 0 0 0

04×3 0 1 1 0 04×7

0 0 1 0

0 0 0 1

0 0 0 0 0 0 0 b1 b2 0 0 0 0 0

a3 a3θs(1) a3θc(1) 0 0 0 0 −a3b1 a1 − a3b2 a3 a3θs(1) a3θc(1) −a3b1 a2 − a3b2

I3×3 03×11

02×7 I2×2 02×5



,

respectively. The matrix G is assumed to be diagonal with standard deviations of state innova-

tions on the main diagonal.
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Measurement equation: For the measurement variables, we assume that (log) real output

and (year-on-year) inflation are measured without error so that both are simply the sum of their

respective trend and cyclical component:

xt = x∗t + x̃t (A.2)

πt = π∗t + π̃t (A.3)

We further include as measurement a set ofK zero-coupon bond yields of maturities ranging from

τ1=1 quarter to τK = 40 quarters. We assume that the one-quarter short-term rate it ≡ yt(1) is

matched without error, i.e. σ2(1) = 0. All other observed yields yt(τi) equal their model-implied

counterpart in equation (5) of the main text plus a measurement error

yt(τi) = A(τi) + L̃t + L∗t + θs(τi)St + θc(τi)Ct + uτit , uτit ∼ N (0, σ2
τi), i = 1, . . . ,K. (A.4)

Surveys are mapped into their model counterparts as described by equations (16)–(17) in the

main text.

Our vector of measurements, ζt, thus collects the observed yields, output, inflation and

surveys

ζt =
(
yt(τ1), . . . yt(τK), xt, πt, Est yt+4(1), Est π

∗
t ,
)

The measurement equation of the state space model is given by

ζt = γ + Cξt + Dut with ut ∼ N (0, I), (A.5)

where

C =



1 θs(1) θc(1) 1 0 4 1
...

...
...

...
...

...
... 0K×7

1 θs(τK) θc(τK) 1 0 4 1

0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0

C1F
4

0 0 0 1 0 0 0 0 0 0 0 0 0 0


(A.6)
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C1 denotes the first row of C. The matrix D is assumed to be diagonal with standard deviations

of measurement innovations on their diagonal. Lastly, the column vector for the constants in

the measurement equation γ is given by

γ =
(
A(τ1) . . . A(τK) 0 0 γshsr 0

)′
, (A.7)

where γshsr = A(1) + C1(I + F + F2 + F3)µ.
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A.2 Estimated latent states

Figure A.1: Smoothed latent states

Note: The figure shows the posterior median of the latent states together with their 90% credible set.
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A.3 Model-implied one-quarter ahead inflation expectations

Figure A.2 compares our posterior median model-implied one-quarter ahead inflation ex-

pectations, together with its 90% credible set, with the estimate from Holston et al. (2017)

downloaded from the homepage of the New York Fed. Before comparing both series, note that

our measure of short-term inflation expectations is based on the year-on-year growth in the con-

sumer price index (variable CPIAUCSL PC1, obtained from the Federal Reserve Bank of St. Louis’s

FRED database, or CPALTT01USQ661S PC1, whereas Holston et al. (2017) base their estimate on

the personal consumption expenditures index excluding food and energy (DPCCRV1Q225SBEA).

The higher inflation expectations in the mid-1970s until early 1980s largely reflect differences in

the year-on-year increases in CPI and core PCE. Similarly, in the last two decades of the sample

(2000Q1-2019Q4), CPI inflation stood on average 0.44 percentage points above core PCE.

Figure A.2: Model-implied one-quarter ahead inflation expectations vs. HLW

Note: The figure compares our posterior median one-quarter ahead inflation expectations together with its 90%
credible set with the estimate from Holston et al. (2017) downloaded from the homepage of the New York Fed.
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B Parameter restrictions to rule out arbitrage in the dynamic

Nelson-Siegel model

In this section, we explain the derivation of the Nelson-Siegel yield equations from a no-

arbitrage perspective, and in particular the adjustment term A(τ) in the yield Equation (5).

As shown by Christensen et al. (2011) and, in a discrete-time setting, Li et al. (2012), pricing

bonds under a specific choice of risk-neutral factor dynamics renders the joint dynamics of bond

yields arbitrage-free, gives rise to factor loadings having the Nelson-Siegel functional form, but

implies an additional intercept term that is not present in the standard – statistically motivated

– Nelson-Siegel formulation.

Starting from the definition of the state vector ξt as in Appendix A.1, we define a factor

vector Ft = [Lt, ξ̄t], where ξ̄t equals our state vector ξt except that the first three elements are

re-shuffled so that L̃ appears after the slope and curvature factor S and C. The so-constructed

factor vector Ft has the three Nelson-Siegel factors Lt, St and Ct lining up upfront. Note

further that L results as a linear combination of the states L̃, g, z and π∗.28 We further group

Ft = [F ut F
m
t ] with F ut = [Lt, St, Ct] and Fmt capturing the rest of the variables. Based on that

partitioning of factors we represent the expression for the short-term interest rate, it ≡ yt(1), as

it = δ0 + δ′uF
u
t + δ′mF

m
t = δ0 + δ′Ft (B.8)

with obvious notation. Let Pt(τ) denote the time-t price of a zero-coupon bond with residual

maturity τ . If there are risk-neutral factor dynamics (labeled by Q)

Ft = cQ + ΦQFt−1 + vQt , vQt ∼ N (0,Ω) (B.9)

so that bond prices satisfy

Pt(τ) = e−itEQ
t Pt+1(τ − 1), Pt(0) = 1,

then the joint evolution of bond prices is arbitrage-free. Moreover, the solution to the pricing

28Note: Lt = L̃t + i∗t = L̃t + 4gt + zt + π∗
t .
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equation is exponentially affine in factors

Pt(τ) = exp
(
a(τ) + b(τ)′Ft

)
where coefficients a(τ) and b(τ) satisfy the well-known difference equations

a(τ + 1) = a(τ) + b(τ)′cQ +
1

2
b(τ)′Ωb(τ)− δ0 (B.10)

b(τ + 1)′ = b(τ)′ΦQ − δ′, (B.11)

with a(1) = −δ0 and b(1) = −δ.

It is straightforward to see that if

ΦQ =

 ΦQ
uu 0

ΦQ
mu ΦQ

mm

 , (B.12)

and δ′ = [δ′u, 0, . . . , 0], then b(τ) = [bu(τ)′, 0, . . . , 0], and the difference equations for the factor

loadings reduce to the elements corresponding to the three factors,

a(τ + 1) = a(τ) + bu(τ)′cQu +
1

2
bu(τ)′Ωuubu(τ)− δ0 (B.13)

bu(τ + 1)′ = bu(τ)′ΦQ
uu − δ′u, (B.14)

with a(1) = −δ0 and bu(1) = −δu.

Moreover, as shown by Li et al. (2012), if ΦQ
uu is of the form

ΦQ
uu =


1 0 0

0 e−λ λe−λ

0 0 e−λ

 , (B.15)

and δu = [1, 1−e−λ
λ , −e−λ + 1−e−λ

λ ]′ then b(τ) exhibits the specific Nelson-Siegel loadings (in

price space) for the first three factors L, S and C (and zero on the other factors),

b(τ) =

[
− τ,−1− e−λτ

λ
, τe−λτ − 1− e−λτ

λ
, 0, . . . , 0

]′
. (B.16)

Recalling that Ft = [Lt, ξ̄t] is just an extension and permutation of our state vector ξt, the
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transition equation for Ft is readily derived from that of ξt described in Section A.1 of the

Appendix. It is affine, as the stipulated (unobserved) risk-neutral dynamics in (B.9) above, but

depends on the physical (no Q label) parameters:

Ft = c+ ΦFt−1 + vt, vt ∼ N (0,Ω).

