Reserve Demand, Interest Rate Control, and Quantitative Tightening

David Lopez-Salido and Annette Vissing-Jorgensen, Federal Reserve Board

November 2023

Thank you to many Monetary Affairs Division colleagues who helped us think through these issues

Disclaimer: The views expressed herein are those of the authors; they do not necessarily reflect those of hthe Federal Reserve Board or the Federal Reserve System.

<u>Pre-financial crisis:</u> Conventional monetary policy

- Reserves didn't earn interest: Reserve demand was modest
- Reserve supply was small even relative to demand: Equilibrium was on the steep part of reserve demand curve
- Fed could change short-term rates (effective federal funds rate) with small changes in reserve supply via open market operations

<u>Financial crisis</u>: Zero/effective lower bound \rightarrow Unconv. monetary policy: Forward guidance, QE

- Reserve supply expanded massively
- The Fed started paying interest on reserves

Our focus:

- 1. What is the role of reserve demand for interest rate control in the ample reserves setting?
- 2. How can we use reserve demand to guide QT?
 - Reserve demand determines how QT affects interest rate volatility
 - Different angle in Vissing-Jorgensen (June 2023, ECB Sintra paper) Reserve demand affects the "convenience-maximizing" supply of reserves

Steps:

- 1. Framework:
 - Deriving reserve demand from banks' optimization and reserve supply from CB actions
 - Equilibrium
- 2. Estimate reserve demand:
 - Implications for interest rate control: iso-fed funds curves
 - Implications for quantitative tightening

Federal Reserve balance sheet, November 1, 2023 H.4.1 release, \$B

Asset	S	Liabilities	
Treasuries	4,873	Currency	2,32
MBS	2,463	Treasury general account	75
Loans	163	Reserves	3,31
Other	418	Overnight reverse repurchase agreements	1,07
		Other	44
	7,917		7,91

The Federal Reserve funds itself with:

- Autonomous factors (Currency, TGA): Not chosen by Fed (demand accommodated)
- Reserves, ONRRP

25 53 15 79 45 17

Federal Reserve liabilities, 2006M1-2023M10

Low reserve supply \rightarrow Yield spikes, September 2019 (daily data)

- Sept 17, 2019: Reserve scarcity in the sense that banks were willing to hold them at a much lower rate (IOR) than they could get by lending in the Fed funds market (EFFR) or repo market (SOFR)
- Market worries that current QT will end abruptly with another yield spike e.g., WSJ 9/3/2022

The Other Doomsday Scenario **Looming Over Markets**

A U.K. fund manager says the big worry isn't inflation, it's the reversing quantitative easing

RESERVE DEMAND

7

Deriving reserve demand from banks' optimization

Bank Assets	Bank Liabilities
Reserves	Deposits
Securities	Federal funds
Loans	Repo
	Equity

Banks demand reserves to manage liabilities: Deposits, notably liquid deposits

- Narrow banking:
- Fractional reserve banking:
- Ample reserve banking:

Reserves=Deposits

Reserves=Fraction*Deposits

Reserves=f(Deposits, r(FF)-r(Reserves),...): Our focus

Deriving reserve demand from banks' optimization

1.	Interest on reserves:	IOR
2.	Reserves have liquidity benefits:	Don't have to sell illiquid assets/cut lendir payments if deposits drop Reserves also useful for supervision & re
	v(Reserves, Deposits)	Convenience value: Expected savings transactions costs/other costs
	$v'_R(Reserves, Deposits)$	Convenience yield: Marginal value of r Decreasing in reserves, increasing in c

- 3. Bank balance sheet cost φ per dollar of assets (capital requirements)
- 4. Cost of posting collateral in repo borrowing: w(Private repo), w'()>0 (foregone securities lending revenues)

ling/delay

eg. purposes

s on

more reserves deposits

Bank profits: $\pi = IOR^*Reserves + r(Securities)^*Securities + r(Loans)^*Loans$ -[r(Deposits)*Deposits+r(FF)*FF+r(Repo)*Repo] +v(Reserves, Deposits) -φ*(Reserves+Securities+Loans)-w(Repo)

We can define reserve demand relative to any source of funding for holding reserves:

• FOC for borrowing via FF and investing in reserves:

Highest interest rate bank is willing to pay to borrow to invest in reserves

r(FF)

= IOR + v'_R (Reserves, Deposits) - φ

Net benefit of reserves

FOC for borrowing via repo and investing in reserves:

 $r(\text{Repo}) = \text{IOR} + v'_R(\text{Reserves}, \text{Deposits}) - \varphi - w'(\text{Repo})$