The variance-covariance matrix Ω of state innovations is the same under both the risk-neutral

and the physical measure. For our factor vector Ft = [Lt, ξ̄t] it follows from the dynamics of ξt

and the link of Lt to L̃, zt, gt and π∗t that Ωuu in (B.13) is given by29

Ωuu = diag(σ2
L̃

+ σ2
π∗ + 16σ2

g + σ2
z , σ

2
s , σ

2
c ),

where σ2
i denotes the variance of the innovation εit of variable i in our model. Parameters

governing the risk-neutral and physical dynamics are linked as

cQ = c− Ω
1
2λ0, ΦQ = Φ− Ω

1
2 Λ

where λ0 and Λ (‘market prices of risk’) are a vector and a matrix, respectively, of appropriate

dimension.

Mapping bond prices into yields using yt(τ) = − 1
τ lnPt(τ), we have

yt(τ) = A(τ) + B(τ)′Ft

where A(τ) = − 1
τ a(τ) and B(τ) = − 1

τ b(τ). That is, B(τ) has now the Nelson-Siegel loadings

as in equation (6) in the main text for bond yields as the first three entries, and A(τ) is the

intercept appearing in (5).

The risk-neutral dynamics and cross-sectional pricing equations are parsimoniously param-

eterized. The relevant variance-covariance matrix Ωuu is implied by the time series estimates

under the physical measure as explained above. As we are working with latent factors, the pa-

rameter δ0 in the short-rate equation is not identified and can be arbitrarily calibrated. While

it is common to set it to zero, we choose to set δ0 = −θs(1)S̄ − θc(1)C̄ so that (as a(1) = −δ0)

A(1) = −a(1) = −θs(1)S̄− θc(1)C̄ as specified in the main text. Finally, we set the risk-neutral

29For instance, the first term follows from collecting the innovation terms for Lt = L̃t + i∗t = L̃t + 4gt + zt +π∗
t .
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VAR intercept cQ equal to zero. This is a somewhat ad-hoc choice to prevent additional param-

eters to enter our setup and is tantamount to imposing a restriction on the market price of risk

vector λ0, given the estimates of c and Ω of the physical dynamics. While under that specific

choice of cQ model-implied bond yield dynamics are arbitrage-free, it is eventually an empirical

question, whether cQ = 0 is an overly restrictive assumption. Via its impact on A(τ), the choice

of cQ affects the (average) slope of the yield curve as argued in the main text. It turns out

empirically that the model fits the average slope in the data fairly well so that the parameter

restriction appears non-problematic from this perspective.

C Unit root tests of DNS factors

Table C.1 presents the results of augmented Dickey Fuller tests for empirical measures of

level, slope and curvature as well as factors calculated based on a DNS model with λ = 3×0.0607,

both as suggested in Diebold and Li (2006). As evident from the table, unit root tests clearly

reject the null hypothesis of a unit root in slope and curvature for the US.
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Table C.1: Unit root tests for the yield curve factors

Measure Reject p-value Test Statistic Lags

0 0.6134 -1.312 0
0 0.6273 -1.191 1

Emp. level 0 0.6686 -1.147 2
0 0.5771 -1.255 3
0 0.6487 -1.298 4

1 0.0082 -3.539 0
1 0.0359 -3.006 1

Emp. slope 1 0.0292 -3.086 2
1 0.0075 -3.569 3
1 0.007 -3.594 4

1 0.001 -6.004 0
1 0.001 -4.44 1

Emp. curvature 1 0.0032 -3.89 2
1 0.0154 -3.315 3
1 0.0163 -3.298 4

0 0.6134 -1.281 0
0 0.6273 -1.249 1

DNS level 0 0.6686 -1.156 2
0 0.5771 -1.363 3
0 0.6487 -1.201 4

1 0.001 -4.3 0
1 0.0062 -3.629 1

DNS slope 1 0.0164 -3.296 2
1 0.0014 -4.103 3
1 0.0026 -3.961 4

1 0.001 -5.307 0
1 0.0022 -4.012 1

DNS curvature 1 0.0074 -3.573 2
1 0.0266 -3.12 3
1 0.0243 -3.153 4

Note: As suggested by Diebold and Li (2006), empirical measures for the level, (negative) slope and curvature
are the 10-year bond yield, the 2-year yield minus the 10-year yield and two times the 2-year yield less the
3-months rate and the 10-year yield. A value of 1 (0) in the column “Reject” means that the null hypothesis of
a unit root is rejected (not rejected) at the 5% significance level. Lags specifies the number of lagged difference
terms in the alternative model.

D MCMC algorithm

Let Θ denote the vector of all model parameters (except the DNS parameter λ):

Θ =

a1 a2 a3 b1 b2 aL a10 a11 a12 a13 a14 a20 a21 a22 a23 a24 ...

... σ2
lc σ2

s σ2
c σ2

π∗ σ2
x∗ σ2

π̃ σ2
x̃ σ2

τ2 . . . σ2
τ13 σ2

s,π σ2
s,shsr

 .

MCMC estimates of the model are obtained from a Gibbs sampler. The Gibbs sampler

generates draws from the joint posterior distribution of states ξt and parameters Θ and λ given

the observables ζ, denoted p(ξ,Θ, λ|ζ). The sampler is initialized with parameter values drawn

from their respective priors. Initial states, ξ0, for the simulation smoother are based on estimates
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from a two-sided HP-filter with a standard deviation of 0.25. It then loops over the following

steps:

1. Draw ξ = {ξ1, . . . , ξT } from p(ξ|Θ, λ, ζ): Conditional on the parameters Θ and λ, construct

matrices C,D,F and G to obtain a linear Gaussian state space model. Conditional on the

observables ζ = {ζ1, . . . , ζT }, draw the states ξ using the Durbin Koopmans simulations

smoother.

2. Draw Θ from p(Θ|λ, ξ, ζ): Using Bayesian recursive regressions, draw parameters Θ from

their Normal Inverse Gamma or Normal Inverse Wishart distributions, respectively, re-

jecting parameter draws that would render the dynamics of cyclical states non-stationary.

This amounts to a set of 11 regressions, which can be sampled independently since the

errors are assumed to be mutually orthogonal.

3. Draw λ from p(λ|Θ, ξ, ζ): The measurement equations for all yields depend on λ in a

nonlinear fashion. As a consequence, the distribution of λ is non-standard and cannot be

sampled from directly. To draw a new λ, we use the following random walk Metropolis

Hastings step:

λ∗ = λ(i−1) + Z
√

Σλ,

where λ∗ denotes the proposal, and λ(i−1) denotes the last accepted draw of λ and Z ∼

N (0, 1). Next, compute the acceptance probability as

α = min

(
p(ζ|Θ, λ∗, ξ)

p(ζ|Θ, λ(i−1), ξ)
, 1

)
,

with

p(ζ|Θ, λ, ξ) ∝ exp

( T∑
t=1

[
ζt − γ(λ)−C(λ)ξt

])
.

With probability α, we accept the new threshold value and set λ(i) = λ∗. Otherwise, we

set λ(i) = λ(i−1). The variable Σλ is the scale of the Metropolis Hastings step, and is tuned

to ensure an acceptance rate between 20 - 40 percent.

4. Repeat steps 1-3 until convergence.

The results presented are based on one single chaien with a total of 100,000 draws of which

we use the first 90,000 as burn-in and subsequently retain every tenth draw of the remaining
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10,000. The thinning of the posterior sample eliminates any residual sample autocorrelation

in the Gibbs sampler. Convergence is checked on the basis of recursive means as proposed by

Geweke (1991). We also confirmed convergence by having multiple chains starting from different

initial values and merging the resulting post-burn-in draws. In the Appendix E below, we show

that the posterior distributions resulting from a single or multiple chains are virtually equivalent.
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E Posterior plots

Figure E.1: Prior and posterior distributions of model coefficients

Note: The figure shows the prior distributions of the model parameters in yellow, together with the posterior
distributions based on a single chain in blue, or based on five chains in red. Each chain comprises 100,000
iterations of which the first 90,000 were burn-in and of the remaining 10,000 every 10th draw was retained. For
multiple chains, the posterior pools all retained draws.
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Figure E.2: Prior and posterior distributions of standard deviations

Note: The figure shows the prior distributions of the model standard deviations in yellow, together with the
posterior distributions based on a single chain in blue, or based on five chains in red. Each chain comprises
100,000 iterations of which the first 90,000 were burn-in and of the remaining 10,000 every 10th draw was
retained. For multiple chains, the posterior pools all retained draws.

F Inference using partial data

The main text discusses three ways to assess the relevance of the different measurement

data for the estimation of r∗t . The first applies the historical data decomposition of Koopman

and Harvey (2003) which expresses the estimated latent states in terms of contributions from

observed variables. The second is a filtering (and smoothing) exercise using only a subset of the

data and taking the posterior median coefficient estimates as given. The third (see Section 5.3

in the main text or J.2 below) re-estimates the full model with only short-rate (as opposed to

full yield curve) information closing the model.

This section provides additional figures on the inference of r∗t for the second exercise. Specif-

ically, in the first column, Figure F.1 shows the posterior median estimate of r∗t if we exclude

macro data (top), financial data (middle), or survey data (bottom) and compares it to the ”full

information” baseline. As is evident from the figures, all three data sources are used to determine
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the level of the natural rate. Two specific observations stand out: First, the version without

financial data, gives rise to mostly higher and significantly smoother r∗ estimates throughout

the first three decades of the sample, confirming our conjecture that closing the model with

an endogenous interest rate equation generates more cyclical r∗ estimates and thereby less per-

sistent real rate gap measures, especially in this part of the sample. Second, we observe that

including survey information gives rise to significantly higher r∗ estimates during the Great

Inflation period of the 1970s, and significantly lower estimates during the ZLB episode. This is

because, in the 1970s, surveys measures for long-run inflation expectations help to anchor trend

inflation, whereas survey-based short-term interest expectations anchor model-implied short-rate

expectations closer to the ELB akin to Geiger and Schupp (2018).

Looking at the effect on estimation uncertainty, as proxied by the 95th-5th interpercentile

range, we can observe that macro economic data is particularly useful following the Great

Moderation, while financial data helps to reduce estimation uncertainty during the 1970s and

80s. Surveys, in turn, are generally important to inform latent states, with their increasing

effect on the precision reflecting the fact that interest rate surveys only become available as of

1990Q1.
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Figure F.1: Smoothed estimates of r∗t using partial data

Note: The figure shows the posterior median r∗t estimate (left column) together with the width of the 95th-5th
interpercentile range (right column) if we (i) drop macro data (upper panels), (ii) drop financial data (middle
panels), (iii) drop survey data (bottom panels), and compares it to the full information baseline. Posterior
parameter estimates are taken as given.

G The natural yield curve as benchmark for the actual yield

curve

As touched upon in Section 2.2 of the main text, our model implies a natural yield curve,

i.e. a long-run attractor for yields of all maturities, whose location varies over time with the

stochastic drift in the level factor. This section gives an idea of how the natural yield curve can

be used as a benchmark for the actual yield curve.

Figure G.1 shows the natural yield curve at three points in time and compares it with the

respective observed yield curve. Note that both the actual and natural curve are expressed in
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terms of nominal interest rates. We can thus interpret the natural curve as a “benchmark”

for the actual curve, in the sense that the latter is expected to converge to the former in the

absence of further shocks. However, we cannot use the difference between the two as a measure

of monetary policy stance stricto sensu, which would require using the term structure of real

interest rates.30

The left panel of Figure G.1 depicts the yield curve (red) in June 2006, i.e. near the end

of a Fed tightening cycle that had started in July 2004 from a level of the federal funds rate

around one percent. The three-month rate in June 2006 was around 5.2%, and thereby around

4 percentage points higher than two years earlier and, according to our estimates, clearly above

the natural nominal interest rate. At the same time, the relatively flat and slightly inverted

yield curve implied that the long-term rate at that time would be close to its neutral level (red

curve for longer maturities within the blue credibility range for the natural yield curve).

Three and a half years later (end-December 2009, middle panel of Figure G.1), the Federal

Reserve had reacted with a sequence of rate cuts to address the economic fallout of the GFC:

the nominal short-term rate was near zero, while the yield curve was steep with ten-year rates

standing at above 4%. Comparing again to the estimated natural yield curve, the policy rate

cuts had brought the actual short-term rate clearly below its natural counterpart, in line with

the intended loose monetary policy stance. The long-term rate would have also been on the loose

side when being compared to our initial natural yield curve of mid-2006 (left panel). However,

over time, the nominal natural curve is estimated to have also shifted down (in line with the

natural short-term real rate decline after the GFC, as discussed above) so that an actual ten-year

rate level of 4% stood above its neutral level in December 2009.

Another three years later in December 2012 the short-term nominal interest rate was still

near its zero lower bound (and it would turn out to stay there for another three years), see right

panel of Figure G.1. At the same time, the estimated natural curve has declined further, but

the short rate remained in “loose” territory as it ranged below the point estimate of the natural

nominal rate of around 0.6% at that time. The overall yield curve was flatter in December 2012

compared to three years earlier, reflecting inter alia expectations by market participants that

policy rates would stay low for an extended period of time and the Fed’s quantitative easing.31

30In Section 5.1 we show that it is intricate to compute model-consistent long-term real rates. First, computing
the term structure of inflation expectations requires solving a fixed-point problem with some small modifications
to the model. Second, deflating nominal yields with thus-computed inflation expectations still ignores inflation
risk premia which should enter a proper computation of real rates when starting from nominal rates.

31Incorporating QE explicitly into our framework would require significant changes to our model and its es-
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Relative to our point estimate of the natural curve, the whole term structure of actual nominal

rates was ranging below its natural counterpart, falling even below its 90% credible set for

intermediate maturities.

Overall, this exercise highlights the importance of taking into account time variation in low-

frequency trends when assessing the level of the yield curve. The same level of the curve may

be deemed “high” when occurring in an environment of a low natural curve, but it would rather

reflect an environment of overall favorable nominal financing conditions at a time when the

natural curve is higher.