• FOC for borrowing via deposits and investing in reserves: $r(\text{Deposits}) = \text{IOR} + v'_R(\text{Reserves}, \text{Deposits}) - \varphi + v'_D(\text{Reserves}, \text{Deposits})$

(1)

- (2)
- (3)
- 10

v(Reserves, Deposits) emerges naturally from basic micro foundations:

- Net deposit outflows are a fraction \tilde{F} of deposits (D), distributed uniform(-k,k)
- Withdrawals met using reserves (R) incur no transactions costs
- Withdrawals x met using bonds (or loans) incur transactions costs $TC(x) = \delta^* x^2$
- Bonds sold=min(\tilde{F} D-R,0). Transactions costs: $\tilde{T}\tilde{C} = \delta^{*}[min(\tilde{F}$ D-R,0)]²

$$E(\widetilde{TC}) = \int_{-k}^{k} \delta[\min(FD - R, 0)]^2 f(F) dF = \int_{\overline{D}}^{k} \delta(FD - R)^2 \frac{1}{2k} dF = \frac{\delta}{2k} \frac{1}{3D} dF$$

 $v(Reserves, Deposits) = E(\widetilde{TC}(Reserves = 0, Deposits) - E(\widetilde{TC}(Reserves, Deposits))$ $v'_R(Reserves, Deposits) = -\frac{\partial E(TC)}{\partial P} > 0$ $v'_{R}(Reserves, Deposits)$ is decreasing in reserves and increasing in deposits for R<kD.

$(kD - R)^{3}$

 $r(FF) = IOR + v'_R(ExcessReserves, Deposits) - \varphi$

• Asymptotes to IOR- ϕ if $v'_R(.) \rightarrow 0$

RESERVE SUPPLY

Fed Assets	Fed Liabilities
Securities	Currency, govt. deposits: Autonomous facto
Loans to banks	Reserves
	ONRRP (non-bank facility)

ONRRP

Reserves lent the central bank by non-banks

Reserve supply

<u>Case A</u>. With lending facility for banks but no investment facility for non-banks **<u>Case B</u>**. With investment facility for non-banks

EQUILIBRIUM

Equilibrium 1: Demand crosses supply on the vertical part \rightarrow Neither facility is used

Equilibrium 2: Demand crosses supply on the bottom flat part \rightarrow ONRRP facility is used

Reserve demand evaluated

/high net securities supply /high non-bank facility rate

Equilibrium 3: Demand crosses supply on the top flat part \rightarrow Lending facility is used

Reserve demand evaluated

/low net securities supply /low lending facility rate

Central bank controls short market interest rates via:

- Choice of net securities
- Administered rates
 - IOR
 - Rate on the lending facility (discount window)
 - Rate on the investment facility for non-banks (ONRRP facility)
- Private-sector use of the facilities changes the equilibrium supply of reserves which keeps the market-clearing interest rate between rates in discount window and ONRRP facility

RESERVE DEMAND ESTIMATION (2009M1-2022M10)

• Log functional form:

 v'_{R} (Reserves, Deposits) = d + b * ln(Reserves) + c * ln(Deposits) where we expect b<0 and c>0 (should be *excess* reserves – will be updated in next draft)

Allowing for reserve demand shock, u:

 $r(FF) - IOR = v'_R(Reserves, Deposits) - \varphi + u$ $= a + b * \ln(\text{Reserves}) + c * \ln(\text{Deposits}) + u$ where $a = d - \varphi$

> \rightarrow Reserves = α Deposits^{β} e^{γ (r(FF)-IOR)} ε Semi-log $\alpha = e^{-a/b}$, $\beta = -c/b$, $\gamma = 1/b$, and $\varepsilon = e^{-u/b}$

Estimating reserve demand: Deposit growth

Deposits grew a lot over the 2009-2022 period, even relative to GDP (data to 2022M10)

r(FF) - IOR = a + b * ln(Reserves) + c * ln(Deposits) + u

- Controlling for deposits crucial to get stable reserve demand function
- Similar results with liquid deposits

Table 2. Reserve demand estimation, instrumenting for reserves

Monthly data, 2009M1-2022M10. IV estimation. t-statistics are robust to autocorrelation up to order 12.