Figure G.1: Observed and natural yield curve at different points in time

Note: The figure shows the natural yield curve, together with its 68% and 90% credible set, and compares it to
the observed yield curve.

H Model version with long-term rates entering the IS curve

This section presents the state space representation of the model version in which a long-

term (as opposed to a one-period) real-rate gap enters the IS curve. After the model derivations

we also show that our model-implied measure of real rates align fairly well with real rates of

inflation-linked bonds (“TIPS rates”).

As introduced in the main text, for any maturity τ , we assume the IS curve (1) of the baseline

timation. See, e.g., Li and Wei (2013) on how to modify a standard yield curve model in order to incorporate
forward-looking bond supply shocks. We leave such an extension to future research.
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model is replaced by32

x̃t = a1x̃t−1 + a2x̃t−2 + a3Et−1

2∑
l=1

yt−l(τ)− 1

τ

τ∑
j=1

πt−l+j −

y∗t−l(τ)− 1

τ

τ∑
j=1

π∗t−l+j

+ εx̃t .

(H.17)

All other equations remain unchanged. To derive the state space representation, substitute (5)

and (14) into (H.17) to find

x̃t = a3L̃t−1 + a3θs(τ)St−1 + a3θc(τ)Ct−1

−a3

2τ
π̃t−1 + a1x̃t−1

+a3L̃t−2 + a3θs(τ)St−2 + a3θc(τ)Ct−2

+a2x̃t−2

−a3

τ

( τ−1∑
j=1

Et−1π̃t+j−1 +
1

2
Et−1π̃t+τ−1

)

−a3

(
θs(τ)S̄ + θc(τ)C̄

)
.

The state transition equation will therefore be of the following form

ξt = a+A0ξt−1 +A1Et−1ξt + ...+AτEt−1ξt+τ−1 + Get, (H.18)

where Get is the same as in the state space representation of the baseline model, see Annex

section A.1. The state vector ξt (repeated here for convenience) remains

ξt =
(
L̃t St Ct π∗t x∗t gt zt π̃t x̃t L̃t−1 St−1 Ct−1 π̃t−1 x̃t−1

)′
.

The vector of constant terms is given by

a =
(

0 a10 a20 0 0 0 0 0 −a3[θs(τ)S̄ + θc(τ)C̄] 0 0 0 0 0
)′
,

32To avoid keeping track of past inflation expectations as extra state variables we assume that both real rate
gaps are conditional on the t− 1 information set, which eases the calculation substantially.
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and the respective matrices for lagged and expected states are given by

A0 =



aL 0 0 0 0 0 0 0 0

0 a11 a12 0 0 0 0 a13 a14 03×5

0 a21 a22 0 0 0 0 a23 a24

1 0 0 0

04×3 0 1 1 0 04×7

0 0 1 0

0 0 0 1

0 0 0 0 0 0 0 b1 b2 0 0 0 0 0

a3 a3θs(τ) a3θc(τ) 0 0 0 0 − a3
2τ

a1 a3 a3θs(τ) a3θc(τ) 0 a2

I3×3 03×11

02×7 I2×2 02×5



,

Ai =


08×14

0 0 0 0 0 0 0 −a3
τ 0 0 0 0 0 0 0 0

05×14

 , ∀i = 1, ..., τ − 1,

Aτ =


08×14

0 0 0 0 0 0 0 −a3
2τ 0 0 0 0 0 0 0 0

05×14

 .

To solve the model, we guess that the non-stochastic part of the solution is linear in states

ξt = µ+ Fξt−1.

Then, the k + 1-period forecast is given by

Et−1ξt+k = (µ+ Fµ+ ...+ Fkµ) + Fk+1ξt−1.

Substitution yields

ξt =a+A0ξt−1 +A1

(
µ+ Fξt−1

)
+A2

(
µ+ Fµ+ F2ξt−1

)
+ ...+Aτ [(µ+ Fµ+ ...+ Fτ−1µ) + Fτξt−1]

=a+
τ∑
i=1

Ai

( i∑
j=1

Fj−1µ

)
+

(
A0 +

τ∑
i=1

AiF
i

)
ξt−1 + Get,

which confirms our initial guess and yields a set of implicit and nonlinear mappings for parameter
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vectors and matrices µ and F:

F =A0 +

τ∑
i=1

AiF
i, (H.19)

µ =a+
τ∑
i=1

Ai

( i∑
j=1

Fj−1µ

)
. (H.20)

Vectorizing (H.19) yields

vec(F) =vec(A0) +
τ∑
i=1

(
In ⊗AiF

i−1

)
vec(F).

Because (H.19) is an exponential matrix equation, multiple solutions may exist. We restrict

ourselves to solutions with the maximum eigenvalue equal to exactly unity for the random walk

processes. In contrast, µ is uniquely pinned down by (H.20) for any given F. Solving (H.20) for

µ yields

µ =

(
I−

τ∑
i=1

Ai

[ i∑
j=1

Fj−1

])−1

a.

Finally, also the state-space representation of the model with long-term rates in the IS curve

can be written in the form

ζt = γ + Cξt + Dut with ut ∼ N (0, I)

ξt = µ+ Fξt−1 + Get with et ∼ N (0, I),

with the new matrix F and intercept µ as introduced in this sub-section, and with the remaining

objects being unchanged compared to the baseline case.

Finally, as discussed in the main text, the real rate concept used in the gap measure is some-

what different from a long-term real rate as implied by inflation-linked bonds: conceptually, the

measure used here is the long-term nominal rate minus average inflation expectations, while an

inflation-linked bond rate would additionally subtract the corresponding inflation risk premium.

Accordingly, we cross-check by how much our model-based real rates differ empirically

from readings of real rates of Treasury Inflation-Protected Securities (TIPS) as obtained from

Gürkaynak et al. (2010). Figure H.1 suggests that our real rates align pretty well with TIPS

rates, and surprisingly do so increasingly well for higher maturities. Table H.1 further confirms
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this conclusions: except some level differences at shorter maturities, our real rates and TIPS

align closely in both levels and variation as also underlined by high correlations.

Figure H.1: Model-implied real rates vs. TIPS

Note: Model-implied real rates are calculated as (fitted) nominal yield minus model-implied average inflation
expectations. TIPS are based on Gürkaynak et al. (2010) and downloaded from the homepage of the Federal
Reserve Board.

Table H.1: Comparative statistics: Model-implied real rates vs. TIPS

maturity (in years) 2 3 5 10

mean(BGL) -0.14 0.16 0.68 1.54
mean(TIPS) 0.56 0.78 1.1 1.59
std(BGL) 1.69 1.65 1.5 1.33
std(TIPS) 1.59 1.55 1.48 1.27
std(∆ BGL) 0.5 0.52 0.51 0.45
std(∆TIPS) 0.81 0.59 0.46 0.33
corr(BGL,TIPS) 0.88 0.91 0.93 0.96

I ELB extension

This section provides additional information about the extension of the baseline model to

allow for the effective lower bound (ELB). As described in the main text, we follow Feunou et al.

(2022). The shadow rate st is an affine function of the state vector, st = δ′1ξt, with δ1 – in our
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Figure I.1: Mapping between shadow rate and short-term rate for different values of shape
parameter θ

Note: Illustration of the mapping between the shadow rate and the short-term rate in Equation (20) for
different values of θ.

case – being given by

δ1 =
(

1 1−exp(−λ)
λ

1−exp(−λ)
λ − exp(−λ) 1 0 4 1 0 0 0 0 0 0 0

)
.