Panel A. Second stage		Panel B. First stage for	[,] In(Reser
	Dept. var.:		Dept. va
	EFFR-IOR		In(Reserv
In(Reserves)	-0.200***	In(Reserves+ONRRP)	0.860**
	(t=-10.44)		(t=14.0
In(Deposits)	0.358***	In(Deposits)	-0.049
	(11.86)		(-0.47
Constant	-1.900***	Constant	1.467
	(-10.64)		(1.64)
N (months)	166	N (months)	166
		\mathbb{R}^2	0.960

- EFFR-IOR \downarrow by 10 bps \rightarrow Reserve demand \uparrow by 50% -- very elastic, but not flat
- 1% increase in deposits \rightarrow >1% increase in reserve demand (less so if using liquid deposits)

- erves) ar.: rves) *** 07) 9 7)

Estimating reserve demand: Fitted values

Reduced form of IV: r(FF) - IOR = A + B * ln(Reserves + ONRRP) + C * ln(Deposits) + U

Estimation results: Fitted values

Reduced form of IV: r(FF) - IOR = A + B * ln(Reserves + ONRRP) + C * ln(Deposits) + U

$$= A + B * ln \left[(Reserves + ONRRP) * (Deposits)^{\frac{C}{B}} \right]$$

Deposit-adjusted Reserves+ONRRP supply

Why did deposits grow? Increased deposit demand

Deposits likely went up mainly due to higher financial assets

- Deposits are one of many financial assets
- Over 2009Q1-2022Q2 period: Fairly stable portfolio weight for deposits

 Instrument deposits with financial assets and the level of IOR (deposits spread, r(Deposits)-IOR, falls with IOR)

Instrumenting for deposits (and still instrumenting for reserves)

Table 3. Reserve demand estimation, instrumenting for both reserves and deposits

Quarterly data (last month of the quarter), 2009Q1-2022Q2. t-statistics are robust to autocorrelation up to order 4. *** indicates statistical significance at the 1% level.

Panel A. Second sta	ge	Panel B. First stages for In(Res.)	
	Dependent variable:		Dep.var:
	(EFFR-IOR)		In(Reserve
In(Reserves)	-0.207***	In(Reserves+ONRRP)	0.845***
	(t=-11.53)		(t=8.53)
In(Deposits)	0.377***	In(Financial assets)	0.035
	(12.92)		(0.24)
Constant	-2.025***	IOR	-0.010
	(-11.62)		(-0.31)
N (quarters)	54	Constant	0.746
			(0.66)
Sargan test of over-			
identifying		N (quarters)	54
restrictions	p=0.29 (not rejected)	R^2	0.971

sits autocorrelation up

.), In(Deposits) Dep.var: In(Deposits) 'es) -0.029 (t=-0.85)1.091*** (20.65)-0.035*** (-2.62)-2.671*** (-7.43)54 0.987

Instrumenting for deposits (and still instrumenting for reserves)

IMPLICATIONS OF ESTIMATED RESERVE DEMAND FOR POLICY

Iso-fed funds curves: (*IOR*, *Reserves* + *ONRRP*) combinations that achieve same target How to set the IOR to hit the target, given balance sheet size

Given deposits of \$17.753T as of 2022M10: $r(FF) - IOR = \widehat{A} + \widehat{B} * ln(Res. + ONRRP) + \widehat{C} * ln(Deposits)$

Gray shading: Observed x-range in sample (from \$662B to \$5,811B)

Iso-fed funds curve (ex. for a 4% target): $IOR = 4\% - [\widehat{A} + \widehat{B} * ln(Res, +ONRRP) + \widehat{C} * ln(Deposits)]$

• Bianchi and Bigio (ECMA, 2022): Theory, introduced idea of iso-fed funds curves

How much can Reserves+ONRRP be reduced before rates get volatile?

$r(FF) - IOR = \widehat{A} + \widehat{B} * ln(Reserves + ONRRP) + \widehat{C} * ln(Deposits)$ for deposits=\$17.753T as of 2022M10

Reserves+ONRRP are at \$5.27T (20.4% of GDP) as of 2022M10

Pred. spread as Sep 2019

Pred. spread=0, may be

enough to avoid daily spikes

Estimates will evolve with deposits

How much can balance sheet be reduced before rates get volatile?

- 1. Standing Repo Facility: May help reduce the risk of yield spike for a given reserves+ONRRP
 - Introduced in July 2021
 - Allows dealers and depository institutions to borrow funds from Fed via repo borrowing
- 2. Autonomous Factors Volatility

Fed Assets	Fed Liabilities
Securities	Currency, government deposits: Autonomous
Loans to banks	Reserves
	ONRRP (non-bank facility)

- Reserves+ONRRP=Fed Assets-Autonomous factors
- Autonomous factors are volatile
 - To keep Reserves+ONRRP at "target" value: Change assets with autonomous factors
 - Or, allow for buffer, so fluctuation in AFs don't push Reserves+ONRRP below "target"

How much can balance sheet be reduced before rates get volatile?

\$B

• Sept 2019 was mainly due to low reserve supply given size of banking sector, but: Increase in TGA was final straw that set off yield spike in September 2019 (Treasury issuance, tax payment)