The ELB constraint is approximated using a smooth nonlinear function ω(x) which maps the

shadow rate st into the observed short-term rate it ≡ yt(1). This non-linear mapping shown in

equation (20) in the main text is repeated here for convenience:

it = θω
(st
θ

)
, (I.21)

where θ > 0 is a scalar, the function ω(·) is defined as ω(x) = xΦ(x) + φ(x), and where Φ and

φ are the cumulative distribution function and the probability density function of a standard

normal distribution, respectively. Figure I.1 provides an illustration of the mapping between the

shadow rate and the short-term rate for different values of θ. Independent of the specific shape

of the function, governed by θ, the short-rate converges to the ELB for sufficiently negative levels

of the shadow rate, while st ≈ it when st is distinctly above the ELB. Incorporating this ELB-

preserving specification of the short rate, Feunou et al. (2022) derive a term structure of “close to

arbitrage-free” bond prices and yields that is analytically tractable and can be parameterised to
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be close to our no-arbitrage Nelson-Siegel specification for the linear (ignoring the ELB) baseline

model. Specifically, they assume33 that zero-coupon bond prices of maturity τ as a function of

the state ξt are given by

P τt (ξt) = P τ−1
t (Kξt) · e−m(ξt), P 0

t = 1, τ = 1, 2, . . . (I.22)

and show that this structure renders the family of bond prices almost arbitrage-free. In our

application m(ξ) is the mapping from the state to the short-term rate implied by (I.21), and K

is chosen as the N ×N matrix

K =



1 0 0 0 0 0 0

0 exp(−λ) λ exp(−λ) 0 0 0 0

0 0 exp(−λ) 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0 07×7

0 0 0 0 0 0 1

07×14



.

Feunou et al. (2022) further show that under assumption (I.22), the one-quarter forward rate τ

periods ahead is given by

ft(τ) = θω

(
δ′1K

τξt
θ

)
. (I.23)

where the expression in the enumerator can be interpreted as a shadow forward rate st(τ) =

δ′1K
τξt. Using the forward rates, spot rates follow as

yt(τ) =
1

τ

τ−1∑
i=0

ft(i) =
1

τ

τ−1∑
i=0

θω

(
δ′1K

iξt
θ

)
≡ Z(τ, ξt).

Our specific choice of K ensures that bond yields behave very similarly to those in our linear

baseline model when the short rate is sufficiently positive.

Adding a measurement error,

yt(τ) = Z(τ, ξt) + ετt (I.24)

33We adapt our notation, writing P τt instead of Pt(τ) to make room for the state argument.
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constitutes the nonlinear measurement equation pertaining to yields.

Estimation is done using the extended Kalman filter (EKF) with a simulation step in the

spirit of Carter and Kohn (1994) to carry out Bayesian inference. For the updating step of the

EKF, we need the Jacobian of Z with respect to the state vector ξt:

dZ(τ, ξ)

dξ
=

1

τ

τ−1∑
i=0

θ
d

dξ
ω

(
δ′1K

iξt
θ

)
=

1

τ

τ−1∑
i=0

δ′1K
iΦ

(
δ′1K

iξt
θ

)
,

where the last equality follows from the convenient result that

ω′(x) = xΦ′(x) + Φ(x)− xφ(x) = Φ(x), (I.25)

which applies the product rule for derivatives and uses an established results for the derivatives

of normal probability density function and cumulative density function.

Lastly, the inclusion of the survey forecasts of the short-term rate four quarters ahead implies

a measurement equation of the following type

Est yt+4(1) = Etyt+4(1) + us,srt = θEt

[
ω

(
st+4

θ

)]
+ us,srt .

Yet this expression involves the conditional expectation of a nonlinear function of a (conditionally

normally distributed) random variable. Since there is no closed-form solution for it, we take a

second-order approximation of that term to get an approximate measurement equation of which

in turn can take the Jacobian required in the filtering step of the EKF.34

Specifically, for any nonlinear function g(x) the second order Taylor approximation around

a point x = a is

g(x) ≈ g(a) + g′(a)(x− a) +
1

2
g′′(a)(x− a)2.

If x is a random variable and we linearize around the expectation a = E(x) (in our specific case,

this will be the conditional expectation Et), then, when taking expectations, E[g(x)], the linear

term disappears (as E(x− a) = 0), leaving us with the approximation for the expectation

E[g(x)] ≈ g(a) +
1

2
g′′(a)E[(x− a)2] = g(a) +

1

2
g′′(a)V ar(x).

34An illustration that the approximation works well can be provided upon request.
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To make this operationalizable, we need the second derivative of ω(x), which follows from (I.25)

and is simply ω′′(x) = φ(x). Thus, we have

Et

[
ω

(
st+4

θ

)]
≈ ω

(
Et

[
st+4

θ

])
+

1

2
φ

(
Et

[
st+4

θ

])
· V ar

[
st+4

θ

]
.

It can be shown that the conditional expectation of the shadow rate is affine in states, and that

the conditional variance is even constant (i.e. not depending on states) given the linear and

Gaussian model for st. That is,

Et

[
st+4

θ

]
= A4 +B′4ξt and V ar

[
st+4

θ

]
= V4,

where A4, B4 and V4 are functions of the autoregressive process parameters of our state process,

θ and δ1.

We are now ready to define the approximate measurement equation for the short-term in-

terest rate survey

Est yt+4(1) = Etyt+4(1) + us,srt ≈ θω(A4 +B′4ξt) +
1

2
θφ
(
A4 +B′4ξt

)
· V4 ≡ Z̃s(ξt) + us,srt , (I.26)

with corresponding Jacobian

dZ̃s(ξt)

dξ
= θΦ

(
A4 +B′4ξt

)
B′4 −

1

2
θV4(A4 +B′4ξt)φ

(
A4 +B′4ξt

)
B′4,

where the derivative employs the fact that φ′(x) = −xφ(x).

J Additional robustness checks

J.1 Estimation in pseudo real-time

In this section, we analyze how the real-time estimates of the latent states and their uncer-

tainty evolve over time. The focus is on r∗t and its estimation uncertainty. To start, we estimate

the model using the sample 1961Q4–1999Q4. Subsequently, we expand the sample by one quar-

ter at the time until 2019Q4, and reestimate the model in pseudo-real time. This gives us 81

smoothed point estimates of r∗t for each quarter between 1961Q4–1999Q4 (each indexed by the

specific vintage) and one less per quarter going forward in time, until a single point estimate for
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2019Q4. We do not account for data revisions. The priors are unchanged through this exercise.

The left panel of Figure J.1 shows the posterior median estimates of r∗t . As evident in the figure,

the estimates are very robust over time, with limited variation in the posterior median point

estimate of r∗t for shorter samples. The right panel of Figure J.1 shows the respective width

of the 95th-5th interpercentile range for each of the different vintages. The solid black line

indicates the estimation uncertainty of the full sample version. The red crosses, in turn, mark

the 95th-5th interpercentile range for the last estimate in each vintage. These are on average

0.22 percentage points above the full sample range, suggesting a modest decline in estimation

uncertainty with an increasing sample.

Figure J.1: r∗t estimates and uncertainty in pseudo-real-time

Note: The left panel plots the posterior median estimates of r∗t with an expanding estimation window from
1961Q4–1999Q4 until 1961Q4–2019Q4. The right panel shows for each estimate the respective width of the
95th-5th interpercentile range.

J.2 Model with only short-term rate

As discussed in Section 4.1, the Holston et al. (2017) model is not “closed” as it treats

the actual short-term real rate as exogenous. Given the dynamics of the inflation rate and

an assumption on how inflation expectations are formed, closing the HLW model requires a

specification of the nominal short-term interest rate. In the main body of this paper, we do

so using an arbitrage-free term structure model, effectively specifying the entire nominal yield

curve, with the aim of capturing the dual macro-finance role of equilibrium real rate. Yet,

other alternatives are possible. Brand and Mazelis (2019), for instance, close the model by

specifying the nominal interest rate as a function of inflation and output gap deviations from
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their respective targets consistent with a Taylor (1993)-type reaction function. Arguably, an

even simpler approach is to merely decompose the nominal short-term rate, yt(1) ≡ it, into

its trend component i∗t = r∗t + π∗t , and a stationary cycle. To analyze how the specification

of the short-term rate dynamics and the inclusion of multiple yields affects the estimate of r∗t ,

we estimate a model version that replaces equation (8) of the main text with the following

specification for the short-term nominal interest rate:

it =rt + Etπt+1,

=r∗t + r̃t + π∗t + Etπ̃t+1,

=r∗t + r̃t + π∗t + b1π̃t + b2x̃t, (J.27)

where the last equality follows from equation (4) of the main text. The key difference to the

baseline model is that the real rate gap, r̃t, is assumed to follow a stationary first-order autore-

gressive process,

r̃t = arr̃t−1 + εrt , εrt ∼ N (0, σ2
r ). (J.28)

instead of being implicitly determined by the yield curve factors as in equation (18). For the

estimation, we impose a Normal-Inverse-Gamma prior on (ar, σ
2
r ).

35

Figure J.2: Comparison of latent states: short-rate-only model vs. baseline model

Note: Posterior median states of the short-rate-only model in blue and of the baseline term structure model
(denoted ”TSM”) in red.

35Specifically, the prior for coefficient ar is centered around 0.5 with a wide standard deviation of 0.25 and the
prior shape and scale parameters for the innovations variance, σ2

r , are 4 and 2, respectively.
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However, in this agnostic setup, we run into econometric instability as too many draws from

the conditional posterior of the coefficient of the lagged inflation gap in the Phillips curve, b1

– which becomes an eigenvalue of the system – exceed the unit root. We therefore tighten the

prior by choosing a very small prior standard deviation of 0.025 around the prior mean; ten

times smaller than in our baseline. The resulting posterior estimates of the model’s coefficients

are similar to our baseline model. Yet, as can be seen in Figure J.2, the resulting posterior

median estimates of latent states – in particular for trend inflation, π∗t , and trend growth, gt –

are more volatile. This increased volatility carries over to the estimates of r∗t as can be seen in

the left-hand side of Figure J.3, suggesting that the model has more difficulties in decomposing

real rates into their cyclical and trend components. Despite tighter priors and fewer latent

states, overall estimation uncertainty for r∗t , as measured by the width of the 90% credible set,

is substantially higher in the first half of the sample. Only after the Great Moderation, when

estimation uncertainty declines sharply in both models, the average width of the 90% credible

set of the short-rate only model falls below that of our baseline specification.36 On average over

the sample, the estimation uncertainty is slightly smaller in the baseline model.

Figure J.3: Natural rate of interest and estimation uncertainty: short-rate-only model vs. base-
line model

Note: The left panel compares the posterior median estimates of r∗t from the short-rate-only model (blue) with
our baseline term structure model (red). The panel on the right shows the respective 95th-5th interpercentile
range of r∗t as a measure of estimation uncertainty.

36Note that the marked decline in the IPR during the Great Moderation also aligns with the availability of the
Consensus Economics interest survey.
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J.3 A generalized affine no-arbitrage term structure specification

The arbitrage-free affine Nelson-Siegel (AFNS) set-up for the yield curve has a very parsimo-

nious structure, as all factor loadings of yields depend on a single free parameter, λ. As shown

in Appendix B, the factor loadings can be derived from no-arbitrage pricing equations. Joslin

et al. (2011b) expound how the specific restrictions on risk-neutral model dynamics, especially

the form of ΦQ
uu, equation (B.15), are obtained starting from the canonical JSZ representation

of the risk-neutral autoregressive matrix with two distinct eigenvalues, i.e. one appearing once,

the other appearing as a pair:37

Φ̃Q
uu =


λ0 0 0

0 λ 1

0 0 λ


This section offers yet another robustness check of our main results by generalizing the affine

Nelson-Siegel setup. We keep the partitioning and reshuffling of the factor vector as in section

B, i.e. we work with Ft = (Lt, ξ̄t), where Lt is the level factor and ξ̄ is a reshuffling (L̃t put after

St and Ct) of the original state vector ξ.

The generalization will affect the specific parametrization of the risk-neutral autoregressive

matrix ΦQ
uu, i.e. the upper-left block of the overall autoregressive matrix as in equation (B.12).

As is well known in the literature, an arbitrary (full) ΦQ
uu matrix does not make sense as it is

not identifiable. We rather start again with the canonical JSZ representation, this time allowing

for three distinct eigenvalues in ΦQ
uu, leading to the structure

ΦQ
uu =


λ0 0 0

0 λ1 0

0 0 λ2

 . (J.29)

We set again λ0 = 1 in order to preserve the interpretation of the first factor as a level factor,

with its trend component related to r∗t . We also stick to the factor labels as Lt, St and Ct, even

though the different parametrization of ΦQ
uu implies that the narrow interpretation of the third

factor as ‘curvature’ will not be applicable anymore.

We also keep cQu = 0, and set δu = (1, 1, 1)′ and δ0 = −S̄ − C̄. This leaves us with two

37The 1 appearing as (2,3) element in Φ̃Q
uu is due to the Jordan form in the standard JSZ representation with

two repeated eigenvalues. It is absent, i.e. the matrix is diagonal, in the case of three distinct eigenvalues as
chosen for our generalized case below.
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free parameters, λ1 and λ2, instead of one as in our baseline arbitrage-free affine Nelson-Siegel

(AFNS) case.

Also in this case, the solution to the difference equation for the factor loadings bu(τ) (for

bond prices) is given in closed-form,

bu(τ) =

[
−τ,−1− λτ1

1− λ1
,−1− λτ2

1− λ2

]
(J.30)

with yield loadings

Bu(τ) = −1

τ
bu(τ). (J.31)

Our choice of δ0 = −S̄ − C̄ implies that limh→∞Etit+h = L∗t as in the baseline case.

Our state space representation, see Annex section A.1, is little affected by this generalization.

Recall that the measurement equation is ζt = γ + Cξt + Dut. As before, the first K elements

of γ are γ(k) = A(τk) for k = 1, . . . ,K, with A(τk) = −a(τk)
τk

, just that the difference equation

(B.13) is now based on the new b(τ). Likewise, the upper left block of the C matrix in (A.6)

associated with yields becomes

C[1:K,1:3] =


Bu(τ1)′

...

Bu(τK)′

 ,

where Bu(τk) are now determined via (J.30)-(J.31).38

Also the state vector ξt and its law of motion remains unchanged. Yet given that δ0 and

δ1 in the short-term interest rate equation it = δ0 + δ′Ft are different from the AFNS case, the

intercept and loadings on the (lagged) slope and curvature factors in the IS curve change.

The estimation follows the same structure as in the baseline case only that the random-

walk MH step for drawing the AFNS parameter λ (see section D) is replaced by an MH step

that draws the two parameters λ1 and λ2 from an ordered random walk in order to avoid both

eigenvalues to cross each other and flip the corresponding latent states. As prior, we choose a

beta distribution for λ1 and λ2 which ensures that both values remain within (0, 1).39

38As for the AFNS case in section B, the derivation of the generalized pricing equations works with the reshuffled
and extended state vector that has the overall level factor in first position. However, the state space model can
take over the loadings as they stand as the first element of the state vector is the cyclical level factor L̃ with a
loading coefficient of unity. The other yield loadings for the level factor are then appearing later in the C matrix:
with unity on g and π∗, and with a loading of 4 on g, together making a unity loading on L∗.

39We further reject any proposal λ1 > 0.98 to ensure a strictly stationary second eigenvalue. The assumption
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The posterior densities for λ1 and λ2 turn out to have a median of 0.956 and 0.607, respec-

tively, and are precisely estimated, see Figure J.4 below.

Figure J.4: Posterior distribution of the second and third eigenvalues of ΦQ
uu

Note: The figure shows the posterior distribution of the second (left) and third (right) eigenvalue of the ΦQ
uu

matrix in the generalized term structure model. The prior follows a β-distribution with shape and scale
parameters (6, 2) and (4, 2), respectively.

Figure J.5 plots estimated factors under the generalized term structure model (GTSM)

specification (blue) in comparison with the baseline AFNS case (red). Macro factors remain

virtually unchanged, implying that also r∗t = 4gt + zt (not shown) remains essentially the same.

Also the cyclical level factor for the GTSM shows very similar dynamics compared to the AFNS

case. As mentioned before, the second and third factors now have different interpretations (we

stick to the AFNS labels “slope” and “curvature” though) due to the different factor loadings,

so they are not directly comparable but the slope factor shows similar dynamics under both

specifications.

The fit to the yield curve is similar under both specifications, yet the root mean squared

fitting error is lower by one or two basis points for the GTSM across maturities, see Table J.1.

As an overall measure of fit across observable variables, we compute the marginal likelihood,

and the GTSM has an edge over the baseline model also according to this criterion.

Model-implied five-year interest rate expectations five years ahead are closely correlated.

However, the GTSM expectations are a bit lower. Accordingly, term premia are somewhat

higher for the GTSM specification, but show very similar dynamics compared to the AFNS

baseline.

Overall, making the yield curve pricing module more flexible compared to the one-parameter

is that the level factor remains I(1) under the Q measure – as implied by the unity (1,1) element of ΦQ
uu – while

the other factors are stationary. Choosing the proposal to “just” ensure 0 < λ1, λ2 < 1 tends to lead to posterior
densities that are similar to those obtained for our choice, but the greater proximity to the unit-root case renders
the sampling (numerically) unstable. The ordering further ensures λ1 > λ2.
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Figure J.5: Comparison of latent states: Generalized TSM vs. AFNS baseline

Note: Posterior median state estimates of the generalized term structure model in blue, with its 90% credible
set, and posterior median state estimates of the baseline AFNS model in red.

Nelson-Siegel setting leads to a slightly better fit of the yield curve, it leaves relevant macro

factors essentially unchanged, while term premia evolutions differ somewhat in levels but show

very similar dynamics (see Figure J.6). As the (arbitrage-free) dynamic Nelson-Siegel set up

is so prominent in the empirical macro-finance literature, we consider it useful to keep that

specification as our baseline, rendering comparison to related studies more straightforward than

using the generalized model.

J.4 Stochastic volatility in the IS and Phillips curve

In this section, we extend the model to allow for stochastic volatility in the IS and Phillips

curve, i.e. we allow the standard deviations of the error terms in equations (1) and (4) of the

main text, σx̃t and σπ̃t , to vary over time. Specifically, let the IS and Phillips curve be given:

x̃t = a1x̃t−1 + a2x̃t−2 + a3

(
r̃t−1 + r̃t−2

)
+
√

exp(lnhx̃t )εx̃t ,

ECB Working Paper Series No 3160 68



Figure J.6: Comparison of forward rate expectations and term premium: Generalized TSM vs.
AFNS baseline

Note: The left panel compares the 5-year-forward-5-year-ahead average expected short-term rate between the
AFNS and generalized term structure model version. Right panel shows the corresponding 5y5y forward term
premium estimates relative to the min-max range of conventional estimates from the literature.

and

π̃t = b1π̃t−1 + b2x̃t−1 +
√

exp(lnhπ̃t )επ̃t ,

respectively. hkt denotes the time-varying variance, with εkt ∼ N (0, 1), for k = {x̃, π̃}. Jacquier

et al. (1994) suggest to apply an independence MH algorithm at each point in time to sample

from the conditional distribution of hkt which is given by f(hkt |hk−t, ξt) where the subscript −t

denotes all other dates than t. By further specifying a random walk transition equation for lnhkt ,

lnhkt = lnhkt−1 + νkt , νkt ∼ N (0, gk),

the conditional distribution can be simplified as f(hkt |hk−t, ξt) = f(hkt |hkt−1, h
k
t+1, ξt). Our priors

for hk are p(lnhkt ) ∼ N (µ̄k, σ̄k), where (µ̄k, σ̄k) are set to the (log) posterior of the baseline

model (see Table 1 in the main text). We further specify an Inverse Gamma prior for gk,

i.e. p(g) ∼ Γ−1(a0, b0) with prior scale and shape a0 = 50 and b0 = 0.5, respectively. The

implementation follows Jacquier et al. (1994) and is a straight forward extension of our Gibbs

sampler with a sequential independence Metropolis Hastings (MH) to draw hkt and g before step

1. in the algorithm of Section D.

The top panels in Figure J.4 show that the posterior variances are precisely estimated, despite

further increasing the complexity of the model. The variance associated with the residuals in

the IS curve is elevated during the 1970s and 1980s and falls through the Great Moderation.

The same holds for the residual variances in the Phillips curve. Yet the latter also peaks in 2009-
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10, reflecting the sharp deflationary impulse of the GFC. The posterior median of the constant

volatility model lies in between.

While a time-varying specification for the variances is arguably more plausible from an

economic perspective, the middle and bottom panels suggest that the output and inflation gap

estimates are barely affected. As a result, differences in the posterior median estimate of r∗t

are also negligible. Differences in the estimation uncertainty can be sizable at times, but do

not persist. If anything, the constant volatility model may imply a somewhat lower estimation

uncertainty after the Great Moderation.

J.5 Model with trivariate VAR for the stationary yield curve factors

In this section, we generalize the model by assuming that the stationary yield curve factors

(L̃t, St, Ct) jointly follow a trivariate VAR, with the output and inflation gap as exogenous

variables. For this purpose, exchange equations (11)-(13) in the main text with the following

equation:


L̃t

St

Ct

 =


a10

a20

a30

+


a11 a12 a13

a21 a22 a23

a31 a32 a33



L̃t−1

St−1

Ct−1

+


a14 a15

a24 a25

a34 a35


π̃t−1

ỹt−1

+ I


εL̃t

εSt

εCt

 . (J.32)

We assume a Normal-Inverse Wishart prior that mimics the prior on the baseline specifica-

tion. Specifically, for slope and curvature, the prior assumes each to follow a persistent AR(1)

with intercept, with the priors being equally tight on coefficients and variances. For the cyclical

level factor, the AR(1) coefficient is centered around 0.5 with a standard deviation of 0.25. To

further ensure consistency with the zero-mean property of the cyclical level factor, we a priori

impose that the intercept a10 is zero.

Table J.2 presents the parameter estimates. Overall, parameter estimates appear fairly

robust and – as further supported by Figure J.8 – this modeling choice does not affect the

posterior median estimates of the smoothed states.
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J.6 Looser prior on the variance of trend growth

As laid out in the main text, our baseline model assumes a relatively tight prior on the

variance of trend growth to ensure smooth dynamics in the growth of potential output. In this

section, we present the results for using a looser prior on the variance of trend growth. Specif-

ically, we re-estimate the model, assuming a prior distribution of Γ−1(100, 2) for the variance

of trend growth. This prior implies a prior mean that is nearly fifteen times larger than in our

baseline specification, and a variance around that (higher) mean which is more than twenty

times larger. As a result of the less informative prior, trend growth gt absorbs some of the

cyclical dynamics in output (see left panel in Figure J.9), rendering the resulting output gap

less persistent. Estimates for r∗t , however, remain unaffected (see right panel in Figure J.9).

J.7 Coefficients of expected growth on the natural rate

As discussed in the main text, the Laubach and Williams framework imposes a fixed loading

of the expected quarterly trend growth on the (annualized) natural rate of interest in Equa-

tion (3)in the main text. However, some recent studies, including Lunsford and West (2019),

have highlighted the weak empirical relationship between real rates and (trend) growth. This

section presents a version of the model that relaxes this assumption by additionally estimating

the coefficient α in

r∗t = αgt + zt. (J.33)

We assume a priori that α is normally distributed around 4 – the value chosen by Laubach

and Williams (2016) – with a wide variance
√

2, i.e. our prior for α is p(α0) ∼ N (4,
√

2). For

the estimation, we add an additional random walk Metropolis Hastings step into the estimation

algorithm with the scale parameter set to achieve an acceptance rate between 20-40%.

Figure J.10 shows the prior and posterior distribution. While the posterior median turns out

to be lower than the value imposed by Laubach and Williams (2003, 2016), we find a significantly

positive effect of expected real potential growth on trend real interest rates in line with standard

theory that links real rates to productivity growth. Specifically, the posterior median is 2.74,

with the 90% credible set ranging from 1.4 to 4.4. In contrast to Lunsford and West (2019),

our specification, following Laubach and Williams (2003) and later variants, assumes such a

link in the long-run, thus stripping cyclical variation in both real rates and economic growth

(or productivity) from their respective long-run trends that could create econometric challenges
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arising from e.g. the endogeneity of both. Our estimate of r∗t remains unchanged.

J.8 Coefficients of the real rate gap in the IS curve

In our specification of the IS curve that originates from the Laubach and Williams (2003,

2016) model, the two lags of the real rate gap load on the output gap with the same coefficient.

As a robustness check, we relaxed this assumption and instead estimate the model allowing for

the two lags of the real rate gap to affect the output gap differently, thus exchanging equation (1)

in the main text with

x̃t = a1x̃t−1 + a2x̃t−2 + a3r̃t−1 + a4r̃t−2 + εx̃t . (J.34)

The left panel of Figure J.11 plots the posterior distributions for the parameter in our

baseline model and compares it with the respective posterior distributions of the case in which

the parameters are allowed to be different. The posterior distributions of the parameters of

the first and second lag of the real rate gap largely fall on top of each other, with negligible

differences in the medians (ā3 = −0.094 vs. ā4 = −0.100). Both, in turn, are hardly different

from the posterior distribution of our baseline estimation, with an overall comparable estimation

uncertainty.

Finally, and most importantly, the posterior estimates of the latent states are not affected

as shown in the right hand side panel of Figure J.11 for our main object of interest, r∗t .
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Table J.1: Root mean squared fitting errors across maturities (in percentage points)

Maturity (in quarter) τ =2 τ =3 τ =4 τ =8 τ =12 τ =16 τ =20 τ =24 τ =28 τ =32 τ =36 τ =40
AFNS model 0.12 0.15 0.15 0.09 0.05 0.07 0.09 0.09 0.06 0.03 0.08 0.16

GTSM 0.11 0.14 0.13 0.08 0.05 0.06 0.08 0.07 0.05 0.03 0.06 0.13

Table J.2: Posterior estimates of the stationary yield curve parameter

Baseline trivariate VAR
Parameter 5% Median 95% 5% Median 95%

a10 - - - -0.347 -0.129 0.055
a11 0.212 0.508 0.825 0.548 0.711 0.858
a12 - - - -0.124 -0.045 0.030
a13 - - - -0.087 -0.055 -0.023
a14 - - - -0.002 0.057 0.112
a15 - - - -0.143 -0.072 -0.011
a20 -0.925 -0.539 -0.215 -1.299 -0.827 -0.432
a21 - - - -0.693 -0.430 -0.099
a22 0.572 0.689 0.787 0.365 0.534 0.703
a23 0.075 0.135 0.192 0.028 0.092 0.167
a24 -0.121 -0.006 0.114 -0.103 0.043 0.192
a25 0.073 0.150 0.246 -0.005 0.106 0.220
a30 -0.647 -0.104 0.367 -0.288 0.221 0.742
a31 - - - -0.022 0.409 0.865
a32 0.182 0.328 0.487 0.236 0.444 0.669
a33 0.529 0.622 0.706 0.576 0.670 0.752
a34 -0.192 -0.037 0.126 -0.282 -0.111 0.047
a35 -0.281 -0.129 0.003 -0.171 -0.017 0.126
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Figure J.7: Estimation results of the model with stochastic volatility

Note: The top row shows the posterior estimates of the time-varying variances of the IS and Phillips curve. The
middle panel compares the output and inflation gap of the stochastic versus constant (baseline) volatility model.
The bottom row compares the posterior median r∗t estimate and its 95th-5th interpercentile range of the
stochastic vs. constant volatility model.
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Figure J.8: Comparison of latent states: model with trivariate VAR for the stationary yield
curve factors vs. baseline model

Note: Posterior median state estimates of model with a trivariate VAR for the stationary yield curve factors in
blue and that of the baseline model in red.

Figure J.9: Looser prior on trend growth: effect on r∗t

Note: The figure shows r∗t and its components from our baseline estimation and compares it to the case of a
looser prior on the variance of trend growth equal to Γ−1(100, 2).

Figure J.10: Prior and posterior distribution of α

Note: The figure shows the prior and posterior densities of the parameter α in Equation (J.33). In the baseline
model, α is fixed to 4 as in Laubach and Williams (2003, 2016).
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Figure J.11: Posterior plots and natural rate estimates

Note: The left panel shows the posterior distributions of the parameter a3 and a4 for the model version in which
the two are allowed to differ. The right panel compares the resulting posterior median r∗t estimate to our
baseline.
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